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Abstract. 

In this paper we introduce a new class of sets known as Ω̂ - closed sets in topological spaces and we study some of 

its basic properties. It turns out that this class lies between the class of δ -open sets and the class of  δg (resp. ω  )-closed 

sets. Unique feature is, this new class of sets forms a topology and it is independent of open sets. 

Key words and Phrases: semi open sets, δ -open sets, δ -closure, skerl, Ω̂  -closed sets.  

Mathematics Subject Classification 2010: 57N05 

 

1.Introduction. 

Levine [11] initiated the study of generalized closed sets (briefly g -closed) in general topology. The concept of g 

-closed set has been studied further by weaker forms of open sets such as α-open, semi open, pre open, and semi-pre open 

sets. By using δ -closure operator, Donham and Ganster [8] introduced and studied the concept of δg -closed set, strong than 

g -closed set. We introduce and study a new class of sets known as Ω̂  -closed set, slightly stronger than the class of δg 

(resp. ω  )-closed sets. Also it properly lies between δ -closed ness and δg  (resp. ω )-  closed ness. 

 

2. Preliminaries. 

Throughout this paper (X, τ ) (briefly X) represent topological space on which no separation axioms are assumed 

unless explicitly stated. For a subset A of (X, τ ) , we denote the closure of A, the interior of A and the complement of A as 

cl(A), int(A) and A
c
 respectively. 

Let us recall the following definitions, which are useful in the sequel. 

Definition 2.1. A subset A of a topological space (X, τ ) is called a  

(i) α-open set [1] if A ⊆  int(cl(int(A)). 

(ii) semi-open set [10] if A ⊆  cl(int(A)). 

(iii) pre-open set [13] if A ⊆ int(cl(A)). 

(iv) β -open (or semi pre open) set[1] if A ⊆  cl(int(cl(A)). 

(v) regular open set [14] if A = int(cl(A)). 

(vi) b -open set [5] if A ⊆  cl(int(A)) ∪  int(cl(A)). 

The complement of the above sets are called α-closed, semi-closed, pre-closed, β -closed regular closed and b -closed sets 

respectively. The α-closure (resp.semi-closure,pre-closure, β -closure) of a subset A of (X, τ ) is the intersection of all 

α-closed (resp.semi-closed ,pre-closed, β -closed,) sets containing A and is denoted by αcl(A) (resp. scl(A), pcl(A), βcl(A) ). 

The intersection of all semi open subsets of (X, τ ) containing A is called the semi kernel of A and is denoted by sker(A). 
The set of all open sets in X is denoted by O(X) and O(X,x) = {U ∈X : x∈U∈  O(X)}. 

 
Definition 2.2. [17] A subset A of X is called δ -closed set in a topological space (X, τ ) if A =  δcl(A) , where δcl(A) = {x 

∈  X  : int(cl(U))∩A Φ≠ ,U∈  O(X,x)}.The complement of δ –closed set in (X, τ ) is called δ -open set in (X, τ ). The set 

of all δ -closed sets in X is denoted by δ C(X).From [9], lemma 3, δcl(A) = ∩{F ∈δC(X) : A ⊆  F} and from corollary 

4, δcl(A) is a δ -closed for a subset A in a topological space (X, τ ). 

Definition  2.3. [17] A subset A of X is called θ -closed in a topological space (X, τ ) if A = θcl (A) , where θcl(A) = {x ∈  
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X : cl(U) ∩ A Φ≠ , U∈  O(X,x)}.The complement of θ -open set in (X, τ ) is called θ -closed set in  (X, τ ). 

Definition  2.4. A subset A of a topological space (X, τ ) is called 

(i) a generalized closed (briefly g -closed) set [11] if cl(A) ⊆  U whenever A ⊆  U and U is open in (X, τ ).                       

(ii) a generalized α- closed (briefly gα-closed) set [12] if αcl(A) ⊆  U whenever A⊆  U and U is α-open in (X, τ ). 

(iii) a α- generalized closed (briefly αg -closed) set[12] if αcl(A) ⊆  U whenever A ⊆  U and U is open in (X, τ ). 

(iv) a generalized semi-closed (briefly gs -closed) set [2] if scl(A) ⊆  U whenever A ⊆  U and U is open in (X, τ ). 

(v) a generalized semi-closed (briefly sg -closed) set [3] if scl(A) ⊆  U whenever A ⊆  U and U is semi open in (X, τ ). 

(vi) a generalized semi-pre closed (briefly gsp -closed) set [7] if spcl(A) ⊆  U whenever A ⊆  U and U is open in (X, τ ). 

(vii) a δ generalized closed (briefly δg -closed) set [8] if δcl(A) ⊆  U whenever A ⊆  U and U is open in (X, τ ). 

(viii) ĝ (or) ω  -closed set [15] if cl(A) ⊆  U whenever A ⊆  U and U is semi open in (X, τ ). 

