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Abstract: In this paper, Inverse Weibull Distribution is considered. The classical Maximum 

likelihood estimator has been obtained. Bayesian method of estimation has been employed in 
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1.   Introduction 

The Weibull distribution is a very popular distribution named after Waloddi Weibull, a 

Swedish physicist. He applied this distribution in 1939 to analyze the breaking strength of 

materials. Since then, it has been widely used for analyzing lifetime data in reliability 

engineering. Many examples can be found among the aerospace, electronics, materials, and 

automotive industries. It can  also  be  used  as  an  alternative  to Gamma  and  Log–normal  

distribution  in  reliability  engineering  and  life  testing. Some recent generalizations of 

Weibull distribution including the extended Weibull, modified Weibull are discussed in Pham 

et al. (2007). Zhang and Xie (2011) studied the characteristics and application of the truncated 

Weibull distribution which has a bathtub shaped hazard function. 

The pdf of Weibull distribution can be increasing or decreasing or unimodel depending on the 

shape of the distribution parameters. Due to the flexibility of the Weibull pdf, the Inverse 

Weibull distribution (IWD) has been extensively employed in situations where the monotone 

data set is available. Furthermore, if the empirical studies indicate that the Weibull pdf might 

be unimodel, then the IWD may be appropriate model. In this paper classical and Bayesian 

method of estimation of (IWD) has been discussed.  

If the random variable 0y  has the Weibull Distribution with the following pdf 

                            0,;0)exp(),;( 1     yyyyf  

Then the random variable 
y

x
1

 has Inverse Weibull Distribution with the pdf of the form 

                           0,;0)exp(),;(
1
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Where 0  and are 0  the scale and the shape parameters respectively.  

                        Graphical representation of pdf Inverse Weibull Distribution 

 

2.   Materials and Methods:  

There are two main philosophical approaches to statistics. The first is called the classical 

approach which was founded by Prof. R. A. Fisher in a series of fundamental papers round 

about 1930.  

The alternative approach is the Bayesian approach which was first discovered by Reverend 

Thomas Bayes. In this approach, parameters are treated as random variables and data is 

treated fixed. An important pre-requisite in this approach is the appropriate choice of prior(s) 

for the parameters. Very often, priors are chosen according to ones subjective knowledge and 

beliefs. Recently this approach has received great attention by most researchers. Rahul et al. 

(2009) have discussed the application of Bayesian methods. The other integral part of 

Bayesian inference is the choice of loss function. Various authors have used symmetric and 

asymmetric loss functions (for details see; see Varian (1975), Zellner (1986) and S.P. Ahmad 

and Kaisar Ahmad (2013) and Kaisar et al. (2015 a, b)) etc. 

Theorem 2.1:- Let ),...,,( 21 nxxx  be a random sample of size n having pdf (1.1), then the 

maximum likelihood estimator of scale parameter , when the shape parameter  is known, 

is given by 
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Proof: - The likelihood function of the pdf (1.1) is given by 
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1:The pdf's of Inverse Weibull distribution under various values of alpha and beta
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The log likelihood function is given by
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Differentiating (2.1.2) w.r.t. to and equate to zero, we get
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                                                               (2.1.3) 

2.2 Loss functions used in this paper: 

(i) Linex Loss function: 

For obtaining the Bayesian estimate of scale parameter 𝛼 we use a very useful asymmetric 

linex loss function given by 

                                1)exp()(   ccL  , where )ˆ(                                

Where   and ̂  represent the true and estimated values of the parameter. 

(ii) Precautionary Loss function:  The precautionary loss function (For details, see Norstrom 

(1996)) is given by   
              

                                  
 

 





ˆ

ˆ
,ˆ
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prl       

Where   and ̂  represent the true and estimated values of the parameter.                                                                  
                   

  
                                                                                                 

  

(iii) Al-Bayyati’s loss function: 

The Al-Bayyati’s loss function is given by               

                                   .;ˆ,ˆ
1

2
1 Rcl

c

A                                    

which is an asymmetric loss function,  and̂  represents the true and estimated values of the 

parameter.  

 

3. Bayesian Method of Estimation:                                                                             

3.1 Posterior density under Jeffreys’ prior: 

Let ),,,( 21 nxxx   be a random sample of size n having the probability density function (1.1) 

and 

the likelihood function (2.1.1).
                          

Jeffrey’s (1946) non-informative prior for  is of the form
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))(det()(  Ig   

Where  is k-vector valued parameter and )(I  is the Fisher’s information matrix of order

.kk   

Thus 
                                  


k

g )(
                                                        (3.1.1)

 

where k is a constant. 

