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Abstract.

In this paper we introduce a new class of sets known as Q- closed sets in topological spaces and we study some of
its basic properties. It turns out that this class lies between the class of & -open sets and the class of dg (resp.w )-closed
sets. Unique feature is, this new class of sets forms a topology and it is independent of open sets.
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1.Introduction.

Levine [11] initiated the study of generalized closed sets (briefly g -closed) in general topology. The concept of g
-closed set has been studied further by weaker forms of open sets such as a-open, semi open, pre open, and semi-pre open
sets. By using 8 -closure operator, Donham and Ganster [8] introduced and studied the concept of 3g -closed set, strong than
g -closed set. We introduce and study a new class of sets known as Q -closed set, slightly stronger than the class of dg
(resp. w )-closed sets. Also it properly lies between 6 -closed ness and g (resp. @ )- closed ness.

2. Preliminaries.

Throughout this paper (X, t ) (briefly X) represent topological space on which no separation axioms are assumed
unless explicitly stated. For a subset A of (X, T ), we denote the closure of A, the interior of A and the complement of A as
cl(A), int(A) and A° respectively.

Let us recall the following definitions, which are useful in the sequel.
Definition 2.1. A subset A of a topological space (X, 1) is called a
(1) a-open set [1]if A < int(cl(int(A)).

(ii) semi-open set [10] if A < cl(int(A)).

(iii) pre-open set [13] if A < int(cl(A)).

(iv) B -open (or semi pre open) set[1]if A < cl(int(cl(A)).

(v) regular open set [14] if A = int(cl(A)).

(vi) b-openset [S]ifA < cl(int(A)) U int(cl(A)).

The complement of the above sets are called a-closed, semi-closed, pre-closed, B -closed regular closed and b -closed sets
respectively. The a-closure (resp.semi-closure,pre-closure, p -closure) of a subset A of (X, t ) is the intersection of all
a-closed (resp.semi-closed ,pre-closed, B -closed,) sets containing A and is denoted by acl(A) (resp. scl(A), pcl(A), Bcl(A) ).
The intersection of all semi open subsets of (X, T ) containing A is called the semi kernel of A and is denoted by sker(A).
The set of all open sets in X is denoted by O(X) and O(X,x) = {U €X:xeUe OX)}.

Definition 2.2. [17] A subset A of X is called 6 -closed set in a topological space (X, t)if A= 0dcl(A), where dcl(A) = {x
e X :int(cl(U)NA =#®,Ue O(X,x)}.The complement of § —closed set in (X, 1) is called & -open set in (X, T ). The set
of all ¢ -closed sets in X is denoted by ¢ C(X).From [9], lemma 3, &cl(A) = N{F €dC(X): A < F} and from corollary
4, 6cl(A) is a § -closed for a subset A in a topological space (X, 7).

Definition 2.3.[17] A subset A of X is called 0 -closed in a topological space (X, T ) if A= 0cl (A) , where Bcl(A) = {x €
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X:e(U)NA #®,Ue O(X,x)}.The complement of 6 -open set in (X, t) is called 0 -closed setin (X, 7).

Definition 2.4. A subset A of a topological space (X, 1) is called

(i) a generalized closed (briefly g -closed) set [11]if cl(A) < U whenever A < U and Uis open in (X, 7).

(ii) a generalized o- closed (briefly ga-closed) set [12] if acl(A) < U whenever Ac U and U is a-open in (X, 7).

(iii) a a- generalized closed (briefly ag -closed) set[12] if acl(A) < U whenever A < U and U is openin (X, 7).

(iv) a generalized semi-closed (briefly gs -closed) set [2] if scl(A) < U whenever A < U and U is open in (X, 7).

(v) a generalized semi-closed (briefly sg -closed) set [3] if scl(A) < U whenever A < U and U is semi open in (X, 1 ).
(vi) a generalized semi-pre closed (briefly gsp -closed) set [7] if spcl(A) < U whenever A < U and Uisopenin (X, 7).
(vii) a § generalized closed (briefly dg -closed) set [8] if dcl(A) < U whenever A < U and U is open in (X, 7).

(viii) g (or) @ -closedset[15]ifcl(A) < U whenever A < U and U is semi open in (X, 7).

The complement of g -closed (resp. ga-closed, ag -closed, gs -closed, sg -closed, gsp -closed, 6g -Closed, w -closed) set is
called g -open (resp. ga-open, og -open, gs -open, sg -open, go-open, gsp -open, dg —open, @ -open).