The complement of g -closed (resp. gα-closed, αg -closed, gs -closed, sg -closed, gsp -closed, δg -Closed, ω -closed) set is 

called g -open (resp. gα-open, αg -open, gs -open, sg -open, gα-open, gsp -open, δg –open, ω -open). 

 

3. Ω̂  -Closed Sets. 

In this section we introduce a basic definition of new class of sets known as Ω̂  -closed sets in topological spaces. 

Definition 3.1. A subset A of a space (X, τ ) is called Ω̂  -closed if δcl(A) ⊆  U whenever A ⊆  U and U is semi open set 

in (X, τ ). The complement of Ω̂  -closed set in (X, τ ) is called Ω̂ - open set in (X, τ ). 

Theorem 3.2. Every δ -closed set is Ω̂  -closed in (X, τ ). 

Proof.  Let A be any δ -closed and U be any semi open set in (X, τ ) such that A ⊆  U. Since A is δ -closed set in (X, τ ) , 

δcl(A) ⊆ U. Thus A is Ω̂  -closed set in (X, τ ). 

Remark 3.3. The reversible implication is not always possible from the following example.  

Example 3.4. Let X = {a, b, c} and τ = { Φ ,{a}, {b, c},X}. Here {b} is Ω̂  -closed set in (X, τ ) but not , δ -closed in (X, 

τ ). 

Theorem 3.5. In a topological space (X, τ ) ,every Ω̂ -closed set is 

(i) ĝ  (or ω ) -closed set in (X, τ ). 

(ii) g (resp. gα,αg , sg , gs )-closed set in (X, τ ). 

(iii) δg -closed set in (X, τ ). 

Proof. (i) Suppose that A is a Ω̂  -closed and U be any semi open set in (X, τ ) such that A ⊆  U. By hypothesis, δcl(A) 

⊆  U. Then, cl(A) ⊆  U and hence A is ˆg -closed set in (X, τ ). 

(ii) By [16], every ĝ  -closed set is g (resp. gα,αg , sg , gs )-closed set in  (X, τ ). Therefore, it holds. 

(iii) Suppose that A is a Ω̂  -closed and U be any open sets in (X, τ ) such that A ⊆  U. Since every open set is semi open 

in (X, τ ) and by hypothesis, δcl(A) ⊆  U. Hence A is δg -closed set in (X, τ ). 

Remark 3.6. The following example reveals that the reversible implications are not true in general . 

Example 3.7. Let X = {a, b, c, d} and τ = { Φ , {a}, {a, b},X}. Then the set {b, c} is g -closed,gα-closed, sg -closed, δg 

-closed but not Ω̂  -closed in (X, τ ). Also {c, d} is ĝ  -closed but not Ω̂ -closed in (X, τ ). 

Remark 3.8. The following examples show that Ω̂  -closed set is independent of closed,α-closed, semi closed, and δ 

-semi-closed sets. 

Example 3.9. Let X = {a, b, c, d} and τ = { Φ , {a}, {a, b},X}. Then the set {c, d} is closed,semi closed and α-closed but not 

Ω̂  -closed set in (X, τ ). 

Example 3.10. Let X = {a, b, c} and τ = { Φ , {a, b},X}. Then the set {a, c} is Ω̂  -closed,but not closed or semi closed or 

α-closed in (X, τ ). 

Example 3.11. Let X = {a, b, c, d} and τ = { Φ , {a}, {b}, {a, b},X}. Then the set {c} is δ -semi-closed but not Ω̂  -closed 
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set in (X, τ ). 

Example 3.12. Let X = {a, b, c, d} and τ = { Φ , {c}, {a, d}, {a, c, d},X}. Then the set {a, b, c} is Ω̂  -closed but not δ 

-semi-closed in (X, τ ). 

Remark 3.13. The pictorial representation of the above discussions and existing results is shown in  

Figure-1.Also in Figure-1, any reversible implication is not possible in general. 

 

4. Characterizations. 

In this section we characterize Ω̂  -closed sets by giving three necessary and sufficient conditions. 

Theorem 4.1. If A is Ω̂  -closed subset in (X, τ ) ,then δcl(A) \ A does not contain any nonempty closed set in (X, τ ). 

Proof. Let F be any closed set in (X, τ ) such that F ⊆  δcl(A) \ A. Then A ⊆  X \ F and X \ F is open in (X, τ ). Since A is 

Ω̂ -closed and X \ F is semi open, δcl(A) ⊆  X \ F. Hence F ⊆  X \ δcl(A). Thus F ⊆  (δcl(A) \ A) ∩ (X \ δcl(A)) = Φ . 

Remark 4.2. The converse is not possible in general from the following example. 

Example 4.3. Let X = {a, b, c} and τ = { Φ , {a},X}. Let A = {b}. Then δcl(A) \ A = X \ {b} = {a, c} does not contain any 

non-empty closed set and A is not a Ω̂  -closed subset of (X, τ ). 

