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Abstract 

In this paper an iterative method for finding a compatible solution to a class of singular 

second order differential equation of prescribed boundary values often observed common is 

considered by constructing a successive sequence of correction functional via variational 

theory. The analytical convergence of such iteratively generated sequential scheme is 

analyzed explicitly and duly discussed.  Interestingly, the proposed method when applied on, 

over hither to widely quote numerical problems turns out to be quite encouraging and renders 

appropriate solution. May sometimes by this method the limiting value of functional sequence 

happens to be an exact solution too. 
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Introduction 

 The comprehensive behavior and the spectrum of all basic qualities systematically associated 

and properly distributed over to a class of events, situations or any other sudden  precarious 

happening being observed on various fronts of  all  multidisciplinary sciences just like 

celestial bodies either internally or externally or both ways simultaneously may be  

completely realized or discerned and visualized abstractly by  modeling it mathematically into 

a class of singular second order boundary value problem .To ascertain the  inherent spectral 

characteristics in and around all thereof, a feasible and sustainable  coherent solution either 

numerically appropriate or analytically of exact form is must and equally important  to be 

worked out possible for such class accordingly by applying any consistent method of solution 

and after all applied so. The vital phenomenon of human physiology like tumor growth in a 

body, kinetics of oxygen uptake to name a few and many more phenomenons like transport 

processes and thermal explosions  span and represent to a class of singular boundary value 

problems[3-5] of type  

 (𝑥𝛼g(𝑥)𝑦/)/=𝑥𝛼g(𝑥)f(𝑥, 𝑦)        0< 𝑥 ≤ 1  ,   0 ≤ α  <  1                              (1.1) 

𝑦(0) =A   ,   𝑦(1) =B                                                                                         (1.11) 

                                                     or                                                                                                       

𝑦(0) =A   , a 𝑦(1) + b 𝑦/(1) =B                                                                      (1.12) 
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Where in (1.1) let   p (𝑥) =𝑥𝛼 g (𝑥), g (0) ≠0    ,      0≤ α < 1 and in (1.11), (1.12)       a > 0 , 

b≥ 0 

A, B are finite constants .The function f (𝑥, 𝑦) is a real valued continuous function of two 

variables 𝑥 𝑎𝑛𝑑 𝑦 such that (𝑥, 𝑦) ∈ ℝ × ℝ and that 
𝜕𝑓

𝜕𝑦
 is a nonnegative and continuous 

function in a domain R = {(𝑥, 𝑦) :(𝑥, 𝑦)∈[0 1]× ℝ}.The problem (1.1) is singular and x=0 is 

its singularity since real valued function p(x) =0 at x=o .The function p(x) further satisfies (i) 

p(x) >o ∀  x ∈(01], (ii) p(x)∈ 𝐶1 [01]. Solution to such class of problems exists [6-7 ] .The 

class of problems (1.1) form a specific area of the field of differential equation and hither to 

been a  matter of immense research and field of keen interest to learned authors. Several 

methods had had been applied on to   such important class of boundary value problems [8-13]. 

 Variation Iteration Method (VIM)   

 The variational iteration method, a modified Lagrange method [14] was originally proposed 

by He [15-17].It is a highly promising and profusely used method for solving problems of 

various manifolds in applied sciences as an optional method different from other existing 

methods of linearization, transformation and discretization. The proposed method has fared 

well and apply over a large class of mathematically modeled problems .Credit accrue to VIM 

for solving a class of distinguished and challenging problems like,  nonlinear coagulation 

problem with mass loss , an approximate solution for one dimensional weakly nonlinear 

oscillations, nonlinear thermo elasticity, cubic nonlinear Schrodinger equation,  nonlinear 

oscillators with discontinuities ,Burger’s and coupled Burger’s equation, multispecies Lotaka–

Volterra equations, rational solution of Toda lattice equation, Helmholtz equation, generalized 

KdV equation[18-29].The basic virtues and fundamentals associated to variation iteration 

method may be synthesized by considering a general differential equation in operator form as 

follows: 

D𝑦(𝑥) =g(𝑥),𝑥 ∈ Ι ⊆ ℝ,       D, being usual differential operator                       (2.1)                                                   

 The solution function 𝑦(𝑥) is sufficiently smooth on some domain Ω and g (𝑥) is an 

inhomogeneous real valued function. In order to start the generation of correction functional 

when L and N are linear and nonlinear differential operators respectively the relation (2.1) can 

be rewritten as 

L (𝑦(𝑥)) + N (𝑦(𝑥)) = g(𝑥)      𝑥 ∈ Ι ⊆ ℝ                                                                  (2.2) 

