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Abstract 

In this paper, we study the longitudinal wave propagation in a perfectly conducting elastic circular cylinder in the presence 

of an axial initial magnetic field. The elastic cylinder is assumed to be made of an orthotropic material. The problem is 

represented by the equations of elasticity taking into account of the effect of the magnetic field as given by Maxwell's 

equations in the quasi-static approximation.  The stress free conditions on the inner and outer surfaces of the hollow 

circular cylinder are used to form a frequency equation in terms of the wavelength, the cylinder radii and the material 

constants. Numerical calculations are obtained and the results are represented graphically. It is observed that the longitudinal 

elastic waves in a solid body propagating under the influence of a superimposed magnetic field can be different significantly 

from that of those propagating in the absence of a magnetic field. Also, elastic waves may convey information on 

electromagnetic properties of the material: for example through a precise measurement of the surface current induced by the 

presence of the magnetic field. Finally, some of the earlier results are deduced as particular cases.  

Keywords: Natural frequencies, Magnetoelasticity, Longitudinal wave, Orthotropic materials,  

 

1. Introduction 

Longitudinal waves are waves that have vibrations along or parallel to their direction of travel; that is, waves in which 

the motion of the medium is in the same direction as the motion of the wave. The study of wave propagation over a 

continuous media is of practical importance in the field of engineering, medicine, optics science, seismology, 

acoustics and in space science. 

With the advancement of space research, it has become necessary to obtain a deep insight in the behavior of materials, 

especially of the anisotropic ones that are so frequently used in the missiles and other allied systems. Without taking 

the consideration of the effect of the magnetic field, the analysis of longitudinal wave propagation in anisotropic and 

homogeneous circular cylindrical shell, according to the theory of elasticity, have been done by many authors: [1, 2, 3, 

4, 5]. Moreover, the propagation of harmonic waves, in circular cylinders which are made of isotropic or anisotropic 

materials, have been investigated and evaluated numerically, on the basis of the theory of elasticity, by Mirsky [6], 

Tsai [7] and White and Tongtaow [8]. 

Among many important problems which are considered in such studies, the problems of elastic wave propagation in 

the presence of a steady magnetic field have investigated when the material was isotropic homogeneous by Andreou et 

al. [9], Das et al. [10], Gourakishwar [11], Paria [12], Suhubi [13]. Some of the analogous results on magnetoelastic 
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waves propagation problems, but in an anisotropic medium, were obtained by Abd-alla [14, 15], Datta [16]. General 

details and many references on these subjects may be found in monographs published by: Eringen et al. [17-18], Auld 

[19], Moon [20] and Nowacki [21].  

Recently, the interaction of electromagnetic fields with the motion of a deformable solid is being receiving greater 

attention by many investigators. Therefore, many researchers investigated the effect of the magnetic field  on the wave 

propagation in anisotropic cylindrical materials such as:  Barakati and Zhupanska [22] studied the effects of pulsed 

electromagnetic fields on the dynamic mechanical response of electrically conductive anisotropic plates.  Dinzart and 

Sabar [23] presented numerical investigations into magneto-electro-elastic moduli responsible for the magneto-

electric coupling as functions of the volume reaction and characteristics of the coated inclusions. Akbarovet al. [24] 

studied torsional wave dispersion in a three-layered (sandwich) hollow cylinder with finite initial strains. 

Chattopadhyay et al. [25] studied the propagation of horizontally polarized shear waves in an internal magnetoelastic  

monoclinic stratum with irregularity in lower interface.  Tang and  Xu [26] employed the method of eigenfunction 

expansion to solve the problems of transient torsional vibration responses of finite, semi-infinite and infinite hollow 

cylinders. Acharya et al. [27] investigated the effect of the transverse isotropy and magnetic field on the interface 

waves in a conducting medium subject to the initial state of stress of the form of hydrostatic tension or compression. 