Theorem 4.4. If A is Ω̂  -closed subset in (X, τ ) if and only if  δcl(A)\A does not contain any non-empty semi closed set 

in (X, τ ). 

Proof. Necessity- Let F be any semi closed such that F ⊆  δcl(A) \ A. Then A ⊆  X \ F and X \ F is semi open in (X, τ ). 

Since A is Ω̂  -closed set in (X, τ ) , δcl(A) ⊆  X \ F, F ⊆ X \ δcl(A). Thus, F ⊆  (δcl(A) \ A) ∩ (X \ δcl(A)) = Φ . 

Sufficiency- Suppose that A ⊆U and U is any semi open set in (X, τ ). If A is not Ω̂ -closed set,then δcl(A)   U and 

hence δcl(A) ∩ (X \ U) Φ≠ .We have a nonempty semi closed set δcl(A)∩(X \ U) such that δcl(A)∩(X \ U) ⊆  δcl(A)∩(X 

\ A) = δcl(A) \A, which contradicts the hypothesis. 

Theorem 4.5. Let A be any Ω̂  -closed set in (X, τ ). Then A is δ -closed in (X, τ ) if and only if δcl(A)\A is semi closed set 

in (X, τ ). 

Proof. Necessity- Since A is δ -closed set in (X, τ ) , δcl(A) = A. Then δcl(A) \ A = Φ  is semi closed set in (X, τ ). 

Sufficiency- Since A is Ω̂  -closed set (X, τ ) ,by theorem 4.4, δcl(A) \ A does not contain any non-empty semi closed set. 

Therefore, δcl(A) \ A = Φ .Hence δcl(A) = A. Thus, A is δ -closed in (X, τ ). 

Notations 4.6. In a topological space (X, τ ) ,Xs = {x ∈X : {x} is semi closed in (X, τ ) } and 
Ω̂

X  = {x ∈X : {x} is Ω̂  

- open in (X, τ ) }. 

Proposition 4.7. In a topological space (X, τ ) ,for each x ∈X, either {x} is semi closed or {x}c is Ω̂  -closed set in (X, τ ). 

That is, X = Xs ∪
Ω̂

X  

Proof. Suppose that {x} is not a semi closed set in (X, τ ). Then {x}
c
 is not a semi open set and the only semi open set 

containing {x}
c 
is X. Therefore, δcl({x}

c
 ) ⊆  X and hence {x}

c
 is Ω̂ -closed set in (X, τ ). 

Theorem 4.8. Let A be any Ω̂  -closed set in (X, τ ). If A⊆ B ⊆ δcl(A) , then B is also a Ω̂ -closed set in (X, τ ). 

Proof. Let B ⊆  U where U is any semi open set in (X, τ ). Then A⊆U. Since A is Ω̂ -closed set, δcl(A) ⊆  U. Since 

δcl(B) ⊆  δcl(δcl(A)) = δcl(A) ⊆  U, B is a Ω̂ -closed set in (X, τ ). 

Definition 4.9. The intersection of all Ω̂  -open subsets of (X, τ ) containing A is called the Ω̂ -kernel of A and is denoted 

by Ω̂ ker(A). 

Theorem 4.10. A subset A of a topological space (X, τ ) is Ω̂ -closed in (X, τ ) if and only if δcl(A) ⊆  sker(A). 

Proof. Necessity. Suppose that A is Ω̂ -closed set in (X, τ ) and x ∈  δcl(A) and x ∉sker(A). Then there exists a semi 

open set U in (X, τ ) such that A ⊆  U and x ∉  U. Since A is Ω̂ -closed set in (X, τ ) , δcl(A) ⊆  U which is a 

contradiction to x ∈δcl(A) and x ∉  U. 

Sufficiency. Suppose that δcl(A) ⊆  sker(A) and U is any semi open set in (X, τ ) such that A ⊆  U. Then sker(A) ⊆  U 

and hence δcl(A) ⊆  U. Thus, A is Ω̂  -closed set in (X, τ ). 

Justification 4.11. By the following results, we justify that the original axioms for the topology are preserved by the class of 



Mathematical Theory and Modeling                                                                              www.iiste.org 
ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.2, No.9, 2012        

 

 

53 

Ω̂  -open sets in a topological space (X, τ ). It is denoted by 
Ω̂

τ  which is weaker than τδ ,the class of δ open sets and 

stronger than the topology formed by the class of ω -open sets. 

Theorem 4.12. If A and B are Ω̂  -closed sets in a topological space (X, τ ) ,then A ∪  B is Ω̂ -closed set in (X, τ ). 