Exclusively, the variation iteration method has  natural error absorbing resilience and  

buoyancy with capability to generate a recursive sequence of correction functionals that  

really conserve power and merit potential in minimizing magnitude of processing error at 

every  iterative step extracting out a just and acceptable solution to the  given class of  

problems (1.1).The sequence of correctional functional for(2.2) is    

𝑦𝑛+1(𝑥) = 𝑦𝑛(𝑥) + ∫ 𝜆
𝑥

0
(𝑠) ((L (𝑦𝑛(𝑠)) +N (𝑦𝑛(𝑠)̃) – g (𝑠)) ds    , n≥0                   (2.3)  
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Where 𝜆 stands for Lagrange multiplier determined optimally satisfying all stationary 

conditions after the variational method is applied to (2.3). The resounding utility of method all 

over lies with the assumption and choice of considering the interrelated  inconvenient  highly 

nonlinear and complicated dependent variables as restricted variables thereby help minimizing 

the effort of simplification to the ensuing and evolving  solution process to the general 

problem(1.1).As aforementioned, 𝑦�̃�  is the restricted variation, which means  

𝛿𝑦�̃�=0.Eventually, after  𝜆 is determined , a proper and suitable selective function may it be a 

linear one or otherwise with respect to (2.2) is assumed as an initial approximation for finding 

next successive iterative function by recursive sequence of correction functionals. Thereafter 

boundary conditions are imposed on the final or preferably on limiting value (as 𝑛 → ∞) of 

sequential approximations incurred after due process of iteration that continued and proceeded 

on. Moreover, in VIM the selective function is arbitrary and has flexibility of self adjusting 

Insertion choice for initial input solution generating process .Therefore this very method is 

again beneficial in reducing the burden of cumbersome component calculation in the opted 

methodology. 

Variational Method and Lagrange Multiplier 

The variational method and Lagrange multiplier are convoluted corresponding to (1.1) by the 

iterative and successive correction functional relation as  

𝑦𝑛+1  (𝑥)   =  𝑦𝑛(𝑥) + ∫ 𝜆(𝑠)
𝑥

0
(𝑠𝛼𝑔(𝑠)𝑦𝑛

/
(𝑠))/ -𝑠𝛼𝑔(𝑠)�̃�(s, 𝑦𝑛(s))) ds        n≥0               (3.1) 

Where 𝑦𝑛(𝑥) is 𝑛𝑡ℎ approximated iterative solution of (1.1). suppose optimal value of 𝜇(s) is 

identified naturally by taking variation with respect to 𝑦𝑛(x) and subject to restricted variation 

𝛿𝑦�̃�(x) =0.Then consequently from (3.1) we have, 

𝛿𝑦𝑛+1(x) =𝛿𝑦𝑛(x) +𝛿 ∫ 𝜆
𝑥

0
(s)((𝑠𝛼𝑔(𝑠)𝑦𝑛

/
)/ -𝑠𝛼𝑔(𝑠)𝑓̃ (s, 𝑦𝑛(s)) ds       n≥0                        (3.2) 

Now integrating by parts and considering the restricted variation of 𝑦𝑛 (i.e. 𝛿𝑦𝑛=0) as well 

relation (3.2) simplifies to give, 

  𝛿𝑦𝑛(x) = (1- 𝜆/(𝑠)𝑠𝛼𝑔(𝑠)) 𝛿𝑦𝑛(x) + 𝛿(𝜆(s)𝑠𝛼𝑔(𝑠) 𝑦𝑛
/
(s)) |s=x + ∫ (𝜆/𝑥

0
(s) 𝑠𝛼𝑔(𝑠))/𝛿𝑦𝑛(𝑠)ds,    n ≥ 0  

Therefore, the stationary conditions are, 

1-𝜆/(𝑠) 𝑠𝛼g(s) = 0, 𝜆(𝑥) = 0,  (𝜆/(𝑠)𝑠𝛼g(s) )/= 0 and that implies together to give,                         

                              𝜆(s)= ∫
1

𝜁𝛼𝑔(𝜁)

𝑠

𝑥
𝑑𝜁                                                                                      (3.3)                          

Therefore, from (3.1) the sequence of correction functionals is given by 

𝑦𝑛+1(x)=𝑦𝑛(x) + ∫ (∫
1

𝑝(𝜁)

𝑠

𝑥

𝑥

0
𝑑𝜁) ((𝑠𝛼𝑔(𝑠)𝑦𝑛(𝑠))/-𝑠𝛼𝑔(𝑠)𝑓(𝑠, 𝑦𝑛

̃ (𝑠))𝑑𝑠       n≥0            (3.4) 
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Now it may be deduced from (3.4) that the limit of the convergent iterative sequence  
            
 {𝑦𝑛}

𝑛=1

∞
 if it converges on, satisfying given boundary conditions is the exact solution to 

(1.1). 