Petrov et al. [28] focused on the nature of ferromagnetic resonance (FMR) under the influence of acoustic oscillations 

with the same frequency as FMR. Mol’chenko et al. [29] constructed a two-dimensional nonlinear magnetoelastic 

model of a current-carrying orthotropic shell of revolution taking into account of  finite orthotropic conductivity, 

permeability and permittivity.  Abd-Alla and Abo-Dahab [30] studied the influence of the viscosity on reflection and 

refraction of plane shear elastic waves in two magnetized semi-infinite media. Selim [31] showed the effect of 

damping on the propagation of torsional waves in an initially stressed, dissipative, incompressible cylinder of infinite 

length. Dai and Wang [32] illustrated an analytical method to solve magneto-elastic wave propagation and 

perturbation of the magnetic field vector in an orthotropic laminated hollow cylinder with arbitrary thickness. Liu  and 

Chang  [33] investigated the interactive behaviors among transverse magnetic fields, axial loads and external force of 

a magneto-elastic beam with general boundary conditions.  

    In this study an attempt has been made to investigate the longitudinal wave propagation in an orthotropic circular 

cylinder permeated by a magnetic field. The frequency equations have been derived in the form of a determinant 

involving Bessel functions and its roots give the values of the characteristic circular frequency parameters of the first 

three modes for various geometries. These roots, which correspond to various mode, have been verified numerically 

and represented graphically in different values for the magnetic field. Finally, some of the earlier results are deduced 

as particular cases.  

 2. Basic Equations 

The equations of motion for a perfect conducting elastic solid in uniform magnetic field are [10]: 

iijji uf &&ρτ =+,      i,j=1,2,3                                               (1) 

where 
ijτ   is the mechanical stress tensor,  ρ   is the mass density of the material,  if  is Lorentz force and given as 

follows: 

0][
4

Hhf o
rrrr

××∇=
π
µ

                                                                  (2) 
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where 

                      ( )oHuh
rrrr

××∇=                                                                         (3) 

   ),0,0( oo HH =
r

                                              (4) 

and  oH  is the intensity of the uniform axial magnetic field , h
r

 small perturbation of the magnetic field,  oµ is the 

magnetic permeability in the medium. From (3) and (4)  h
r

  may be written as: 
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Using (4) and (5) in (2), Lorentz force becomes: 
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where                      
πρ

µ
α

4

2

2 ooH=  

Maxwell's equations in this study may be written as (in Gaussian units): 

     eDB
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c
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v
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                 (7) 

where JEBH
vvvr

,,, denote, respectively, the magnetic field intensity, magnetic induction, electric field intensity and current 

density vectors, c is the velocity of light in vacuum, and the electric field intensity is given as the form 

          ][
t

u

c

H
E oo

∂
∂

=
µ

θ                                                              (8) 

Electromagnetic equations in vacuum are: 
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where 
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The strain components are given in terms of the displacements by: 
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(10) 

where ije  denote the strain components. 

For an orthotropic elastic body, the Cauchy stress components are given in terms of independent elastic constants ijc  as 

follows 
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(11) 

Substituting (6) and (11) into (1), one may get the equations of motion in terms of the displacements components as: 
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3. Formulation of  the Problem 

Longitudinal wave propagation in a circular cylinder  of  tetragonal elastic material of inner and outer radii, a and b,  

subjected to an axial magnetic field is considered.  The cylinder is treated as a perfect conductor and the regions inside and 

outside the elastic material are assumed to be vacuum. 

We assume that waves are characterized by the displacement components in the radial and axial directions only. The 

displacement field, in this case, in cylindrical coordinates (r, θ , z), is given by 

                  ),,,(,0),,,( tzrwwvtzruu ===                                  (14) 

where wvu ,,  are the displacement components in the radial, circumferential, and axial directions, respectively, and all 

other quantities involved are functions of zr,  and t  only, where t  denotes the time. 