3.L) -Closed Sets.
In this section we introduce a basic definition of new class of sets known as Q -closed sets in topological spaces.

Definition 3.1. A subset A of a space (X, 1) is called Q -closed if 3cl(A) < Uwhenever A ¢ U and U is semi open set
in (X, ). The complement of Q -closed setin (X, 1) is called Q- open setin (X, 7).

Theorem 3.2. Every & -closed set is Q -closed in X, 7).

Proof. Let Abe any 8 -closed and U be any semi open set in (X, t) such that A < U. Since Ais 8 -closed set in (X, 1),
Ocl(A) cU.ThusAis Q -closedsetin (X, 1).

Remark 3.3. The reversible implication is not always possible from the following example.

Example 3.4. Let X = {a, b, c} and 1 = { ®,{a}, {b, c},X}. Here {b} is Q -closed set in (X, t) but not , § -closed in (X,
T).

Theorem 3.5. In a topological space (X, 1) ,every Q -closed set is

(i) g (or w)-closedsetin (X, ).

(ii) g (resp. ga,ag, sg, gs )-closed set in (X, 7).

(iii) 6g -closed set in (X, 1 ).

Proof. (i) Suppose that A is a Q -closed and U be any semi open set in (X, ) such that A < U. By hypothesis, dcl(A)
< U.Then, cl(A) < U and hence A is "g -closed set in (X, 7).

(i) By [16], every g -closed set is g (resp. ga,ag , sg, gs )-closed set in (X, t ). Therefore, it holds.

(iii) Suppose that Ais a Q -closed and U be any open sets in (X, t ) such that A < U. Since every open set is semi open
in (X, 1) and by hypothesis, dcl(A) < U. Hence A is g -closed set in (X, 7).

Remark 3.6. The following example reveals that the reversible implications are not true in general .

Example 3.7. Let X = {a, b, ¢, d} and t = {®, {a}, {a, b},X}. Then the set {b, c} is g -closed,ga-closed, sg -closed, g

-closed butnot Q -closed in (X, 7). Also {c,d} is g -closed butnot Q-closedin (X, ).

Remark 3.8. The following examples show that Q -closed set is independent of closed,a-closed, semi closed, and &
-semi-closed sets.

Example 3.9. Let X = {a, b, ¢, d} and = { D, {a}, {a, b},X}. Then the set {c, d} is closed,semi closed and a-closed but not
Q -closed setin (X, 7).

Example 3.10. Let X = {a, b, c} and 1= { @, {a, b},X}. Then the set {a, c} is Q -closed,but not closed or semi closed or
a-closed in (X, 7).

Example 3.11. Let X = {a, b, ¢, d} and 1= { D, {a}, {b}, {a, b},X}. Then the set {c} is & -semi-closed but not Q -closed
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setin (X, 7).

Example 3.12. Let X = {a, b, ¢, d} and T = { D, {c}, {a, d}, {a, ¢, d},X}. Then the set {a, b, c} is Q -closed but not &
-semi-closed in (X, 7).

Remark 3.13. The pictorial representation of the above discussions and existing results is shown in

Figure-1.Also in Figure-1, any reversible implication is not possible in general.

4. Characterizations.
In this section we characterize Q -closed sets by giving three necessary and sufficient conditions.
Theorem 4.1. IfAis Q -closed subset in (X, 1) ,then &¢cl(A) \ A does not contain any nonempty closed set in (X, 7).

Proof. Let F be any closed set in (X, t) such that F < 8cl(A)\ A. Then A < X\F and X \F is open in (X, 7). Since A is
Q -closed and X \ F is semi open, cl(A) < X\F. Hence F < X\dcl(A). Thus F < (3cl(A)\A) N (X \3cl(A)= D.
Remark 4.2. The converse is not possible in general from the following example.

Example 4.3. Let X = {a, b, c} and T = { @, {a},X}. Let A= {b}. Then dcl(A)\ A= X\ {b} = {a, c} does not contain any
non-empty closed set and Aisnota Q -closed subset of (X, 7).

Theorem 4.4. If Ais Q -closed subset in (X, t) ifand only if 3cl(A)\A does not contain any non-empty semi closed set
in(X,1).