Proof. Suppose that A ∪B ⊆ U where U is any semi open in (X, τ ). Then A ⊆ U and B ⊆ U. Since A and B are 

Ω̂ -closed sets in (X, τ ) , δcl(A) ⊆  U and δcl(B) ⊆U. Always δcl(A ∪  B) = δcl(A) ∪  δcl(B). Therefore, δcl(A ∪  B) 

⊆  U.Thus,A ∪  B is a Ω̂  -closed set in (X, τ ). 

Lemma 4.13. [6] Let x be any point in a topological space (X, τ ). Then {x} is either nowhere dense or pre-open in (X, τ ). 

Also,X = X1 ∪  X2 ,where X1 = {x ∈  X : {x} is nowhere dense in (X, τ ) } and X2 = {x ∈  X : {x} is pre-open in (X, 

τ ) } is known as Jankovic-Reilly decomposition. 

Theorem 4.14. In a topological space (X, τ ) , X2 ∩ δcl(A) ⊆ sker(A) for any subset A of (X, τ ). 

Proof. Suppose that x ∈  X2 ∩ δcl(A) and x ∉  sker(A) .Since x ∈  X2 , scl({x}) = int(cl({x})). 

Moreover,x ∉  X1 implies that scl({x}) Φ≠ . Since x ∈  δcl(A), A∩int(cl(U)) Φ≠  for any U∈∈∈∈O(X,x).Choose  U = 

int(cl({x})). Then A ∩ int(cl({x})) Φ≠ . Choose y ∈  A ∩ int(cl({x})). Since x ∉  sker(A) ,there exists a semi open set V 

in (X, τ ) such that A ⊆  V and x ∉  V . If F = X \ V , then F is a semi closed such that x ∈  F ⊆  X \ A. Also 

int(cl({x}))⊆  int(cl(F)) ⊆  F and hence y ∈  A ∩ F, a  contradiction. Thus, x ∈  sker(A) . 

Theorem 4.15. A subset A is Ω̂ -closed set in a topological space in (X, τ ) if and only if X1 ∩ δcl(A) ⊆  A. 

Proof. Necessity- Suppose that A is Ω̂  -closed set in (X, τ ) and x ∈  X1 ∩ δcl(A) but not in A. Therefore, {x} is semi 

closed set in (X, τ ) and hence X \ {x} is semi open set in (X, τ ).Since X\{x} is the semi open set in (X, τ ) containing A and 

by hypothesis, δcl(A) ⊆  X \ {x},a contradiction to x ∈δcl(A). Therefore, X1 ∩ δcl(A) ⊆  A. 

Sufficiency- Suppose that X1∩δcl(A) ⊆  A. Since A⊆  sker(A), X1∩δcl(A)⊆  sker(A).By theorem 4.14,X2 ∩δcl(A)⊆  

sker(A) . Therefore, δcl(A) = (X1∪  X2) ∩ δcl(A) = (X1 ∩ δcl(A)) ∪  (X2 ∩ δcl(A)) ⊆  sker(A) .By  theorem 4.10,A is 

Ω̂ -closed set in X. 

Theorem 4.16. Arbitrary intersection of Ω̂  -closed sets in a topological space (X, τ ) is Ω̂ -closed set  

in (X, τ ). 

Proof. Let {Ai : i∈  I} be any family of Ω̂  -closed sets in (X, τ ) and A = i I iAI ∈ . Therefore,X1∩δcl(Ai) ⊆Ai for each 

i∈ I and hence X1∩δcl(A)⊆  X1∩δcl(Ai)⊆Ai for each i ∈  I .Then  X1∩δcl(A)⊆ i I iAI ∈ = A. By theorem 4.15,A is Ω̂  

-closed set in (X, τ ). Thus, arbitrary intersection of Ω̂ -closed sets in a topological space (X, τ ) is Ω̂  -closed set in (X, τ ). 

Notations 4.17. In a topological space (X, τ ) ,the set of all semi (resp. pre, Ω̂  ) open sets are denoted by SO(X) (resp. 

PO(X), Ω̂ O(X) ). The set of all δ -closed (resp. Ω̂ -closed) sets are denoted by δC(X) (resp. Ω̂ C(X)). 

Lemma 4.18. If A is Ω̂  -closed and B is δ -closed sets in (X, τ ) then A∩B is Ω̂  -closed in (X, τ ) because of arbitrary 

intersection of Ω̂  -closed sets is a Ω̂  -closed set. 

Let us characterize partition space via Ω̂  -closed sets. 

Remark 4.19. [8] A partition space is a topological space (X, τ ) where every open set is closed. Also a topological space is 

partition space if and only if every subset is pre open. 

Theorem 4.20. In a topological space (X, τ ) , 

(i) SO(X) ⊆  δC(X) if and only if Ω̂ O(X) = P(X) . 

(ii) (X, τ ) is a partition space if and only if Ω̂ O(X) = P(X) . 