Convergence of Iterative Sequence 

At the outset, the convergence of the sequence of correctional functionals generated on by 

execution of VIM with respect to given class (1.1) in view of (3.1) may be established by 

observing and considering that 

               𝑦𝑛+1(𝑥) = 𝑦𝑛(𝑥) +∑ (𝑦𝑘+1
𝑛−1
𝑘=0 (𝑥) − 𝑦𝑘(x)) is the 𝑛𝑡ℎ partial sum of the      infinite     series 

          𝑦0 (x) +∑ (𝑦𝑘+1
∞
𝑘=0 (x)−𝑦𝑘(𝑥))                                                                            (4.1)                                              

And the convergence of infinite series (4.1) necessarily implies the convergence of iterative sequence 

  {𝑦𝑛(𝑥)}𝑛=1
∞  of partial   sums   of the series (4.1).Having considered so and p (𝑥) =𝑥𝜈 g (𝑥), where 

g(0) ≠0 and for every     𝛾𝜖[01) .Let 𝑦0(𝑥) is the assumed initial selective function for the solution 

process then the first successive functional iterate is given by 

𝑦1(x) =∫ 𝜆
𝑥

0
(𝑠)((𝑝(𝑠)𝑦0

/
(s) )/_𝑝(𝑠) 𝑓(𝑠, 𝑦0(s))) ds                                                       (4.2) 

                                                                            
Integrating by parts in sequel and applying the existing stationary conditions, we may deduce that, 

                    |𝑦1(x) − 𝑦0(x)|=|∫ (𝑦0
/𝑥

0
(s) +𝜆(𝑠)𝑝(𝑠)𝑓(𝑠, 𝑦0(𝑠))ds|                                   (4.3) 

 or               | 𝑦1(𝑥) − 𝑦0(𝑥)|=∫ |(𝑦0
/𝑥

0
 (s)|+|𝜆 (s) ||p(s) ||𝑓(𝑠, 𝑦0(𝑠) |ds                          (4.4) 

 Again pursuing on similar procedures as in (4.2) and adopting usual stationary conditions 

likewise, relation (3.4) imply that 

                     |𝑦2(𝑥) − 𝑦1(x)|=| ∫ 𝜆(𝑠)
𝑥

0
 𝑝(𝑠)(f(s), 𝑦1(s)) −f(s, 𝑦0(s)) ds|                        (4.5) 

or, |𝑦2(𝑥) − 𝑦1(x)|≤ ∫ |𝜆(𝑠)
𝑠

0
p(s) (f(s), 𝑦1(s)) −f(s,𝑦0(s))|ds                                                                                            

or,|𝑦2(𝑥) − 𝑦1 (x)|≤ ∫ |𝜆
𝑥

0
(s)|p(s)| (f(s), 𝑦1(s))− f(s, 𝑦0(s)) |ds                                       (4.6) 

And, above all 

               |𝑦𝑛+1(x) −𝑦𝑛(x)|= | ∫ 𝜆
𝑥

0
 (s) p(s) (f(s,𝑦𝑛(s))−f(s,𝑦𝑛−1(s)))ds                             (4.7)      

or,|𝑦𝑛+1(x) −𝑦𝑛(x)|≤ ∫ |𝜆
𝑥

0
(s) ||p(s)| (f(s, 𝑦𝑛(s)) −f(s,𝑦𝑛−1(s))) |ds     ∀    n   ≥2            (4.8) 

Now, since f(x, y) and 
𝜕𝑓(𝑥,𝑦)

𝜕𝑦
    are continuous on R, therefore for fix s𝜖 [0 1] and by virtue of 

mean value theorem ∃ (s,𝜃𝑛
0 (s))∈ 𝑅 satisfying (say, 𝑦𝑛−1(s) < 𝜃𝑛

0(𝑠) < 𝑦𝑛 (s)    ), 

∀𝑛 ∈ 𝐼𝑁  ,   s≤ 𝑥 ≤ 1 , such that 

|f(s, 𝑦𝑛(s)) −f(s, 𝑦𝑛−1(s))| = |
𝜕𝑓(𝑠,𝜃𝑛+1

0 (𝑠))