Proof. Necessity- Let F be any semi closed such that F < &cl(A)\ A. Then A < X\ F and X\ F is semi open in (X, 7).
Since Ais Q -closedsetin (X, 1), dcl(A) < X\F,F < X\dcl(A). Thus, F < (6cl(A)\A) N (X \3cl(A))= D.

Sufficiency- Suppose that A < U and U is any semi open set in (X, ). If A is not Q -closed set,then dcl(A) U and
hence cl(A) N (X \U) # ®.We have a nonempty semi closed set 3cl(A)N(X \ U) such that dcl(A)N(X\U) < dcl(A)NX
\A) = dcl(A) \A, which contradicts the hypothesis.

Theorem 4.5. Let A be any Q -closed set in (X, 7). Then Ais 6 -closed in (X, 1 ) if and only if dcl(A)\A is semi closed set
in(X,1).

Proof. Necessity- Since A is 6 -closed set in (X, T), 6cl(A) = A. Then 6cl(A)\A= @ is semi closed set in (X, 7).

Sufficiency- Since A is Q -closed set (X, 1) ,by theorem 4.4, 5cl(A) \ A does not contain any non-empty semi closed set.
Therefore, 6cl(A) \A= @& .Hence dcl(A) = A. Thus, A is § -closed in (X, 7).

Notations 4.6. In a topological space (X, 1) ,Xs = {x €X: {x}issemiclosedin(X,7) } and X, ={x €X:{x}is Q
-openin (X, 1) }.

Proposition 4.7. In a topological space (X, t) ,for each x € X, either {x} is semi closed or {x}c is Q -closed set in X, 7).
Thatis, X=Xs U Xé

Proof. Suppose that {x} is not a semi closed set in (X, t ). Then {x}° is not a semi open set and the only semi open set
containing {x}°is X. Therefore, dcl({x}°) < X and hence {x}“is Q-closed setin (X, 7).

Theorem 4.8. Let A be any Q -closed set in X,t). IfAcB cocl(A),thenBisalsoa Q -closed set in X, 7).

Proof. Let B < U where U is any semi open set in (X, 1 ). Then Ac U. Since A is Q -closed set, ocl(A) < U. Since
ocl(B) < 6cl(dcl(A)) =o6cl(A) < U,Bisa Q-closedsetin (X, 1).

Definition 4.9. The intersection of all Q -open subsets of (X, T ) containing A is called the Q -kernel of A and is denoted
by Qker(A).

Theorem 4.10. A subset A of a topological space (X, t) is Q -closed in (X, t) if and only if 8cl(A) < sker(A).

Proof. Necessity. Suppose that A is Q -closed set in (X, t)and x € &cl(A) and x ¢ sker(A). Then there exists a semi
open set U in (X, T ) such that A < U and x ¢ U. Since A is Q-closed set in (X, T ), 6cl(A) < U which is a
contradictionto x €dcl(A)andx ¢ U.

Sufficiency. Suppose that 5cl(A) < sker(A) and U is any semi open set in (X, ) such that A = U. Then sker(A) < U
and hence 6cl(A) < U.Thus,Ais Q -closed setin (X, 7).

Justification 4.11. By the following results, we justify that the original axioms for the topology are preserved by the class of
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A

Q -open sets in a topological space (X, t ). It is denoted by 74

o Which is weaker than 15 ,the class of J open sets and
stronger than the topology formed by the class of ® -open sets.

Theorem 4.12. If A and Bare Q -closed setsina topological space (X, t) ,then A U Bis Q -closed set in X, 7).

Proof. Suppose that A UB < U where U is any semi open in (X, 7 ). Then A cU and B cU. Since A and B are
Q-closed sets in (X, 1), 8cl(A) < Uand dcl(B) cU. Always dcl(A U B)=dcl(A) U &cl(B). Therefore, 5cl(A w B)
c U.Thus,A U BisaQ -closedsetin (X, 1).

Lemma 4.13. [6] Let x be any point in a topological space (X, t ). Then {x} is either nowhere dense or pre-open in (X, 7).
Also,X =X; U X, ,where X1 = {x € X : {x} is nowhere densein (X, t) } and X, = {x € X : {x} is pre-open in (X,
1) } is known as Jankovic-Reilly decomposition.

Theorem 4.14. In a topological space (X, t), X2 N dcl(A) < sker(A) for any subset A of (X, 7).
Proof. Suppose that x € X; Ndcl(A)and x ¢ sker(A).Sincex € X,,scl({x})=int(cl({x})).