Proof. (i) Necessity-Let A be arbitrary subset of (X, τ ) such that A ⊆  U where U∈SO(X) .By hypothesis, δcl(A) ⊆  

δcl(U) = U. Therefore, A is Ω̂  -closed set in (X, τ ). 

Sufficiency- Let U be any semi open set in (X, τ ). By hypothesis, U is Ω̂  -closed set in (X, τ ). Since every Ω̂  -closed 

set is pre closed set, U is a pre closed set in (X, τ ). It is clear that if U is both semi open and pre closed, then U is a regular 

closed set and hence it is a δ -closed set in (X, τ ). 

(ii) Necessity- Let A be arbitrary subset of (X, τ ) and suppose that x ∈  X1 ∩ δcl(A), x ∉  A. We have {x} is a semi 

closed set and hence it is a closed set in (X, τ ). Therefore, X\{x} is an open set in (X, τ ) and by hypothesis, it is a closed set 

in (X, τ ). Now X\{x} is a clopen set in (X, τ ) and then δ -closed set in (X, τ ). Therefore, δcl(A)⊆ δcl(X \{x}) = X \{x},a 
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contradiction to x∈δcl(A). Thus, X1∩δcl(A)⊆ A. By theorem 4.15,A is Ω̂  -closed set in (X, τ ). 

Sufficiency- Let U be any open and hence semi open set in (X, τ ). By hypothesis, Ω̂ -closed set in (X, τ ). Since every Ω̂  

-closed set is pre closed set, U is a pre closed set in (X, τ ). It is clear that if U is both semi open and pre closed, then U is a 

regular closed and hence it is a δ -closed in (X, τ ). Therefore, U is a closed set in (X, τ ). Thus, every open set is closed in 

(X, τ ). 

Remark 4.21. From the above discussions, a topological space is partition space if and only 

if Ω̂ O(X) = PO(X) = P(X) . 

 

5. Ω̂  -closure.  

In this section we define the closure of Ω̂  -closed sets and prove that it is a  ”Kuratowski closure operator.” 

Definition 5.1. Let A be a subset of a topological space (X, τ ). Then the Ω̂  -closure of A is defined to be the intersection 

of all Ω̂  -closed sets containing A and it is denoted by Ω̂ cl(A). That is Ω̂ cl(A) =I {F : A ⊆ F and F ∈∈∈∈ Ω̂ C(X)}. 

Always, A⊆ Ω̂ cl(A) . 

Remark 5.2. From the definition and 4.16, Ω̂ cl(A) is the smallest Ω̂  -closed set containing A. 

Theorem 5.3. Let A and B be subsets of a topological space (X, τ ). Then, 

(i) Ω̂ cl( Φ ) = Φ and Ω̂ cl(X) = X. 

(ii) If A ⊆ B, then Ω̂ cl(A) ⊆  Ω̂ cl(B). 

(iii) Ω̂ cl(A ∩ B) ⊆  Ω̂ cl(A) ∩ Ω̂ cl(B). 

(iv) Ω̂ cl(A ∪  B) = Ω̂ cl(A) ∪  Ω̂ cl(B). 

(v) A is a Ω̂ -closed set in (X, τ ) if and only if A = Ω̂ cl(A). 

(vi) Ω̂ cl( Ω̂ cl(A)) = Ω̂ cl(A). 

(vii) Ω̂ cl(A) ⊆ δcl(A). 

Proof. (i) Obvious. 

(ii) A ⊆ B ⊆ Ω̂ cl(B). But Ω̂ cl(A) is the smallest Ω̂  -closed set containing A. Hence Ω̂ cl(A) ⊆  Ω̂ cl(B). 

(iii) A ∩ B ⊆  A and A ∩ B ⊆  B. By (ii), Ω̂ cl(A∩B) ⊆  Ω̂ cl(A) and Ω̂ cl(A ∩ (B) ⊆  Ω̂ cl(B).Hence Ω̂ cl(A∩B) 

⊆  Ω̂ cl(A) ∩ Ω̂ cl(B). 

(iv) A ⊆  A ∪B and B ⊆  A ∪  B. By(ii), Ω̂ cl(A) ⊆  Ω̂ cl(A ∪B) and Ω̂ cl(B) ⊆  Ω̂ cl(A ∪  (B).Hence Ω̂ cl(A) 

∪  Ω̂ cl(B) ⊆  Ω̂ cl(A ∪B). On the other hand, A ⊆ Ω̂ cl(A) and B ⊆  Ω̂ cl(B) implies that A∪B ⊆  Ω̂ cl(A)∪  

Ω̂ cl (B) .But Ω̂ cl(A ∪ B) is the smallest Ω̂  -closed set containing A ∪ B. Hence Ω̂ cl(A ∪ B) ⊆  Ω̂ cl(A) 

∪ Ω̂ cl(B).Therefore, Ω̂ cl(A ∪  B) = Ω̂ cl(A) ∪  Ω̂ cl(B). 