4. Solution of the Problem 

4.1. Harmonic solutions: 

We now consider the propagation of an infinite strain of sinusoidal waves along a hollow circular  cylinder of infinite 

extent such that the displacement at each point is a sample harmonic function of z  and t . Therefore, we shall seek the 

solution of the equations of motion and follow the same procedure as in Mirsky [6]: 

           

 

( ) ( )qzttzrwqzt
dr

d
tzru +=+= ληφλ

φ
sin),,(,cos),,(                                (15) 



Mathematical Theory and Modeling                                                                              www.iiste.org 
ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.2, No.9, 2012        

 

 

11 

where )(rφφ = , 
l

q
π2

=  is the wave number, l  is the wavelength, λ  is the angular frequency and η  is an 

arbitrary constant to be determined later in the analysis. Putting Eq. (15) in (13) and (14), one obtains: 
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Eq. (16) is consistent with (17) provided that η  is chosen to satisfy the equations 
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Eliminating η  from (18), we find that 
2p  satisfies the equation: 
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If 
2

1p  and 
2

2p  are the roots of this equation, the corresponding functions )(),( 2211 rr φφφφ == satisfy the 

equations: 
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The general solutions of Eqs. (21) are 

            ),()()(),()()( 20220221011011 rPWBrPZArrPWBrPZAr +=+= φφ                    (22) 

where 2211 ,, BandABA  are constants of integration and for brevity Z denote the Bessel function J or I and W denote 

the Bessel function Y or K, according to the signs of 
2

1p  and 
2

2p . 

The displacement field may now be written as 
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4.2. Solution of Electric field intensity in vacuum 

   The general solution of
*

θE   from 4)10(  take the form 
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where 
222 )/( qck −= λ , 33 BandA  are arbitrary constants and for brevity  W denotes the Bessel function Y or 

K, according to the signs of 
2k . 

4.3. Boundary conditions: 

For free motion, the boundary conditions are required for the total stress to be vanished and the continuity of the electric 

field on the surfaces r = a, b, i.e. 
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where rzrr ττ ,  are the components of the mechanical stresses, rzrr MM ,  are the components of Maxwell's stresses in 

the medium and 
** , rzrr MM   are Maxwell's stresses in vacuum. Eliminating 

332121 ,,,,, BABBAA
 

 after applying the 

boundary conditions (26), we get the determinant  must be vanished  leading to the following frequency equation 

(dispersion relation) as: 

                             6,....2,1,,0 ===∆ jiX ij                                  (27) 

where 
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where 1=δ  at JZ = and 1−=δ at IZ = . 

 

5. Radial and Axial Vibrations 

As the wave number 0→q  (i.e., for infinite wavelength), the following simplifications have been made by using the 

result of [6]: 
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and the characteristic equation (27) may be written as the product of two determinants  

                      021 =∆⋅∆                                                          (29) 

where 
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The elements ijX  are given by (28) with 0→q . The equation  01 =∆  represents a motion involving the radial 

displacement u  only, corresponding to the radial vibrations [15]. 02 =∆  represents a motion involving the axial 

displacement w  only, corresponding to the axial-shear vibrations [6] and [13]. 

 

6. The Numerical Calculations 

For numerical calculations, we consider the following transformations: 

,
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The calculations of the roots of the frequency equation (27), represent a major task and require a rather extensive effort for 

numerical computation. Calculations have been carried out for the case of Titanium dioxide (Rutile 2TiO ),  which  

belongs to the tetragonal system (crystal symmetry for it is 4/mmm). It has 6 elastic constants [19].  

    
211

33 /)10(99.46 cmdynec =  
211

11 /)10(6.26 cmdynec =  

211
44 /)10(39.12 cmdynec =  

211
12 /)10(33.17 cmdynec =  

211
66 /)10(33.17 cmdynec =  

211
13 /)10(62.13 cmdynec =  

Also, the density is 
3/26.4 cmgm=ρ , the velocity of light is sec/)10(3 10 cmc =  and the permeability is 