Moreover,x ¢ X; implies that scl({x}) #®. Since x € ocl(A), ANint(cl(U)) = ® for any UeO(X,x).Choose U =
int(cl({x})). Then A N int(cl({x}))# ®. Choose y € A N int(cl({x})). Since x ¢ sker(A) ,there exists a semi open set V
in (X, t)suchthat A ¢ Vandx ¢ V.IfF=X\V, then F is a semi closed such that x € F < X \ A. Also
int(cl({x}))< int(cl(F)) < Fandhencey € ANF,a contradiction. Thus, x € sker(A).

Theorem 4.15. A subset Ais Q -closed set in a topological space in (X, t) if and only if X; N 8cl(A) < A.

Proof. Necessity- Suppose that A is Q -closed set in (X, t)and x € X; N dcl(A) but not in A. Therefore, {x} is semi
closed set in (X, t ) and hence X \ {x} is semi open set in (X, T ).Since X\{x} is the semi open set in (X, T ) containing A and
by hypothesis, dcl(A) < X\ {x},a contradiction to x € dcl(A). Therefore, X; N ocl(A) < A.

Sufficiency- Suppose that X;Ndcl(A) < A. Since Ac sker(A), X;Ndcl(A)c sker(A).By theorem 4.14,X, Ndcl(A) <
sker(A) . Therefore, dcl(A) = (X; U X3) N dcl(A) = (X; N écl(A)) u (X, Ndcl(A)) < sker(A) .By theorem 4.10,A is
Q -closed set in X.

Theorem 4.16. Arbitrary intersection of Q -closed sets in a topological space (X, 7) is Q -closed set

in(X,1).

Proof. Let {Ai:ie I} be any family of Q -closed sets in (X, t)and A= (1, 4;. Therefore,X;Ndcl(Ai) < Ai for each

i€l and hence X;Ndcl(A)c X N3cl(Ai)c Ai for each i € I.Then X;Ndcl(A)c Nics 4= A. By theorem 4.15,A is Q
-closed set in (X, 1 ). Thus, arbitrary intersection of ) -closed sets in a topological space (X, t) is -closed set in (X, 7).

Notations 4.17. In a topological space (X, 1) ,the set of all semi (resp. pre, Q ) open sets are denoted by SO(X) (resp.
PO(X), Q O(X) ). The set of all & -closed (resp. Q -closed) sets are denoted by 6C(X) (resp. Q C(X)).

Lemma 4.18. If A is Q -closed and B is 6 -closed sets in (X, 7)) then ANB is Q -closed in (X, 1) because of arbitrary
intersection of Q -closed setsisa Q -closed set.

Let us characterize partition space via Q -closed sets.

Remark 4.19. [8] A partition space is a topological space (X, T ) where every open set is closed. Also a topological space is
partition space if and only if every subset is pre open.

Theorem 4.20. In a topological space (X, 1),
(i) SO(X) < 6C(X) if and only if QO(X)=P(X).
(ii) (X, 1) is a partition space if and only if Q 0X)=P(X).

Proof. (i) Necessity-Let A be arbitrary subset of (X, 7 ) such that A ¢ U where U € SO(X) .By hypothesis, dcl(A) <
dcl(U) = U. Therefore, Ais Q -closed setin (X, T ).

Sufficiency- Let U be any semi open set in (X, t ). By hypothesis, U is Q -closed set in (X, t). Since every Q -closed

set is pre closed set, U is a pre closed set in (X, t ). It is clear that if U is both semi open and pre closed, then U is a regular
closed set and hence it is a 6 -closed set in (X, T).

(ii) Necessity- Let A be arbitrary subset of (X, T ) and suppose that x € X; N &cl(A), x ¢ A. We have {x} is a semi
closed set and hence it is a closed set in (X, T ). Therefore, X\{x} is an open set in (X, T ) and by hypothesis, it is a closed set
in (X, 7). Now X\{x} is a clopen set in (X, T ) and then d -closed set in (X, T ). Therefore, 6cl(A) < dcl(X \{x}) = X \{x},a
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contradiction to x € 6cl(A). Thus, X;Ndcl(A) < A. By theorem 4.15,A is Q -closed set in X, 1).

Sufficiency- Let U be any open and hence semi open set in (X, T ). By hypothesis, Q -closed set in (X, 1). Since every Q
-closed set is pre closed set, U is a pre closed set in (X, 7). It is clear that if U is both semi open and pre closed, then U is a
regular closed and hence it is a 6 -closed in (X, t ). Therefore, U is a closed set in (X, T ). Thus, every open set is closed in
(X, 7).