(v) Necessity- Suppose that A is Ω̂  -closed in (X, τ ). By remark 5.2, A ⊆  Ω̂ cl(A). By the definition of Ω̂  closure and 

hypothesis, Ω̂ cl(A) ⊆  A. Therefore, A = Ω̂ cl(A). 

Sufficiency-Suppose that A = Ω̂ cl(A). By the definition of Ω̂  closure, Ω̂ cl(A) is a Ω̂ - closed set and hence A is a Ω̂  

-closed set in (X, τ ). 

 (vi) Since arbitrary intersection of Ω̂  -closed sets in a topological space (X, τ ) is Ω̂  -closed set in (X, τ ) , Ω̂ cl(A) is a 

Ω̂ -closed set in (X, τ ). By v, Ω̂ cl( Ω̂ cl(A)) = Ω̂ cl(A). 

(vii) Suppose that x ∉  δcl(A) .Then there exists a δ -closed set F such that A ⊆  F and x ∉  F .Since every δ -closed set 

is Ω̂  -closed set, x ∉  Ω̂ cl(A) . Thus, Ω̂ cl(A) ⊆  δcl(A). 

Remark 5.4. The reversible inclusion of (iii) is not true in general from the following example. 

Example 5.5. Let X = {a, b, c, d} and τ = { Φ , {a}, {b}, {a, b}, X}. If A = {a} and B = {b}, then Ω̂ cl(A) = {a, c, d} , 

Ω̂ cl(B) = {b, c, d},A ∩ B = Φ , Ω̂ cl(A ∩ B) = Φ . But Ω̂ cl(A) ∩ Ω̂ cl(B) = {c, d}. 

Remark 5.6. From Ω̂ cl( Φ ) = Φ ,A⊆ Ω̂ cl(A), Ω̂ cl(A ∪  B) = Ω̂ cl(A) ∪ Ω̂ cl(B) ,and Ω̂ cl( Ω̂ cl(A)) = Ω̂ cl(A) we 

can say that Ω̂ -closure is the Kuratowski closure operator on (X, τ ). 
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Definition 5.7. A point x of a space (X, τ ) is called a Ω̂  -limit point of a subset A of (X, τ )  if for each Ω̂  -open set U 

containing x intersects A other than x. That is, A ∩ (U −{x}) Φ≠ .The set of all limit points of A is denoted by 
Ω̂

D  (A) and 

is called the Ω̂ -derived set of A. 

Theorem 5.8. Let A and B be any two subsets of a space (X, τ ). Then 

(i) 
Ω̂

D ( Φ ) = Φ  and 
Ω̂

D  (X) = X. 

(ii) If A ⊆ B, then 
Ω̂

D  (A) ⊆
Ω̂

D  (B). 

(iii) 
Ω̂

D  (A ∪  B) = 
Ω̂

D  (A) ∪  
Ω̂

D  (B). 

(iv) 
Ω̂

D  (A ∩ B) ⊆
Ω̂

D  (A) ∩ 
Ω̂

D  (B). 

(v) A subset A is Ω̂  -closed iff 
Ω̂

D  (A) ⊆A. 

(vi) Ω̂ cl(A) = A ∪
Ω̂

D  (A). 

Proof. Follows from the definition and similar to theorem 5.3. 

Remark 5.9. The following example shows that the reversible inclusion of (iv) is not true in general. 

Example 5.10. Let X = {a, b, c, d} and τ = { Φ , {a}, {b}, {a, b},X} If A = {a} and B = {b},
Ω̂

D  (A) = {c, d} and 
Ω̂

D  (B) 

= {c, d},A ∩ B = Φ ,
Ω̂

D  (A ∩ B) = Φ . But 
Ω̂

D  (A) ∩ 
Ω̂

D  (B) = {c, d}. 

Theorem 5.11. In a topological space (X, τ ) ,for x ∈  X, x ∈  Ω̂ cl(A) if and only if U ∩A Φ≠  for every Ω̂  -open set 

U containing  x. 

Proof. Necessity- Suppose that x ∈  Ω̂ cl(A) and suppose there exists a Ω̂  -open set U containing x such that U ∩A = Φ . 

Then A ⊆ U
c
 and U

c
 is a Ω̂  -closed set. By remark 5.2, Ω̂ cl(A) ⊆  U

c
 .Therefore, x ∉ Ω̂ cl(A), a contradiction. 

Sufficiency- Suppose that x ∉ Ω̂ cl(A) Then there exists Ω̂  -closed set F containing A such that ∉F. Hence F
c
 is a Ω̂  

-open set containing x such that. F
c
⊆ A

c
 .Therefore, F

c
 ∩A = Φ  which contradicts the hypothesis. 

