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Abstract 

This research article focuses on the formulation of a treatment model of hepatitis epidemic of 

type B. The dynamics of the model were studied and the local stability analyses of the 

equilibrium points of the model were investigated. Lyapunov functions were defined for the 

equilibrium points and their global stabilities were performed. It was shown that the global 

dynamics is determined by the basic reproduction ratio 𝑅0. Thus, the disease-free is globally 

stable when  𝑅0 < 1  and the endemic equilibrium is globally stable when   𝑅0 > 1. 

KEYWORDS: Next-generation matrix, Lyapunov function, Hepatitis B, Basic Reproduction 
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1.  INTRODUCTION 

Disease modeling has brought many important underlying ideas in control intervention of 

infectious diseases to light ([8], [9], [10], [11], [13], [14]). One basic underlying idea is the 

estimation of the threshold parameter 𝑅0 which tells us whether an invading epidemic into a 

susceptible population would be a failure to develop or develop. Hepatitis B virus (HBV), 

since its surfacing, has been steadily increasing over the last seven years and has become a 

major global health problem [3]. The hepatitis B virus is present in bodily fluids and is 

regarded to be easily acquired with a higher degree of infectiousness than the Human 

immunodeficiency virus (HIV). The virus incubation period is estimated to be about 90 days 

on the average, but can vary from about 30 to 180 days [18]. HBV may be detected 30 to 60 

days after infection and persist for widely several period of time. (WHO, 2014), estimated that 

about 240 million people worldwide are infected with HBV, and about one third of this have 

chronic HBV infection and about 780,000 die each year from the HBV-related liver disease 

[23]. 

 

Hepatitis can be prevented with a vaccine. Vaccination against HBV infection provides 

long-term protection against infection and is ninety five percent effective in preventing 

infection and the development of chronic disease and liver cancer due to hepatitis B , and 
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therefore becomes safer and effective [4]. 

 

HBV modeling has increasingly attracted the attention of mathematical modelers and several 

works in that regards have been considered ([19], [20], [21], [22]). However, most of these 

works have focused on vaccination. Thus, often, vaccination of HBV is considered for 

children and adults in the susceptible class and the exposed periods. 

 

This research focuses on the formulation of a treatment model for hepatitis epidemic of type B, 

in order to understand the epidemic phenomenon and to investigate the effect of treatment on 

the infective class. Treatment here refers to the process of offering the HBV infected 

individual with antiretroviral treatment. We define a lyapunov function to investigate the 

global stabilities of the disease-free equilibrium and the endemic equilibrium. The model is 

developed in section 2. The basic reproduction ratio is deduced and shown to be a threshold 

parameter by using the next-generation matrix. The section 3 investigates the global stability 

of the disease free and the endemic equilibrium. The section 4 provides the simulation, 

discussion and the concluding remarks. 

 

2. The Model Formulation 

A treatment model in a constant population where birth rate equal death rate is considered in a 

mixing homogeneous population. The total population is categorized into four compartments 

namely susceptible 𝑆(𝑡), infective , 𝐼(𝑡), treated class, 𝑇(𝑡), and removed class, 𝑅(𝑡). Here, 

there is an influx of newly recruited to the susceptible class at a rate of  𝜇. Infection invades 

the susceptible class at a rate of 𝛽. It is assumed that only a fraction of the population seeks 

medical attention, and hence represents the treated class. Treatment here is defined as the 

process of offering the Hepatitis of type B infected person with a life prolonging medicine 

known as antiretroviral (ARV) drug or treatment (ART).  Recruitment into the treated class 

occur at a rate of 𝜆. Again, infected individuals are recruited into the removed class at a rate 

of 𝛾, while treated individuals also move to the removed class at a rate of 𝛿. At the same 

time, natural death occur at the different compartments. 
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Hence the flowchart of the SITR model underlying the given assumption is as shown below. 