𝜕𝑦
||𝑦𝑛(s) −𝑦𝑛−1(s)|     ∀    n   ≥  2            (4.9) 

Now, suppose      𝑀∞
1  =sup (|𝑦0

/
(s) |+|𝜆(𝑠)||𝑝(𝑠|| 𝑓(𝑠, 𝑦0(s))|                              (4.10) 

S≤ 𝑥 ≤ 1 

and                              𝑀00
2 =sup (|𝜆(𝑠)||𝑝(𝑠)||

𝜕𝑓(𝑠,𝜃𝑛
0(𝑠))

𝜕𝑦
|)                                                        (4.11) 
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                                                                 s ≤ 𝑥 ≤ 1 ,n∈ 𝐼𝑁 

Again to start with assume M=sup (𝑀∞
1 ,𝑀∞

2 )                                                                (4.12)        

Now, again observe and proceed to establish the truthfulness of the inequality 

                      |𝑦𝑛+1(s) −𝑦𝑛(s)| ≤  
𝑀𝑛+1𝑥𝑛+1

𝑛+1!
                                ∀𝑛 ∈ 𝐼𝑁                     (4.13) 

Obviously, relations (4.4), (4.10), (4.9) and (4.12)   together imply that 

                     | 𝑦1(x)-𝑦0(x) | ≤ ∫ 𝑀1
𝑥

𝑜
 ds   ≤ ∫ 𝑀

𝑥

0
 ds     = M𝑥                                      (4.14) 

As well as,    |𝑦2(𝑥) − 𝑦1 (x)|≤ 𝑠𝑢𝑝|𝜆(s)||p(s)|| 
𝜕𝑓(𝑠,𝜃1

0(𝑠))

𝜕𝑦
|∫ |(𝑦1(  s)) − 𝑦0(s) )|

𝑥

0
ds  

                                                             s≤ 𝑥 ≤ 1 ,n∈ 𝐼𝑁                                                                          

 or,      |𝑦2(𝑥) − 𝑦1 (x)|≤ sup(|𝜆(𝑠)||𝑝(𝑠)||
𝜕𝑓(𝑠,𝜃1

0(𝑠))

𝜕𝑦
|  ∫ |(𝑦1(  s)) −  𝑦0(s) )|

x

0
ds   =M∫ 𝑀

𝑥

0
 ds 

                                                                            s≤ 𝑥 ≤ 1 ,n∈ 𝐼𝑁                                                          =
𝑀2𝑥2

2
 

Thus, the statement (4.13) is true for natural number n=1 

As usual, suppose that      |𝑦𝑛(s) −𝑦𝑛−1(s)| ≤  
𝑀𝑛𝑥𝑛

𝑛!
      holds    for    some,     𝑛 ∈ 𝐼𝑁 

Then, again relations (4.8), (4.9) and (4.12) altogether imply that     

                   |𝑦𝑛+1(𝑥) -  𝑦𝑛 (x) | ≤ ∫ | 𝜆(s)||p(s)|| 
𝑥

0
 (sup|

𝜕𝑓(𝑠,𝜃𝑛
0(𝑠))

𝜕𝑦
|)|𝑦𝑛(s) −𝑦𝑛−1(s) |ds 

                                                                                                      S≤ 𝑥 ≤ 1, 𝑛 ∈ 𝐼𝑁 

         or, |𝑦𝑛+1(x) −𝑦𝑛(x)| ≤  sup(|𝜆(𝑠)||𝑝(𝑠)| |
𝜕𝑓(𝑠,𝜃𝑛+1

0 (𝑠))

𝜕𝑦
| ∫ |𝑦𝑛

𝑥

0
(𝑠) − 𝑦𝑛−1(𝑠)|ds 

                                                          ≤ M∫  
𝑀𝑛𝑠𝑛

𝑛!

𝑥

0
ds=

𝑀𝑛+1𝑥𝑛+1

𝑛+1!
 