Definition 5.12. A point x in a topological space (X, τ ) is called a Ω̂  -interior point of a subset A of (X, τ ) if there exists 

some Ω̂  -open set U containing x such that U ⊆A. The set of all Ω̂ -interior points of A is called the Ω̂  -interior of A 

and is denoted by Ω̂ int(A). 

Remark 5.13. Ω̂ int(A) is the union of all Ω̂ -open sets contained in A and by theorem 4.16, Ω̂ int(A) is the largest Ω̂  

-open set contained in A. 

Theorem 5.14. A subset A of (X, τ ) is Ω̂  -open if and only if F ⊆  δint(A) whenever F is 

semi closed set and F ⊆A.  

Proof. obvious. 

Theorem 5.15. (i) Ω̂ cl(X \ A) = X \ Ω̂ int(A). 

(ii) Ω̂ int(X \ A) = X \ Ω̂ cl(A). 

Proof. (i) Ω̂ int(A) ⊆  A ⊆  Ω̂ cl(A). Hence X \ Ω̂ cl(A) ⊆X \ A⊆  X \ Ω̂ int(A). Then X \ Ω̂ cl(A) is the Ω̂  -open 

set contained in X \A. But Ω̂ int(X −A) is the largest Ω̂  -open set contained in X\A. Therefore, X\ Ω̂ cl(A) ⊆ Ω̂ int(X\A). 

On the other hand, if x ∈  Ω̂ int(X\A),there exists a Ω̂  -open set U containing x such that U ⊆ X \ A. Hence U ∩ A 

= Φ .Therefore, x ∉  Ω̂ cl(A) and hence x ∈ (X \ Ω̂ cl(A)) . Thus, Ω̂ int(X \ A) ⊆  X \ Ω̂ cl(A). 

(ii) Similar to the proof of (i). 

 

6. Applications. 

Notations 6.1. For any set A ⊆X ,(A, τ |A) represents subspace topological space with respective to τ. Let A and B be any 

two subsets in a topological space (X, τ ) such that B ⊆  A ,then δclX(B) (resp. Ω̂ clX(B)) represents δ (resp. Ω̂ ) closure 

of B in (X, τ ) and δclA(B) (resp. Ω̂ clA(B)) represents δ (resp. Ω̂  ) closure of B in the subspace (A, τ |A) . Also skerX (B) 

(resp. Ω̂ kerX (B)) represents semi (resp. Ω̂  ) kernel of B in (X, τ ) and skerA (B) (resp. Ω̂ kerA (B)) represents semi (resp. 

Ω̂  ) kernel of B in the  

subspace (A, τ |A) . 

Remark 6.2. [13(a)] Let A be any open set in a topological space (X, τ ). Let B ⊆A. Then, 
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 δclA(B) = A ∩ δclX(B) 

Remark 6.3. [13(a)]  Let A be any pre open set in a topological space (X, τ ). Let B ⊆  A  

Then, SkerA (B) = A ∩ skerX (B). 

Theorem 6.4. If A is both semi open and pre closed set in a topological space (X, τ ) , then A is Ω̂  -closed in (X, τ ). 

Proof. It is clear that if A is both semi open and pre closed, then A is regular closed and hence it is  

δ -closed in (X, τ ). Therefore it is Ω̂ closed in (X, τ ).  

Theorem 6.5. Let B ⊆  A⊆  X where A is open in (X, τ ). If B is Ω̂  -closed set in (X, τ ) ,then B is  

Ω̂  -closed set in the subspace (A, τ |A). 

Proof. Suppose that B is Ω̂ -closed set in (X, τ ). By theorem 4.10, δclX(B) ⊆  skerX (B) and hence  

A∩δclX (B) ⊆  A∩skerX (B) .By remarks 6.2 and 6.3, δclA (B) ⊆ skerA (B) .Again by theorem 4.10,B is Ω̂ -closed set in 

the 

 subspace (A, τ |A) . 

Theorem 6.6. Let B ⊆  A ⊆  X where A is both open and pre closed set in (X, τ ). If B is Ω̂ -closed set in the subspace 

(A, τ |A), then B is Ω̂ -closed set in (X, τ ). 

Proof. Suppose that B is Ω̂ -closed set in the subspace (A, τ |A). By theorem 4.10, δclA(B) ⊆ skerA(B) and hence by 

remarks 6.2 and 6.3, A ∩ δclX(B) ⊆  A ∩ skerX (B). Since A is δ -closed in (X, τ ) , δclX (B) = δclX(A) ∩ δclX(B) = A ∩ 

δclX(B) ⊆  A ∩ skerX(B) ⊆  skerX(B). Therefore, δclX(B) ⊆  skerX(B). By theorem 4.10, B is Ω̂  -closed set in (X, τ ). 

Theorem 6.7. If F is Ω̂  -closed set in (X, τ ) ,then F ∩ A is Ω̂ -closed set in the subspace 

(A, τ |A) provided that A is both open and pre closed set in a topological space (X, τ ). 