 

 

   

 

 

 

 

 

 

Figure 1: Schematics of the susceptible –Infected-Treated-Removed (SITR) model 

The non-linear system of differential equations describing the model are given by  

𝑑𝑠

𝑑𝑡
= µ𝑁 − µ𝑆 − 𝛽

𝑆𝐼

𝑁
          (1)    

𝑑𝐼

𝑑𝑡
= 𝛽

𝑆𝐼

𝑁
− µ𝐼 − 𝛾𝐼 − 𝜆𝐼         (2) 

𝑑𝑇

𝑑𝑡
= 𝜆𝐼 − µ𝑇 − 𝛿𝑇          (3) 

𝑑𝑅

𝑑𝑡
= 𝛾𝐼 + 𝛿𝑇 − 𝜇𝑅          (4) 

where (0) = 𝑆0 ≥ 0 , 𝐼(0) = 𝐼0 ≥ 0 , , 𝑇(0) = 𝑇0 ≥ 0, , 𝑅(0) = 𝑅0 ≥ 0for every 𝑡 ≥ 0.  

 

 

The total population, 𝑁 for the model is given by 

 𝑁 = 𝑆 + 𝐼 + 𝑇 + 𝑅          (5) 

Dividing equation (5) by 𝑁 and substituting the fractional variables 𝑠 =
𝑆

𝑁
 , 𝑖 =

𝐼

𝑁
 ,  𝑧 =

𝑇

𝑁
 , 𝑟 =

𝑅

𝑁
  into equations (1-4) gives: 

 

𝑑𝑠

𝑑𝑡
= 𝜇 − 𝜇𝑠 − 𝛽𝑠𝑖          (6) 

𝑑𝑖

𝑑𝑡
= 𝛽𝑠𝑖 − 𝜇𝑖 − 𝛾𝑖 − 𝜆𝑖         (7) 

𝑑𝑧

𝑑𝑡
= 𝜆𝑖 − µ𝑧 − 𝛿𝑧          (8) 

𝑑𝑟

𝑑𝑡
= 𝛾𝑖 + 𝛿𝑧 − 𝜇𝑟          (9) 

 
S I T R 

𝛾𝐼 

𝜇𝑁 

𝜇𝑆 𝜇𝐼 𝜇𝑇 𝜇𝑅 

𝛽𝑆𝐼

𝑁
 𝞴I 𝛿𝑇 
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Since 𝑟 = 1 − 𝑠 − 𝑖 − 𝑧 , we can ignore equation (9) and the resulting reduced system 

becomes 

𝑑𝑠

𝑑𝑡
= 𝜇 − 𝜇𝑠 − 𝛽𝑠𝑖          (10) 

𝑑𝑖

𝑑𝑡
= 𝛽𝑠𝑖 − (𝜇 + 𝛾 + 𝜆)𝑖         (11) 

𝑑𝑧

𝑑𝑡
= 𝜆𝑖 − (𝜇 + 𝛿)𝑧          (12) 

2.1 Model Equilibria 

The derivatives   
𝑑𝑠

𝑑𝑡
 ,   

𝑑𝑖

𝑑𝑡
   and     

𝑑𝑧

𝑑𝑡
  of the equations (10-12) are set to zero and 

then solved to find the two equilibriums points. Hence the disease-free equilibrium (DFE) 

point of the model is 

 𝐸0 = (𝑆0,𝑖0, 𝑧0) = (1,0,0) and the endemic equilibrium point is  

𝐸1 = (𝑠
∗, 𝑖∗, 𝑧∗)=(

(𝜇+𝛾+𝜆)

𝛽
,
𝜇(𝜇+𝛾+𝜆)−𝛽𝜇

𝛽(𝜇+𝛾+𝜆)
, 𝜆 (

𝜇(𝜇+𝛾+𝜆)−𝛽𝜇

𝛽(𝜇+𝛿)(𝜇+𝛾+𝜆)
)). 

2.2 Basic Reproduction Ratio (𝑹𝟎) 

One question of importance in epidemiology is to estimates a threshold parameter that 

determines whether an invading infection into a susceptible population will spread or would 

be failure to spread. It is defined as new infections from a single infected person introduced 

into a population originally free of infection. According to Driessche and Diekmann ([1], [2], 

[15], [16]), the basic reproduction ratio can be defined as 

 

𝑅0 = 𝜌(𝐹𝑉
−1)          (13) 

 

where 𝜌 is defined as the spectral radius of the Next Generation Matrix  (𝐹𝑉−1), 𝐹 is the 

rate of invading of new infections in compartment 𝑖 and 𝑉 is the transfer of individuals out 

of compartment 𝑖 by death and recovery.  