Therefore, by Principle of Induction 

|𝑦𝑛+1(𝑥) − 𝑦𝑛(𝑥) |≤   
𝑀𝑛+1𝑥𝑛+1

𝑛+1!
   holds    ∀𝑥𝜖 [0 1] 𝑎𝑛𝑑 ∀𝑛 ∈ 𝐼𝑁 

So the series (4.1) converges both absolutely and uniformly      for all         𝑥 ∈ [0 1] 

Since,|𝑦0(x)|+∑ |𝑦𝑛+1
∞
𝑛=0 (x) −𝑦𝑛(x)|≤ |𝑦0(x)|+∑

𝑀𝑛+1𝑥𝑛+1

𝑛+1!
∞
𝑛=0 =| 𝑦0(x)|+ (𝑒𝑀𝑥 −1)     

  ∀𝑥 ∈[01] 

Asserting that the series  𝑦0(𝑥) +∑ (𝑦𝑘+1
∞
𝑘=0 (x)−𝑦𝑘(𝑥))   converges uniformly ∀𝑥 ∈ [01] and 

hence the sequence of its partial sums  {𝑦𝑛(𝑥)}𝑛=0
∞  converges to a limit function as the 

solution.  
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Numerical Problems 

To begin with implementation and realization of scope of VIM we consider and apply this 

very method to find the solution of some linear and nonlinear problems often referred, 

discussed , and solved numerically and differently by methods like Cubic B-Spline, Adomian 

method and finite difference technique of solution  

Example -1: Consider the boundary value problem [11, 13] 

𝑦∕∕+  
𝑦∕

𝑥
+ 𝑦=4−9𝑥 + 𝑥2 − 𝑥3  , and 𝑦(0)=  𝑦(1) =0.                                                      (5.1)                                                                                                 

Solution:   Since inhomogeneous function in (5.1) is a polynomial of degree three having zero 

and one as its real roots, therefore the selective function may be taken as  

𝑦0(𝑥) = 𝑥(1 − 𝑥)(a+b𝑥) =a𝑥 + (b-a)𝑥2-b𝑥3                                                                    (5.2) 

The correction functional corresponding to (5.9) by VIM is given by  

𝑦𝑛+1(𝑥) = 𝑦𝑛(x) + ∫ 𝜆
𝑥

0
(𝑠) (-(𝑠𝑦𝑛

/
(𝑠))/-𝑦𝑛(𝑠)𝑠 +4𝑠-9𝑠2+𝑠3-𝑠4)ds                      n=0, 1, 2… 

  Therefore, first iterative approximant is 

𝑦1(𝑥) = 𝑦0(x) + ∫ 𝜆
𝑥

0
(𝑠) (-(𝑠𝑦0

/
(𝑠))/-𝑦0(𝑠)𝑠 +4𝑠-9𝑠2+𝑠3-𝑠4) ds                                   (5.3) 

                    Where 𝜆 (s) is the optimally identified Lagrange multiplier. 

Now, using (5.2) in (5.3) then after integral simplifications we get 

𝑦1(𝑥) = 𝑥2 −
(9+𝑎)

9
  𝑥3 + (a-b+1)

𝑥4

16
 + (b-1) 

𝑥5

25
                                                                (5.4) 

Clearly,   𝑦(0)=0   is self imposed on (5.12) and enforcement of next boundary condition 𝑦(1) 

=0 implies that a=0and b=1.That is how 𝑦1(𝑥) = 𝑥2 − 𝑥3 gives the exact solution to the 

problem improving over the results as obtained in [11, 13]. 

Example- 2: Consider the boundary value problem [12] 

         𝑦∕∕(x)+   
𝛼

𝑥
𝑦∕(x) = −𝑥1−𝛼 cos 𝑥 −(2−𝛼) x−α sin 𝑥   

𝑦(0) =0,𝑦(1) = cos 1                                                                                              (5.5)                                  

 Solution:   To solve (5.5) we construct correction functional as follows   

                     𝑦𝑛+1(𝑥) = 𝑦𝑛(𝑥) + ∫ 𝜆(𝑠)
𝑥

0
 ((−𝑠𝛼𝑦𝑛

/
(s))/ − 𝑠 cos 𝑠 – (2−𝛼) sin 𝑠) ds             n≥0 

                    Where   𝜆(s) Is optimally identified Lagrange multiplier similar to (3.3).  Then 

the first   iterative solution is given by 
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                   𝑦1(𝑥) = 𝑦𝑜(𝑥)   +   ∫ 𝜆(𝑠)
𝑥

0
 ((−𝑠𝛼𝑦0

/
(s))/ − 𝑠 cos 𝑠 – (2−𝛼) sin 𝑠) ds              

 Since the selective function  𝑦0 (x) is arbitrary for simplicity and easiness in process of 

calculation we may require to choose  𝑦0 (x) =   𝑎0   𝑥1−𝛼 , so that (−𝑠𝛼 𝑦0
/
)/ ) = 0 to yield  