Remark 4.21. From the above discussions, a topological space is partition space if and only
if QO(X)=PO(X)=P(X).

5.Q -closure.
In this section we define the closure of Q -closed sets and prove that itis a ”Kuratowski closure operator.”

Definition 5.1. Let A be a subset of a topological space (X, t ). Then the Q ~closure of A is defined to be the intersection
of all Q -closed sets containing A and it is denoted by ch(A) That is ch(A) =N{F: A cF and F € QC(X)}.
Always, A ¢ Q cl(A).

Remark 5.2. From the definition and 4.16, Q cl(A) is the smallest Q -closed set containing A.
Theorem 5.3. Let A and B be subsets of a topological space (X, t ). Then,

(i) Qcl(®)= dand Qcl(X)=X.

(i) IfA B, then Qcl(A) c Qcl(B).

(i) Qcl(ANB) c Qcl(A)N Qcl(B).

(iv) Qcl(A U B)= Qcl(A) U Qcl(B).

(VM) Aisa Q -closed set in (X, t)ifand only if A= Q cl(A).

(vi) Qcl(Qcl(A)) = Qcl(A).

(vii) Qcl(A) c3cl(A).

Proof. (i) Obvious.

(i)A =B c Q cl(B). But Q cl(A) is the smallest Q -closed set containing A. Hence Q cl(A) < Q cl(B).

([i) ANB c Aand ANB c B.By (i), Qcl(ANB) = Qcl(A) and Qcl(AN (B) = Qcl(B).Hence Qcl(ANB)
c ch(A) N ch(B)

(ivA ¢ A UBandB < A U B.By(ii), ch(A) c ch(A wB) and ch(B) c ch(A v (B).Hence ch(A)
v ch(B) c ch(A UB). On the other hand, A < ch(A) and B ¢ ch(B) implies that AUB < ch(A)u

ch (B) .But ch(AuB) is the smallest Q -closed set containing A U B. Hence ch(AuB) c ch(A)
uch(B).Therefore, ch(A v B)= ch(A) U ch(B).

(v) Necessity- Suppose that A is Q -closed in (X, t). Byremark 5.2, A < Q cl(A). By the definition of Q closure and
hypothesis, Qcl(A) < A. Therefore, A= Qcl(A).

Sufficiency-Suppose that A = flcl(A). By the definition of Q closure, Q cl(A)is a Q- closed set and hence Aisa Q
-closed set in (X, 7).

(vi) Since arbitrary intersection of Q -closed sets in a topological space (X, ) is Q -closed set in X, 1), Q cl(A)isa
Q -closed set in (X, 1).Byv, Q cl( Q cl(A)) = Q cl(A).

(vii) Suppose that x ¢ Jcl(A) .Then there exists a 8 -closed set F such that A < Fandx ¢ F .Since every 6 -closed set
is Q -closed set, X ¢ ch(A) Thus, ch(A) < dcl(A).

Remark 5.4. The reversible inclusion of (iii) is not true in general from the following example.

Example 5.5. Let X = {a, b, ¢, d} and © = { ®, {a}, {b}, {a, b}, X}. If A= {a} and B = {b}, then ch(A)— {a, c,d},
Qcl(B)={b,c,d},ANB= ®,Qcl(ANB)= ®.But Qcl(A)N Qcl(B)= {c, d}.

Remark 5.6. From Qcl(®)= @, Ac Qcl(A), Qcl(A U B)= Qcl(A) U Qel(B) .and Qcl(Qcl(A) = Qcl(A) we
can say that Q -closure is the Kuratowski closure operator on (X, 7).
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Definition 5.7. A point x of a space (X, t) is called a Q -limit point of a subset A of (X, t) if for each Q -open set U
containing x intersects A other than x. That is, A N (U —{x}) # ®.The set of all limit points of A is denoted by D, (A) and
is called the Q) -derived set of A.

Theorem 5.8. Let A and B be any two subsets of a space (X, T ). Then

(i) Dy(®)= @ and D, (X)=X.

(i) IfA =B, then D, (A) < D, (B).

(iii) Dy (A U B)= D, (A) v Dy (B).

(iv) D, (ANB) < Dy (A)N D, (B).

(V) Asubset Ais Q -closediff Dy (A) cA.