 

 

When the DFE is determined, 𝑅0 is derived as the largest eigenvalue of the matrix of partial 

derivative 

[
𝜕ℱ𝑖(𝐸0)

𝜕𝑋𝑗
] [
𝜕𝒱𝑖(𝐸0)

𝜕𝑋𝑗
]
−1

.          (14) 

 

Furthermore, if the reproduction number 𝑅0 = 𝜌(𝐹𝑉
−1) is consistent with the differential 

equation model, then it should follow that the disease-free equilibrium is asymptotically stable 

if 𝑅0 < 1 and unstable if  𝑅0 > 1 . Hence the basic reproduction ratio could be seen as a 

‘‘pilot ’’ of disease spread in epidemiology. 

 

Applying the Next generation method to systems (10-12), we only need to consider the 
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infective differential equations 
𝑑𝑖

𝑑𝑡
 and 

𝑑𝑧

𝑑𝑡
. Thus  

𝑑𝑖

𝑑𝑡
= 𝛽𝑠𝑖 − (𝜇 + 𝛾 + 𝜆)𝑖         (15) 

𝑑𝑧

𝑑𝑡
= 𝜆𝑖 − (µ + 𝛿)𝑧          (16) 

Hence   ℱ = [
𝛽𝑠𝑖
0
]  and  𝒱 = [

(𝜇 + 𝛾 + 𝜆)𝑖
−𝜆𝑖 + (µ + 𝛿)𝑧

] .  

This implies    𝐹 = [

𝜕

𝜕𝑖
(𝛽𝑠𝑖)

𝜕

𝜕𝑧
(𝛽𝑠𝑖)

𝜕

𝜕𝑖
(0)

𝜕

𝜕𝑧
(0)

]  

𝐹 = [
𝛽𝑠 0
0 0

]  

Evaluating 𝐹 at the disease –free equilibrium 𝐸0  gives 

𝐹(𝐸0) = 𝐹(1,0,0) = [
𝛽 0
0 0

]  

Again, the matrix of transfer between compartments (V) becomes 

𝑉 = [

𝜕

𝜕𝑖
(µ + 𝛾 + 𝜆)𝑖

𝜕

𝜕𝑧
(µ + 𝛾 + 𝜆)𝑖

𝜕

𝜕𝑖
(−𝜆𝑖 + 𝑧(𝜇 + 𝛿))

𝜕

𝜕𝑧
(−𝜆𝑖 + 𝑧(𝜇 + 𝛿))

]  

 

𝑉 = [
(µ + 𝛾 + 𝜆) 0

−𝜆 (𝜇 + 𝛿)
]  

 

Evaluating 𝑉 at the disease –free equilibrium 𝐸0  gives 

𝑉(𝐸0) = 𝑉(1,0,0) = [
(µ + 𝛾 + 𝜆) 0

−𝜆 (𝜇 + 𝛿)
]  

𝑉−1 = [

1

(µ+𝛾+𝜆)
0

𝜆

(𝜇+𝛿)(µ+𝛾+𝜆)

1

(𝜇+𝛿)

]  

But from (14),  𝑅0 = 𝜌(𝐹𝑉
−1) , hence 

𝐹𝑉−1 = [
𝛽

(µ+𝛾+𝜆)
0

0 0
]  

Hence the spectral radius of the next generation matrix is  

𝑅0 =
𝛽

(µ+𝛾+𝜆)
           (17) 

 

3. Local stability of the Disease- free Equilibrium (DFE) 

The disease-free equilibrium has no presence of infection. Hence it follows that 𝐼 = 0 at this 

stage. The stability analysis of the disease-free equilibrium is investigated by using 

linearization approach. 
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Lemma 3 : If   𝑅0 < 1, then the disease–free equilibrium is locally asymptotically stable. 

The lemma is proved by the Hartman-Grobmann theorem ([17]).  