                                𝑦1(x)=  𝑎0𝑥1−𝛼+∫ 𝜆(𝑠)
𝑥

0
(−𝑠 cos 𝑠 –(2−𝛼) sin 𝑠)ds                                                                 

Now term by term series integration and required intermediary simplifications it again yields, 

        𝑦1 (x) =   𝑎0  𝑥1−𝛼 −[ ∑ (−1)𝑛∞
0   

𝑥2𝑛+3

(2𝑛+3−𝛼)(2𝑛+1)!
 + (1−𝛼) ∑ (−1)𝑛+1∞

𝑛=1  
𝑥2𝑛+1−𝛼

(2𝑛+1−𝛼)(2𝑛)!
]                        

or,    𝑦1 (x) =   𝑎0  𝑥1−𝛼   +    𝑥1−𝛼  ∑ (−1)𝑛∞
𝑛=1

𝑥2𝑛

(2𝑛)!
                                                                                              

or,    𝑦1 (x) =   𝑎0  𝑥1−𝛼   +    𝑥1−𝛼  ∑ (−1)𝑛∞
𝑛=0

𝑥2𝑛

(2𝑛)!
  −  𝑥1−𝛼  

 or,             𝑦1 (x) ==   (𝑎0 − 1)  𝑥1−𝛼  +  𝑥1−𝛼   cos 𝑥                                                                  (5.6) 

 In order to match the boundary condition, 𝑦(1) = cos 1 taking limit as (𝑥 → 1) we find that      

 𝑎0 = 1  , i.e. only the first iterate giving the exact solution as 𝑦(𝑥)= 𝑦1 (x) = 𝑥1−𝛼   cos 𝑥 

Example-3: Consider the boundary   value problem [11, 12, 30]        

                      (𝑥𝛼𝑦/)/ = 𝛽𝑥𝛼+𝛽−2 ((𝛼 + 𝛽 − 1) + 𝛽𝑥𝛽) y 

Y (0) =1   ,    y (1) =exp (1)                                                                               (5.7) 

Solution   : The correction functional for the problem (5.7) is 

𝑦𝑛+1(x) =𝑦𝑛(x) +∫ 𝜆(𝑠)
𝑥

0
((𝑠𝛼𝑦𝑛

/
)/ − 𝛽 (𝛼 + 𝛽 − 1)𝑠𝛼+𝛽−2 − 𝛽2𝑠𝛼+𝛽−2) 𝑦𝑛(s)  ds                  (5.8) 

𝜆(s) Is optimally identified Lagrange multiplier similar as in (3.2) 

Inserting, 𝑦(0) =𝑦0(x) =1 to (5.8) when n=1, as selective initial approximation function we 

process out following induced successive iterative approximate solutions as  

         𝑦1(x) = 1+𝑥𝛽+𝛽
𝑥2𝛽

2(𝛼+𝛽−1)
 

         𝑦2(x) = 1+𝑥𝛽+  
𝑥2𝛽

2.1
 + 𝛽

𝑥3𝛽

3(𝛼+3𝛽−1)
 

         𝑦3(x) = 1+𝑥𝛽+
𝑥2𝛽

2.1
+ 

𝑥3𝛽

3.2.1
+ 𝛽

𝑥4𝛽

4.2(𝛼+4𝛽−1)
 

          𝑦4(x) = 1+𝑥𝛽+
𝑥2𝛽

2.1
+ 

𝑥3𝛽

3.2.1
+ 

𝑥4𝛽

4.3.2.1
 + 𝛽

𝑥5𝛽

5.3.2(𝛼+5𝛽−1)
 

          𝑦5(x) = 1+𝑥𝛽+
𝑥2𝛽

2.1
+ 

𝑥3𝛽

3.2.1
+ 

𝑥4𝛽

4.3.2.1
 +

𝑥5𝛽

5.4.3.2.1
 + 𝛽

𝑥6𝛽

6.4.3.2(𝛼+6𝛽−1)
 

Similarly, continuing in like manner inductively we may find the general term of the sequence 

         𝑦𝑛(x) = 1+𝑥𝛽+
𝑥2𝛽

2.1
+ 

𝑥3𝛽

3.2.1
+ 

𝑥4𝛽

4.3.2.1
 +

𝑥5𝛽

5.4.3.2.1
 + 

𝑥6𝛽

6.5.4.3.2.1
  +………… + 

𝑥𝑛𝛽

𝑛!
 + 

𝑛𝛽𝑥(𝑛+1)𝛽

𝑛+1!(𝛼+(𝑛+1)𝛽−1)
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i.e.    𝑦𝑛(x)   =   ∑
𝑥𝑘𝛽

𝑘!