(vi) Qcl(A)=A U D, (A).

Proof. Follows from the definition and similar to theorem 5.3.

Remark 5.9. The following example shows that the reversible inclusion of (iv) is not true in general.

Example 5.10. Let X = {a, b, ¢, d} and 1= { D, {a}, {b}, {a, b}, X} IFA= {a} and B= {b}, D, (A)={c,d} and D, (B)
={c,d},ANB= ®.D; (ANB)= ®.But Dy (A)N Dy (B)={c,d}.

Theorem 5.11. In a topological space (X, 1) ,forx € X, x € Qcl(A)ifand onlyif U NA =® forevery Q -open set
U containing  X.

Proof. Necessity- Suppose that x € Q cl(A) and suppose there exists a Q -open set U containing x such that U NA= ®.
ThenA cU°and Usisa Q -closed set. By remark 5.2, Qcl(A) < UC .Therefore, x ¢ Qcl(A), a contradiction.

Sufficiency- Suppose that x ¢ Q cl(A) Then there exists Q -closed set F containing A such that ¢ F. Hence F®isa Q
-open set containing x such that. F° < A° .Therefore, F* NA= ® which contradicts the hypothesis.

Definition 5.12. A point x in a topological space (X, 1) is called a fZA -interior point of a subset A of (X, 1) if there exists
some € -open set U containing x such that U < A. The set of all Q -interior points of A is called the € -interior of A
and is denoted by Qint(A).

Remark 5.13. Q int(A) is the union of all Q -open sets contained in A and by theorem 4.16, Q int(A) is the largest Q
-open set contained in A.

Theorem 5.14. A subset A of (X, ) is Q -open if and only if F < dint(A) whenever F is
semi closed setand F C A.

Proof. obvious.

Theorem 5.15. (i) Qcl(X\A)=X\ Qint(A).

(i) Qint(X\A)=X\ Qcl(A).

Proof. (i) Q int(A) € A < Q cl(A). Hence X \ f)cl(A) cX\Ac X\ Q int(A). Then X\ QCI(A) is the Q -open
set contained in X \A. But Q int(X —A) is the largest Q -open set contained in X\A. Therefore, X\Q cl(A) < Q int(X\A).
On the other hand, if x € flint(X\A),there exists a Q -open set U containing x such that U <X \ A. Hence U N A
=@ .Therefore, x ¢ Qcl(A)and hencex e(X\ Qcl(A)). Thus, Qint(X\A) < X\ Qcl(A).

(ii) Similar to the proof of (i).

6. Applications.

Notations 6.1. For any set A < X ,(A, T |A) represents subspace topological space with respective to 7. Let A and B be any
two subsets in a topological space (X, 7 ) such that B < A ,then dclx(B) (resp. Q clx(B)) represents & (resp. Q) closure
of B in (X, 1) and d¢clx(B) (resp. chA(B)) represents & (resp. Q ) closure of B in the subspace (A, t [A) . Also skerx (B)
(resp. Qkery (B)) represents semi (resp. Q ) kernel of B in (X, 1) and skera (B) (resp. Qkery (B)) represents semi (resp.
Q ) kernel of B in the

subspace (A, T |A) .
Remark 6.2. [13(a)] Let A be any open set in a topological space (X, 7). Let B < A. Then,
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dcla(B) = A N dclx(B)
Remark 6.3. [13(a)] Let A be any pre open set in a topological space (X, 7). LetB < A
Then, Sker, (B) = A N skerx (B).
Theorem 6.4. If A is both semi open and pre closed set in a topological space (X, T) , then A is Q -closed in X, 7).
Proof. It is clear that if A is both semi open and pre closed, then A is regular closed and hence it is
d -closed in (X, 7). Therefore it is Qclosed in X, 7).
Theorem 6.5. Let B ¢ Ac X where Aisopenin (X, t). If Bis Q -closed set in (X, 1) ,then Bis
Q -closed set in the subspace (A, T |A).
Proof. Suppose that B is Q -closed set in (X, 7). By theorem 4.10, dclx(B) < skerx (B) and hence

ANdclx (B) < AnNskerx (B) .By remarks 6.2 and 6.3, cl (B) < skers (B) .Again by theorem 4.10,B is Q -closed set in
the

subspace (A, T |A) .
Theorem 6.6. Let B < A < X where A is both open and pre closed set in (X, 7). If B is Q -closed set in the subspace
(A, 1]A), then Bis Q-closed setin (X, 7).
Proof. Suppose that B is Q-closed set in the subspace (A, T |A). By theorem 4.10, dcla(B) < skera(B) and hence by

remarks 6.2 and 6.3, A N &clx(B) <= A N skerx (B). Since A is 8 -closed in (X, 1) , d¢lx (B) = dclx(A) N dclx(B) = AN
dclx(B) < AN skerx(B) < skerx(B). Therefore, dclx(B) < skerx(B). By theorem 4.10, Bis Q -closed set in (X, ).