 

Proof:  The linearization of the system of equations of the model is given by 

𝐽 = [

−𝜇 − 𝛽𝑖 −𝛽𝑠 0

𝛽𝑖 𝛽𝑠 − (𝜇 + 𝛾 + 𝜆) 0

0 𝜆 −(𝜇 + 𝛿)
]  

 

Evaluating the Jacobian matrix at the disease–free equilibrium point 𝐸0 = (𝑆0,𝑖0, 𝑧0) =

(1,0,0)  gives 

𝐽(1,0,0) = [

−𝜇 −𝛽 0

0 𝛽 − (𝜇 + 𝛾 + 𝜆) 0

0 𝜆 −(𝜇 + 𝛿)
]  

 

Evidently, the eigenvalues of the disease-free equilibrium DFE are given by 

𝑃1 = −𝜇 , 𝑃2 = 𝛽 − (𝜇 + 𝛾 + 𝜆) , 𝑃3 = −(𝜇 + 𝛿).  

Clearly, the two eigenvalues  𝑃1 = −𝜇 and 𝑃3 = −(𝜇 + 𝛿) are negatives since 

𝜇, 𝛿 > 0. The disease-free equilibrium would then be stable if  

𝑃2 = 𝛽 − (𝜇 + 𝛾 + 𝜆) < 0, 

otherwise unstable.  If  𝑃2 < 0 then 

𝛽 − (𝜇 + 𝛾 + 𝜆) < 0          (18) 

⇒ 𝛽 < (𝜇 + 𝛾 + 𝜆)  

⇒ 
𝛽

(𝜇+𝛾+𝜆)
< 1 

Hence  𝑅𝑜 < 1. However, if  𝑅𝑜 < 1, it could be deduced that the inequality (18) holds and 

hence lemma 3 is proved. Imperatively, 𝑅𝑜 < 1 , corresponds to the stability of the 

disease-free equilibrium and hence suggests the failure of epidemic to develop. 

 

 

 3.1 Global stability of the Disease- free equilibrium (DFE) 

Lemma 3.1: The disease-free equilibrium 𝐸0 = (𝑆0,𝑖0, 𝑧0) = (1,0,0)  is globally 

asymptotically stable in 𝑅3 if  𝑅0 < 1. 

 

Proof:  We construct a Lyapunov function 𝐿(𝑠, 𝑖, 𝑧): 𝑅3 → 𝑅+ as  𝐿(𝑠, 𝑖, 𝑧) = 𝑣𝑖 for every 

𝑣 ≥ 0 for the disease-free equilibrium 𝐸0 = (𝑆0,𝑖0, 𝑧0) = (1,0,0)  . 

Differentiating 𝐿(𝑠, 𝑖, 𝑧) with respect to time gives   
𝑑𝐿

𝑑𝑡
(𝑠, 𝑖, 𝑧) = 𝑣

𝑑𝑖

𝑑𝑡
.  Substituting the 

equations (10-12) gives 

  
𝑑𝐿

𝑑𝑡
(𝑠, 𝑖, 𝑧) = 𝑣(𝛽𝑠𝑖 − (𝜇 + 𝛾 + 𝜆)𝑖) 
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         = 𝑣(𝛽𝑠 − (𝜇 + 𝛾 + 𝜆))𝑖  

               = 𝑣(𝛽 − (𝜇 + 𝛾 + 𝜆))𝑖   since  𝑠 = 1   at    𝑡0 

         = 𝑣(𝜇 + 𝛾 + 𝜆) (
𝛽

(𝜇+𝛾+𝜆)
− 1) 𝑖 

But  𝑅0 =
𝛽

(𝜇+𝛾+𝜆)
 , setting 𝑣 =

1

(𝜇+𝛾+𝜆)
  gives    

  
𝑑𝐿

𝑑𝑡
(𝑠, 𝑖, 𝑧) = (𝑅0 − 1)𝑖 ≤ 0         (19) 

From (19), when  𝑖 = 0, 
𝑑𝐿

𝑑𝑡
(𝑠, 𝑖, 𝑧) = 0 , substituting  𝑖 = 0 into equations (11)-(13) for 

𝑑𝑠

𝑑𝑡
 and 

𝑑𝑧

𝑑𝑡
 gives 𝑠 → 1  and 𝑧 → 0 as 𝑡 → ∞ . It follows that ([2], [5]), the maximum 

invariant set in {(𝑠, 𝑖, 𝑧) ∈ 𝜏|
𝑑𝐿

𝑑𝑡
(𝑠, 𝑖, 𝑧) ≤ 0)}  is the singleton set {𝐸0}. 