𝑛 
𝑘=0    +   

𝑛𝛽𝑥(𝑛+1)𝛽

𝑛+1!(𝛼+(𝑛+1)𝛽−1)
                                                                 (5.9) 

Now, we observe that 𝑇𝑛 =  
𝑛𝛽𝑥(𝑛+1)𝛽

𝑛+1!(𝛼+(𝑛+1)𝛽−1)
   (say), is the general term of a convergent 

Series    ∑
𝑛𝛽𝑥(𝑛+1)𝛽

𝑛+1!(𝛼+(𝑛+1)𝛽−1)
∞
𝑛=0    . Therefore,   lim (n→ ∞)   

𝑛𝛽𝑥(𝑛+1)𝛽

𝑛+1!(𝛼+(𝑛+1)𝛽−1)
 = 0 and (5.9) 

facilitates the exact solution to (5.7) as y(x) =lim (n→ ∞)( ∑
𝑥𝑘𝛽

𝑘!

𝑛 
𝑘=0  ) =exp (𝑥𝛽 ). 

Example-4: Let the boundary value problem [8] be                  

 (𝑥𝛼𝑦/)/ =
𝛽𝑥𝛼

4+𝑥𝛽(𝛽𝑥𝛽𝑒𝑦 − (𝛼 + 𝛽 − 1)) 

𝑦  (0) =ln 
1

4
   ,  𝑦(1) = ln 

1

5
                                                                                            (5.10) 

Solution: Let, 𝑦0= 𝑦(0) = ln  
1

4
  , be the selective initial approximation function .Then by 

VIM, 

First iterative approximate solution to (5.10) simplifies to 

             𝑦1(x) = ln 
1

4
 + ∫

𝜆(𝑠)

4+𝑥𝛽

𝑥

0
(

𝛽2𝑠𝛼+2𝛽−2

4
− (𝛼+𝛽 − 1) 𝛽𝛼𝑠𝛼+𝛽−2)ds                          (5.11) 

Whereas 𝜆(𝑠)𝑖𝑠 optimally identified Lagrange multiplier as in (3.3) and after simplifying 

(5.11) the required first approximate solution to (5.10) satisfying the given boundary 

condition 𝑦(0) = ln  
1

4
   is the following, 

          𝑦1(x) =ln
 1

4
−

𝑥𝛽

4
+

1

2
(

𝑥𝛽

4
)2+∑ (

𝛼+2𝛽−1

𝛼+𝑛𝛽−1
∞
𝑛=3 ) (

(−1)𝑛

𝑛
) (

𝑥𝛽

4
)𝑛                                    (5.12) 

Now, we observe in (5.12) that the first three terms of the first approximate iterative solution 

of (5.10) match the first three terms of the expanded Taylor’s series  of exact solution even 

without imposition of right-side boundary condition so for. However, the way 𝑦(1)  =  ln 
1

5
    

could match (5.12) if every term of the sequence{( 
𝛼+2𝛽−1

𝛼+𝑛𝛽−1
)  }𝑛=3

∞  reduces to  the sequence 

{1}𝑛=3
∞  . this may be done by allowing the arbitrarily parameter  𝛽 to approach zero explicitly 

and independently  only in the coefficient (
𝛼+2𝛽−1

𝛼+𝑛𝛽−1
) 𝑜𝑓  (

(−1)𝑛

𝑛
) (

𝑥𝛽

4
)𝑛 .Therefore, allowing the 

process to do shoot and satisfy the right boundary condition so that the first iterate mends its 

way to improvise  and produce finally an exact solution to (5.10) given by                              

𝑦(𝑥) = 𝑦1(𝑥) = ln 
1

4
  −

𝑥𝛽

4
+

1

2
(

𝑥𝛽

4
)2 )𝑛 +∑ (

(−1)𝑛

𝑛
)(

𝑥𝛽

4
)𝑛∞

𝑛=3  =ln
1

4+𝑥𝛽 

Example-5: Consider the boundary value problem [30] 
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( 𝑥𝛼(1 + 𝑥2)𝑦∕)/  = 5(1 + 𝑥2) 𝑥𝛼+3(5𝑥5 + (𝛼+4) +
2𝑥2

  1+𝑥2)                                          (5.13) 

                  𝑦(0)=1         𝑦(1) = exp (1)                              