Proof. By theorem 6.4,F ∩ A is Ω̂ -closed set in (X, τ ).By theorem 4.10, δclX(F ∩ A) ⊆  skerX(F ∩ A) .Then A∩ δclX(F 

∩A) ⊆  A ∩ skerX(F ∩ A) and hence by remarks 6.2 and 6.3, δclA(F ∩A) ⊆  skerA(F ∩ A)  Again by theorem 4.10,F ∩ 

A is Ω̂  -closed set in the subspace (A, τ |A) . 

Theorem 6.8. Let U ⊆  A ⊆  X where A is both open and pre closed set in (X, τ ). If U is Ω̂ -open set in (X, τ ) , then U 

is Ω̂  -open in the subspace (A, τ |A) . 

Proof. Suppose that U is Ω̂  -open set in (X, τ ). Then X \U is Ω̂  -closed set in (X, τ ). By theorem 6.7,(X \U)∩A is Ω̂  

-closed set in the subspace (A, τ |A) .That is, A\ (A ∩ U) is Ω̂  -closed set in the subspace (A, τ |A) . Then A \ U is Ω̂  

-closed set in the subspace (A, τ |A) .Thus U is Ω̂  -open set in the subspace (A, τ |A).  

Theorem 6.9. Let U ⊆  A ⊆  X where A is both δ -open and pre closed set in (X, τ ). If U is Ω̂ -open set in the subspace 

(A, τ |A) ,then U is Ω̂  -open in (X, τ ). 

Proof. Suppose that U is Ω̂  -open set in the subspace (A, τ |A) . Then A\ U is Ω̂ -closed set in the subspace (A, τ |A) . By 

6.6, A \ U is Ω̂  -closed set in (X, τ ). That is A \ U = (X \ U) ∩ A is Ω̂ -closed set in (X, τ ). By theorem 4.12, U = [X \ ((X 

\ U) ∩ A)] ∩ A is Ω̂ -open set in (X, τ ). 

Theorem 6.10. Let A be both open and pre closed set in a topological space (X, τ ). If U is Ω̂ -open set in (X, τ ) ,then U ∩ 

A is Ω̂  -open set in a subspace (A, τ |A) . 

Proof. Suppose that U is Ω̂  -open set in (X, τ ) ,then X \ U is Ω̂  -closed set in (X, τ ). By theorem 6.7,(X \ U) ∩ A is Ω̂  

-closed set in a subspace (A, τ |A) . Then A \ (U ∩ A) is Ω̂  -closed set in a subspace (A, τ |A) . Thus U ∩ A is Ω̂  -open 

set in a subspace (A, τ |A) . 

Theorem 6.11. Let A be both open and pre closed set in a topological space (X, τ ). If E is any subset of X such that E ⊆  

A ⊆X, then Ω̂ clA(E) ⊆  A ∩ Ω̂ clX(E) . 

Proof. Suppose that x ∈ Ω̂ clA(E) and F be an arbitrary Ω̂ -closed set in (X, τ ) such that E⊆  F By theorem 6.7, F ∩ A is 

Ω̂  -closed set in a subspace (A, τ |A) such that E ⊆ F ∩ A. Therefore, Ω̂ clA (E) ⊆ F ∩ A and hence x ∈  F ∩ A ⊆  F By 

the definition of closure, x ∈  Ω̂ clX(E) and hence x ∈  A ∩ Ω̂ clX(E) .Thus Ω̂ clA (E) ⊆A ∩ Ω̂ clX(E) . 

Theorem 6.12. Let A be both open and pre closed set in a topological space (X, τ ). If E is any subset of X such that E ⊆ A 

⊆  X .then A ∩ Ω̂ clX(E) ⊆ Ω̂ clA(E) . 
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Proof. Suppose that x ∈  A∩ Ω̂ clX(E) and F is an arbitrary Ω̂  -closed set in the subspace (A, τ |A) such that E ⊆  F ⊆  

A. By theorem 6.6, F is Ω̂  -closed set in (X, τ ). Therefore, Ω̂ clX(E) ⊆ Ω̂ clX(F) = F. Therefore,  x ∈  F. By the 

definition of Ω̂  -closure in subspace, x ∈  Ω̂ clA(E) . Thus A ∩ Ω̂ clX(E) ⊆ Ω̂ clA(E) . 

Theorem 6.13. Let A be both open and pre closed set in a topological space (X, τ ). If E is any subset of X such that E⊆ A 

⊆  X, then Ω̂ kerA(E) ⊆A ∩ Ω̂ kerX(E) . 

Proof. Similar to 6.11. 

Theorem 6.14. Let A be both δ -open and pre closed set in a topological space (X, τ ) and E ⊆A⊆  X .Then A ∩ 

Ω̂ kerX(E) ⊆  Ω̂ kerA(E) . 

Proof. Similar to 6.12. 
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