 

Hence, from LaSalle’s invariance principle (Lasalle,1976) , 𝐸0 = (𝑆0,𝑖0, 𝑧0) = (1,0,0)  is 

globally stable when 𝑅0 < 1. 

 

3.2 Local stability of the endemic equilibrium (EE) 

Lemma 3.2: If  𝑅0 > 1 , then the endemic equilibrium is locally asymptotically stable. 

Proof: The Jacobain matrix for the systems of equations is given by 

𝐽 = [

−𝜇 − 𝛽𝑖 −𝛽𝑠 0

𝛽𝑖 𝛽𝑠 − (𝜇 + 𝛾 + 𝜆) 0

0 𝜆 −(𝜇 + 𝛿)
]  

At the endemic equilibrium 𝐸1 = (𝑠
∗, 𝑖∗, 𝑧∗)=(

(𝜇+𝛾+𝜆)

𝛽
,
𝜇(𝜇+𝛾+𝜆)−𝛽𝜇

𝛽(𝜇+𝛾+𝜆)
, 𝜆 (

𝜇(𝜇+𝛾+𝜆)−𝛽𝜇

𝛽(𝜇+𝛿)(𝜇+𝛾+𝜆)
)). 

𝐽(𝑠∗, 𝑖∗, 𝑧∗) =

(

 
 
𝜇 −

𝛽(𝜇(𝜇+𝛾+𝜆)−𝛽𝜇))

𝛽(𝜇+𝛾+𝜆)

−𝛽(𝜇+𝛾+𝜆)

𝛽
0

𝛽(𝜇(𝜇+𝛾+𝜆)−𝛽𝜇))

𝛽(𝜇+𝛾+𝜆)

𝛽(𝜇+𝛾+𝜆)

𝛽
− (𝜇 + 𝛾 + 𝜆) 0

0 𝜆 −(𝜇 + 𝛿))

 
 

  

𝐽(𝑠∗, 𝑖∗, 𝑧∗) = (

𝑅0𝜇 (𝜇 + 𝛾 + 𝜆) 0
𝜇(1 − 𝑅0) 0 0

0 𝜆 −(𝜇 + 𝛿)
).  

Hence |𝐴 − 𝜆𝐼| = 𝑑𝑒𝑡 [

𝑅0𝜇 − 𝜆 (𝜇 + 𝛾 + 𝜆) 0
𝜇(1 − 𝑅0) −𝜆 0

0 𝜆 −(𝜇 + 𝛿) − 𝜆
].  

 

 

Hence the characteristic equation is therefore given by   

𝑎0𝜆
3 + 𝑎1𝜆

2 + 𝑎2𝜆 + 𝑎3 = 0         (20)  
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where  

𝑎0 = 1 ,  𝑎1 = ((𝜇 + 𝛿) − 𝑅0𝜇)) ,  

𝑎2 = ((𝜇(1 − 𝑅0)(𝜇 + 𝛾 + 𝜆) − 𝑅0𝜇(𝜇 + 𝛿))    and 

𝑎3 = 𝜇(𝜇 + 𝛿)(1 − 𝑅0)(𝜇 + 𝛾 + 𝜆) 

By Hurwitz criterion ([5], [6]), the necessary and sufficient conditions of the characteristic 

equation of the cubic polynomial (20) to have a negative real part is  

𝑎0 > 0, 𝑎1𝑎2 > 𝑎3 > 0.  Hence the endemic equilibrium is locally asymptotically stable if 

the conditions are satisfied, otherwise unstable. 

 

3.3 Global stability of the endemic equilibrium (EE) 

Lemma 3.3: If 𝑠 = 𝑠∗, 𝑖 = 𝑖∗ and 𝑧 = 𝑧∗, then the system (10-12) is said to be globally 

asymptotically stable if 𝑅0 > 1  and unstable when  𝑅0 < 1. 