Solution:  The correction functional corresponding to (5.9) by VIM is given by  

       𝑦𝑛+1(𝑥) = 𝑦𝑛(x) + ∫ 𝜆
𝑥

0
(𝑠) (-(𝑠𝛼(1 + 𝑠2)𝑦𝑛

/
(𝑠))/ +5(1+𝑠2)𝑠𝛼+3(5𝑠5 +(𝛼+4)+

2𝑠2

  1+𝑠2)ds    ,      n=0, 

1, 2… 

  Where 𝜆 (s) is the optimally identified Lagrange multiplier. Therefore, for n=1 we have  

       𝑦1(𝑥) = 𝑦0(x) + ∫ 𝜆
𝑥

0
(𝑠) (-(𝑠𝛼(1 + 𝑠2)𝑦0

/
(𝑠))/ +5(1+𝑠2)𝑠𝛼+3(5𝑠5 +(𝛼+4)+

2𝑠2

  1+𝑠2)ds                  

(5.14) 

    Let us suppose initially the selective function be    𝑦01= 1, then the first approximant is     

𝑦1(x)=1+𝑥5+
5

2(𝛼+11)
𝑥10+

25

(𝛼+9)(𝛼+11)
[𝑙𝑛(1+𝑥2)−𝑥2+ 

𝑥4

2
−

𝑥6

3
+

𝑥8

4
]=1+𝑥5+25∫ (

𝑠9

(𝛼+9)

𝑥

0
+

𝑠11

(𝛼+11)
)

1

(1+𝑠2ds 

Now, assuming the arbitrariness of selective function, with a motive to avoid over do 

simplifications we may revise selective function as    𝑦02= 1+𝑥5 then the solution approximant 

by correctional functional is 

        𝑦2(x)=1+𝑥5+
𝑥10

2
+

25

2
∫ (

𝑠14

(𝛼+14)

𝑥

0
+

𝑠16

(𝛼+16)
 )

1

(1+𝑠2)
ds  

If again we revise the selective function as  𝑦03= 1+𝑥5+
𝑥10

2
then the next approximate solution 

is  

         𝑦3(x)= 1+𝑥5+
𝑥10

2
 +

𝑥15

3.2
 +

25

3.2
∫ (

𝑠19

(𝛼+19)

𝑥

0
+

𝑠21

(𝛼+21)
 )

1

(1+𝑠2)
ds                                                           

Thus repeated internal revision in selective function at 𝑛𝑡ℎ stage by like manner must produce 

the 𝑛𝑡ℎ Successive approximate solution to (5.13) as  

𝑦𝑛(x)=  ∑
𝑥5𝑛

𝑛!

𝑛
0    +

1

𝑛!
∫ (

𝑠5𝑛+4

(5𝑛+𝛼+4)

𝑥

0
 +

𝑠5𝑛+6

(5𝑛+𝛼+6)
) 

1

(1+𝑠2)
ds                                                  (5.15) 

Let   𝕀𝑛 =
1

𝑛!
∫ (

𝑠5𝑛+4

(5𝑛+𝛼+4)

𝑥

0
 +

𝑠5𝑛+6

(5𝑛+𝛼+6)
) 

1

(1+𝑠2)
ds    

  | 𝕀𝑛| = |
1

𝑛!
∫ (

𝑠5𝑛+4

(5𝑛+𝛼+4)

𝑥

0
 +

𝑠5𝑛+6

(5𝑛+𝛼+6)
)  

1

(1+𝑠2)
ds |≤   

2

𝑛!(5𝑛+𝛼+4)
   (→ 0 as n→ ∞) 

Henceforth,| 𝑦𝑛(x) - ∑
𝑥5𝑛

𝑛!

𝑛
0 | → 0 as n→ ∞)  
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1. Thus we find that     𝑦(𝑥) =lim (n→ ∞) 𝑦𝑛(x) = ∑
𝑥5𝑛

𝑛!
∞
0 =exp (𝑥5) an exact solution to 

(5.13) Conclusion      

 

This is to mention that He’s variation iteration method successfully applies to a linear as well 

as to a nonlinear class of boundary value problems of type (1.1) with convergent iterative 

scheme of solution. The proposed method provides an exact solution or any other solution of 

high accuracy to some of the frontier examples available in literature by exploiting (i) 

arbitrariness of selective function (ii) internal improvisation of selective function and 

sometime (iii) a careful and maneuvered imposition of boundary condition on iterative 

approximant solution.  
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