OerstedGausso /1=µ  .sec/)10(3 10 cmc =  

7. Discussion and Conclusion 

The dimensionless frequency spectrum Ω  for the longitudinal vibrations, as a function of the ratio thickness )/( bah = ,  

for the value of non-dimensional wave number 1=m ,  is calculated and given in form of graphs. The values of the 

effective primary magnetic field oH are chosen as (
765 10,10,10=oH  Oersted).  The frequency equation is solved 

numerically, and for this purpose a matrix determinant computation routine is used for different Ω  and h  along with a root 

finding method to refine steps close to its roots. For each pair (Ω  and h ), Eqs. (27) and (30) are solved by using "interval 

halving" iteration technique [34]. The results in these cases are presented in the Figures (1-9) to illustrate the effects of the 
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primary magnetic field on the longitudinal vibrations of an orthotropic circular cylinder.   

It is clear from Figure 1. The first mode of dimensionless frequency Ω decreases as the ratio thickness h  increases for 

(
65 10,10=oH  Oersted). However, it increases monotonically as function of h  for the value of primary magnetic field 

increases (
710=oH  Oersted). The same behavior is observed for the case of  (

765 10,10,10=oH Oersted) and it is 

shown in Figures 2 and 3 for the second and third modes of dimensionless frequency Ω. Also, in this case the effects of  the 

primary magnetic field when (
65 10,10=oH  Oersted) are very small and the curves are almost  identical. In Figure 4 a 

comparison between the first three modes of  the frequency  Ω  versus different values of h  for 
710=oH is illustrated. 

Furthermore, our numerical calculations show that all the mode of the frequency Ω is not sensitive to the primary magnetic 

field oH  less than 
510  Oersted.  So, for the values of oH  less than 

510 , it can be neglected as their relative variations 

become less than 
310 . 

It is clarified that when 0=m , the frequency equation (27) degenerates into two independent equations: (i) One of 

them is for uncoupled radial vibrations (which contains the radial displacementu only). (ii) The second shows axial 

shear vibrations (which contains the axial displacement w  only). The first, second and third modes of the 

dimensionless frequency Ω  as function of the h of radial vibrations for various values of 
610)10,5,1(=oH  are 

presented in Figures 5, 6 and 7 respectively. Furthermore, in the same case, a comparison between the first three 

modes of the frequency Ω as a function of h when   
6105×=oH  is shown in Figure 8. It is visible that in this case 

all modes are increase when increasing the imposed magnetic field oH .  Figure 9, represents the first three modes of 

dimensionless frequency Ω of axial shear vibrations against the variation of h when m=0. It was found that in this 

second special case, the frequency Ω of axial shear vibrations is not affected with the values of the primary magnetic 

field oH . Finally, some existing results in the literature are considered as the special case of this study, for example 

Refs. [6, 7, 8, 10, 15, 16]. 
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Figure 1. The first mode of dimensionless frequency Ω for longitudinal vibrations 

 versus different values of h=a/b for different values of oH , when m=1. 
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Figure 2. The second mode of dimensionless frequency Ω for longitudinal vibrations  

versus different values of h=a/b for different values of oH , when m=1. 

 
Figure 3. The second mode of dimensionless frequency Ω for longitudinal vibrations  

versus different values of h=a/b for different values of oH , when m=1. 
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Figure 4. The first three modes of dimensionless frequency  Ω  of  longitudinal 

        vibrations versus different values of h=a/b for 
710=oH , when m=1. 

 

Figure 5. The first mode of dimensionless frequency  Ω of  radial vibrations 

versus different values of h=a/b for different values of oH , when m=0. 
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Figure 6. The second mode of dimensionless frequency  Ω of radial vibrations 

versus different values of h=a/b for different values of oH , when m=0. 

 

Figure 7. The third mode of dimensionless frequency  Ω of radial vibrations 

versus different values of h=a/b for different values of oH , when m=0. 
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Figure 8. The first three modes of dimensionless frequency Ω of  radial  vibrations  

versus different values of h=a/b, for 
6105×=oH , when  m=0. 

 

Figure 9. The first three modes of dimensionless frequency Ω of  axial shear   

 vibrations versus different values of h=a/b, when  m=0. 
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