Proof :  A Lyapunov function 

 𝐿(𝑠∗, 𝑖∗, 𝑧∗) = 𝑢1 (𝑠 − 𝑠
∗ − 𝑠∗ ln (

𝑠

𝑠∗
)) + 𝑢2 (𝑖 − 𝑖

∗ − 𝑖∗ ln (
𝑖

𝑖∗
)) + 

                              𝑢3 (𝑧 − 𝑧
∗ −  𝑧∗ ln (

𝑧

𝑧∗
)),      

for 𝑢1 > 0, 𝑢2 > 0 , 𝑢3 > 0 in 𝐿(𝑠∗, 𝑖∗, 𝑧∗): 𝑅3 → 𝑅+ is defined for the endemic 

equilibrium 

𝐸1 = (𝑠
∗, 𝑖∗, 𝑧∗)=(

(𝜇+𝛾+𝜆)

𝛽
,
𝜇(𝜇+𝛾+𝜆)−𝛽𝜇

𝛽(𝜇+𝛾+𝜆)
, 𝜆 (

𝜇(𝜇+𝛾+𝜆)−𝛽𝜇

𝛽(𝜇+𝛿)(𝜇+𝛾+𝜆)
)) 

By direct calculation, we obtained; 

𝑑𝐿

𝑑𝑡
= 𝑢1 (

𝑠−𝑠∗

𝑠
)
𝑑𝑠

𝑑𝑡
+ 𝑢2 (

𝑖−𝑖∗

𝑖
)
𝑑𝑖

𝑑𝑡
+ 𝑢3 (

𝑧−𝑧∗

𝑧
)
𝑑𝑧

𝑑𝑡
  

Hence   

𝑑𝐿

𝑑𝑡
= 𝑢1 (

𝑠−𝑠∗

𝑠
) (𝜇 − 𝜇𝑠 − 𝛽𝑠𝑖) + 𝑢2 (

𝑖−𝑖∗

𝑖
) (𝛽𝑠𝑖 − 𝑖(𝜇 + 𝛾 + 𝜆)) + 𝑢3 (

𝑧−𝑧∗

𝑧
) (𝜆𝑖 −

          𝑧(𝜇 + 𝛿))  

𝑑𝐿

𝑑𝑡
= 𝑢1 (

𝑠−𝑠∗

𝑠
) (𝜇 − 𝜇(𝑠 − 𝑠∗) − (𝛽)(𝑠 − 𝑠∗)(𝑖 − 𝑖∗)) + 𝑢2 (

𝑖−𝑖∗

𝑖
) (𝛽(𝑠 − 𝑠∗)(𝑖 − 𝑖∗) −

(𝑖 − 𝑖∗)(𝜇 + 𝛾 + 𝜆)) + 𝑢3 (
𝑧−𝑧∗

𝑧
) (𝜆(𝑖 − 𝑖∗) − (𝑧 − 𝑧∗)(𝜇 + 𝛿))  

This implies 

𝑑𝐿

𝑑𝑡
= 𝑢1 (𝜇 (

𝑠−𝑠∗

𝑠
) − 𝜇 (

(𝑠−𝑠∗)2

𝑠
) − 𝛽 (

(𝑠−𝑠∗)2

𝑠
) (𝑖 − 𝑖∗)) + 𝑢2 (𝛽(𝑠 − 𝑠

∗) (
(𝑖−𝑖∗)2

𝑖
) −

(
(𝑖−𝑖∗)2

𝑖
) (𝜇 + 𝛾 + 𝜆)) + 𝑢3 (𝜆 (

𝑧−𝑧∗

𝑧
) (𝑖 − 𝑖∗) − (

(𝑧−𝑧∗)2

𝑧
) (𝜇 + 𝛿))    (21) 
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Grouping the negatives and positive terms and setting 𝑢1 = 𝑢2 = 𝑢3 = 1 gives 

