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ABSTRACT 

We prove some Common Fixed Point theorems for Random Operator in polish spaces, by using some 

new type of contractive conditions taking non-self mappings.  
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1. Introduction  

Probabilistic functional analysis has emerged as one of the important mathematical disciplines in view 

of its role in analyzing Probabilistic models in the applied sciences. The study of fixed point of random 

operator forms a central topic in this area. Random fixed point theorem for contraction mappings in 

Polish spaces and random fixed point theorems are of fundamental importance in probabilistic 

functional analysis. There  study  was  initiated  by  the  Prague  school  of Probabilistic, in  

1950, with their work of Spacek [15] and Hans [5,6]. For example survey are refer to Bharucha-Reid 

[4]. Itoh [8] proved several random fixed point theorems and gave their applications to Random 

differential equations in Banach spaces. Random coincidence point  theorems and random fixed point 

theorems are stochastic generalization  of  classical  coincidence  point theorems  and  classical  

fixed  point  theorems.   

Random fixed point theorems are stochastic generalization of classical fixed point theorems. Itoh [8] 

extended several well known fixed point theorems, thereafter; various stochastic aspects of Schauder’s 

fixed point theorem have been studied by Sehgal and Singh [14], Papageorgiou [12], Lin [13] and 
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many authors. In a separable metric space, random fixed point theorems for contractive mappings were 

proved by Spacek [15], Hans [5,6]. Afterwards, Beg and Shahzad [2], Badshah and Sayyad studied the 

structure of common random fixed points and random coincidence points of a pair of compatible 

random operators and proved the random fixed point theorems for contraction random operators in 

Polish spaces. 

2. Preliminaries: before starting main result we write some basic definetions. 

Definition: 2.1   

A  metric  space   is  said  to  be  a  Polish  Space, if  it  satisfying  following 

conditions:-  

i. X,  is  complete, 

ii. X is  separable, 

Before we describe our next hierarchy of set of reals of ever increasing complexity, we would like to 

consider a class of metric spaces  under  which  we  can  unify  and there products. 

This will be helpful in formulating this hierarchy   Recall   that  a  

metric  space   is  complete  if  whenever    is  a  sequence  of  member  

of  X,  such  that  for  every  there  is an     such  that    implies  

, there is  a single    such that  . It is easy to  see  that  

   are  polish  space,  So  in  fact  is    under  the discrete  topology,  whose  

metric  is  given  by  letting    when    and    when   

Let   be  a  Polish  space  that  is  a  separable  complete  metric  space  and  

  be Measurable  space.  Let   be  a  family  of  all  subsets of   and   

denote  the  family  of all nonempty  bounded  closed  subsets  of   A  mapping   
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  is called measurable  if  for  any  open  subset    of  ,  

 A  mapping    is  said  to be  measurable  

selector  of  a  measurable  mapping   , if   is  measurable  and  for  any   

.  A mapping    is called random operator, if for any  

 is measurable. A Mapping     is   a   random multivalued 

operator, if for every    is measurable. A measurable mapping    is called 

random fixed   point of a random multivalued operator if for every 

   Let   be  a  random  

operator   And     a  sequence  of  measurable  mappings ,   The   sequence  

  is  said  to   be asymptotically T-regular if  

 

3. Main Results 

Theorem 3.1 

Let X be a Polish space. Let  be two continuous random multivalued operators. If 

there exists measurable mappings  such that, 
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For each   and  with ,and 

  there exists a common random fixed point of S and T.    

  

Proof : Let  be an arbitrary measurable mapping and choose a measurable mapping     

  such that  for each  then for each . 

   

   

Further there exists a measurable mapping  such that for all  

and  

    

   

    

Let  

This gives 
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By Beg and Shahzad , we obtain a measurable mapping   such that for all 

    and  

   

   

    

 Similarly, proceeding the same way, by induction, we get a sequence of measurable mapping 

 suct that for  and for any  

   , and    

This gives, 

    

For any , also by using triangular inequality we have 
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Which tends to zero as  . It follows that  is a Cauchy sequence and there exists a 

measurable mapping  such that   for each . It implies 

that . Thus we have for any , 

    

    

Therefore,  

     

    

      

Taking as , we have 

   

Which contradiction, hence   for al l . 

Similarly, for any , 
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Hence  

It is easy to see that,  is common fixed point for  in X. 

Uniqueness  

Let us assume that,  is another fixed point of S and T in X, different from , then we have 

   

     

By using  and  we have,  

  

Which contradiction, 

So we have,  is unique common fixed point of S and T in X. 

Corollary 3.2 

Let X be a Polish space. Let  be two continuous random multivalued 

operators. If there exists measurable mappings  such that, 
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For each   and  with ,and  , 

 there exists a common random fixed point of S and T.    

  

Proof: From the theorem 3.1, it is immediate to see that, the corollary is true. If not then we choose a  

 be an arbitrary measurable mapping and choose a measurable mapping   such 

that  for each  then for each , and by using  the result is 

follows. 

Now our next result is generalization of our previous theorem 3.1, in fact we prove the following 

theorem. 

Theorem 3.3: Let X be a Polish space. Let  be two continuous random 

multivalued operators. If there exists measurable mappings  such that, 

    

For each   and  with , there exists a common random fixed 

point of S and T.    

  

Proof  
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Let  be an arbitrary measurable mapping and choose a measurable mapping   

such that  for each  then for each . 

  

Further there exists a measurable mapping  such that for all  

and  

                   

    

By Beg and we obtain a measurable mapping   such that for all 

    and by using , we have   

    

 Similarly, proceeding the same way, by induction, we get a sequence of measurable mapping 

 suct that for  and for any  

   , and    
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This gives, 

   

For any , also by using triangular inequality we have 

    

Which tends to zero as  . It follows that  is a Cauchy sequence and there exists a 

measurable mapping  such that   for each . It implies 

that . Thus we have for any , 

    

    

Therefore, by using   we have 

  

Which contradiction, hence   for all . 

Similarly, for any , 
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Hence  

It is easy to see that,  is common fixed point for  in X. 

Uniqueness  

Let us assume that,  is another fixed point of S and T in X, different from , then we have 

   

     

By using  and  we have,  

  

Which contradiction, 

So we have,  is unique common fixed point of S and T in X. 

Corollary 3.4 

Let X be a Polish space. Let  be two continuous random multivalued 

operators. If there exists measurable mappings  such that, 
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For each   and  with   there exists a common random fixed 

point of S and T.    

  

Proof:- From the theorem 3.3, it is immediate to see that, the corollary is true. If not then we choose a  

 be an arbitrary measurable mapping and choose a measurable mapping   such 

that  for each  then for each , and by using  the result is 

follows. 
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