Theorem 6.7. IfFis Q -closed set in X,t),thenFNAis Q -closed set in the subspace
(A, 1]A) provided that A is both open and pre closed set in a topological space (X, 1).

Proof. By theorem 6.4,F N A is Q -closed set in (X, t).By theorem 4.10, dclx(F N A) < skerx(F N A) .Then AN dclx(F
NA) < AN skerx(F N A) and hence by remarks 6.2 and 6.3, 6cla(F NA) < skera(F N A)  Again by theorem 4.10,F N
Ais Q -closed set in the subspace (A, T |A) .

Theorem 6.8. Let U = A < X where A is both open and pre closed set in (X, 7). If U is Q -open set in (X, 1), then U
is Q -open in the subspace (A, T |A) .

Proof. Suppose that U is Q -open set in (X, 7). Then X \U is Q ~closed set in (X, ). By theorem 6.7,(X \U)NA is (:2
-closed set in the subspace (A, 1 |A) .That is, A\ (A N U) is Q -closed set in the subspace (A, T |A) . Then A\ U is Q
-closed set in the subspace (A, T |A) .Thus Uis Q -open set in the subspace (A, T |A).

Theorem 6.9. Let U = A < X where A is both 3 -open and pre closed set in (X, 7). If U is Q -open set in the subspace
(A, 7]A),thenUis Q -openin (X, 1).

Proof. Suppose that U is Q -open set in the subspace (A, T |A) . Then A\ U is Q -closed set in the subspace (A, T |A) . By
6.6, A\Uis Q -closedsetin (X, 7). Thatis ANU=(X\U) N Ais Q-closed set in (X, 7). By theorem 4.12, U = [X\ (X
VU)NA)NAis Q-opensetin (X, 7).

Theorem 6.10. Let A be both open and pre closed set in a topological space (X, t). If U is Q -open set in (X, T ) ,then U N
Ais Q -open set in a subspace (A, T |A) .

Proof. Suppose that U is Q -open set in (X, ) ,then X\ U is Q -closed set in (X, 7). By theorem 6.7,(X\U) N Ais Q
-closed set in a subspace (A, T |A) . Then A\ (U N A)is Q -closed set in a subspace (A, t|A) . Thus U N Ais Q -open
set in a subspace (A, T |A) .

Theorem 6.11. Let A be both open and pre closed set in a topological space (X, 7). If E is any subset of X such that E <
A <X, then Q cla(E) < AN Q clx(E) .

Proof. Suppose that x € Q clA(E) and F be an arbitrary Q -closed set in (X, v) such that Ec F By theorem 6.7, F N A'is
Q -closed set in a subspace (A, T |A) such that E c F N A. Therefore, Qcly (E) cFNAandhencex € FNA < FBy
the definition of closure, x € Q clx(E)andhencex € AN Q clx(E) .Thus Qcly (E) cAN Q clx(E) .

Theorem 6.12. Let A be both open and pre closed set in a topological space (X, 7). If E is any subset of X such that E c A
c X.thenAN chX(E) c Qcla(E) .
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Proof. Suppose thatx € AN Q clx(E) and F is an arbitrary Q -closed set in the subspace (A, T|A) suchthatE < F <
A. By theorem 6.6, F is Q -closed set in (X, 1 ). Therefore, chX(E) c chx(F) = F. Therefore, x € F. By the
definition of Q -closure in subspace, X € chA(E) Thus AN chX(E) c chA(E)

Theorem 6.13. Let A be both open and pre closed set in a topological space (X, 7). If E is any subset of X such that Ec A
c X, then Q kera(E) c AN Qkerx(E) .

Proof. Similar to 6.11.

Theorem 6.14. Let A be both & -open and pre closed set in a topological space (X, 1) and E cAc X .Then AN
Qkerx(E) < Qkera(E) .

Proof. Similar to 6.12.
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