𝑑𝐿

𝑑𝑡
= 𝑇1 − 𝑇2  

where 

𝑇1 = 𝜇 + 𝛽𝑖 (
(𝑠−𝑠∗)2

𝑠
)
∗

+ 𝛽𝑠 (
(𝑖−𝑖∗)2

𝑖
) + 𝜆𝑖 +

𝜆𝑖∗𝑧∗

𝑧∗
  

𝑇2 =
𝜇𝑠∗

𝑠
+ 𝜇 (

(𝑠−𝑠∗)2

𝑠
) + 𝛽𝑖 (

(𝑠−𝑠∗)2

𝑠
) + 𝛽𝑠 (

(𝑖−𝑖∗)2

𝑖
) + (

(𝑖−𝑖∗)2

𝑖
) (𝜇 + 𝛾 + 𝜆) +

𝜆𝑖𝑧∗

𝑧
+ 𝜆𝑖∗ +

         (
(𝑧−𝑧∗)2

𝑧
) (𝜇 + 𝛿)  

It could be verified that   𝑇1 < 𝑇2.  This yields   
𝑑𝐿

𝑑𝑡
≤ 0 when 𝑇1 < 𝑇2. 

Hence, it could be deduced that 
𝑑𝐿

𝑑𝑡
= 0 if and only if 𝑠 = 𝑠∗, 𝑖 = 𝑖∗, 𝑧 = 𝑧∗. This implies 

that the largest compact invariant set {(𝑠∗, 𝑖∗, 𝑧∗)𝜖𝜏 ∶
𝑑𝐿

𝑑𝑡
= 0   } is a singleton  {𝐸1

∗}, where  

𝐸1
∗  is the endemic equilibrium. From ([2], [5] ,[6]) LaSalle’s invariant principle,  𝐸1

∗ is 

globally asymptotically stable in 𝜏 if  𝑇1 < 𝑇2. 

 

 

4. Numerical Simulations 

The system (10-12) is simulated for various sets of parameter values using Matlab, in order to 

comprehend the dynamic of the model. The simulated results display a significant rise in the 

infective class during the early stages of the epidemic, and slowly decreases before it maintain 

its equilibrium. To investigate the effect of treatment on the dynamics of the model, we 

simulated the model over a different set of values of the treatment rates. Our results indicate 

that an increase in the treatment rate has the effect of reducing the number of disease 

infections in the treated class. Hence, it has effect on the number of successive cases in a 

hepatitis B epidemic. 

 

 

http://www.iiste.org/


Mathematical Theory and Modeling                                                                                           www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.5, No.13, 2015 

 

129 

 

Figure 1  Solutions of the SIT model using the parameter values 𝛽 = 1.95 ,  𝛿 = 0.3 , 

   𝜆 = 0.1 , µ = 0.36 , 𝛾 = 0.26 

 

 

Figure 2 Disease infections in the treated class with a treatment rate 𝛿 = 0.001 
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Figure 3 Disease infections in the treated class with a treatment rate 𝛿 = 0.002 

 

 

 

Figure 4 Disease infections in the treated class with a treatment rate 𝛿 = 0.003 
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Figure 5 Disease infections in the treated class with a treatment rate 𝛿 = 0.004 

 

 

 

4.1  Conclusion 

As already mentioned, our primary purpose in this research was to formulate and study a 

mathematical model for hepatitis disease of type B in order to understand the epidemic 

phenomenon and suggests intervention strategies for the control for the epidemic in general. 

The local and the global qualitative analysis of both the disease-free and the endemic 

equilibrium were carried out. In regards to the basic reproduction ratio   

𝑅0 =
𝛽

(µ+𝛾+𝜆)
 , the analysis showed that when 𝑅0 < 1, the disease-free equilibrium is globally 

stable, and the endemic equilibrium is globally stable when  𝑅0 > 1.  

To understand the effect of treatment on the model, we simulated the model over different 

parameter values of the treatment rate. The results showed that increasing the treatment rate 

decreases the disease infection in the treated class as compared in figures 2, 3, 4 and 5. We 

conclude that treatment intervention strategy, though it leads to drug resistance, should be 

encouraged since it helps to reduce the proportion of the infected and prolongs the lives of all 

infected individuals.   
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