The posterior distribution of   is given by 

                                     )()|(|1  gxLx                                             (3.1.2) 

Using (2.1.1) and (3.1.1) in (3.1.2), we get 
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               Using the value of k in (3.1.3) 
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3.2 Posterior density under Quasi prior: 

Let ),,,( 21 nxxx   be a random sample of size n having the pdf (1.1) and the likelihood 

function (2.1.1).
                         

 

We consider the prior distribution of  to be 

                                 
0,

1
)(  dwhereg

d



                                  (3.2.1) 

The posterior distribution of   is given by 

                            )()|(|2  gxLx                                                      (3.2.2) 

                                                                                    

Using (2.1.1) and (3.2.1) in (3.2.2), we get 
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Where k is independent of  . 
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By using the value of k in (3.2.3), we get 
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 4. Bayesian estimation by using Jeffreys’ prior under different Loss Functions:       

Theorem 4.1:- Assuming the loss function   ,ˆ
lnL , the Bayes estimate of the scale 

parameter , if the shape parameter  is known, is of the form 
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Proof: - The risk function of the estimator under the linex loss function   ,ˆ
lnL  is given 

by the formula  

                               dxccR |1)ˆ())ˆ(exp(ˆ
1
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Using (3.1.4) in (4.1.1), we have 
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On solving (4.1.2), we have 
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Minimization of the risk with respect to ̂   gives us the optimal estimator 
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Theorem 4.2:- Assuming the loss function   ,ˆ
prL , the Bayes estimate of the scale 

parameter  , if the shape parameter  is known, is of the form 
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Proof: - The risk function of the estimator under precautionary loss function   ,ˆ
prL  is 

given by the formula  
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Using (3.1.4) in (4.2.1), we have 
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On solving (4.2.3), we have 
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Minimization of the risk with respect to ̂   gives us the optimal estimator
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Theorem 4.3:- Assuming the loss function   ,ˆ
AlL , the Bayes estimate of the scale 

parameter  , if the shape parameter  is known, is of the form 
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Proof: - The risk function of the estimator under Al-Bayyati’s loss function   ,ˆ
AlL  is 

given by the formula  

                                   dxR
c
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                                     (4.3.1) 

Using (3.1.4) in (4.3.1), we have 

                           










d
n

ex

R

n

i

ix
n

n

i

i
n

c

















































 


1

1 1

1

0

2ˆˆ                (4.3.2) 

On solving (4.3.2), we have 

                        
1

1

1

2

1

1

1

1
2

111

)1(ˆ2)2()(ˆ
ˆ































































c

n

i

i

c
n

i

i

c
n

i

i xn

cn

xn

cn

xn

cn
R






 

Minimization of the risk with respect to ̂   gives us the optimal estimator
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Table 4a: Estimates using Jeffreys’ prior under different loss functions 

n     
ML  ln  pr  Al  

C1=0.5 C1=1 

25 0.5 1.0 0.05435046 0.05224848 0.07686316 0.08152569 0.1087009 

1.0 1.5 0.0004761753 0.0004760053 0.0006734136 0.000714263 0.0009523506 

50 0.5 1.0 0.02772421 0.02716323 0.03920795 0.04158631 0.05544841 

1.0 1.5 8.461315e-05 8.460778e-05 0.0001196611 0.0001269197 0.0001692263 

100 0.5 1.0 0.01400142 0.01385642 0.019801 0.02100213 0.02800284 

1.0 1.5 1.498501e-05 1.498484e-05 2.1192e-05 2.247751e-05 2.997001e-05 

        

                  Table 4b: MSE using Jeffrey’s prior under different loss functions  

         ML=Maximum Likelihood, ln=Linex loss function, Pr=Precautionary loss function, Al= Al-Bayyati’s loss function 

n     
 ML  ln  pr  Al  

C1=0.5 C1=1 

25 0.5 1.0 0.3281245 0.3248216 0.303385 0.2994609 0.2774552 

1.0 1.5 1.06243 1.059895 1.0595 1.059418 1.058943 

50 0.5 1.0 0.2752069 0.2746938 0.2634485 0.2612623 0.2487453 

1.0 1.5 1.017244 1.016896 1.016826 1.016811 1.016727 

100 0.5 1.0 0.2883312 0.2819536 0.2762091 0.275057 0.2683994 

1.0 1.5 1.01055 1.010444 1.010431 1.010429 1.010414 
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5. Bayesian estimation by using Quasi prior under different Loss Functions:       

Theorem 5.1:- Assuming the loss function   ,ˆ
lnL , the Bayes estimate of the scale 

parameter , if the shape parameter  is known, is of the form 
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Proof: - The risk function of the estimator under the linex loss function   ,ˆ
lnL  is given 

by the formula  
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Using (3.1.4) in (4.1.1), we have 
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On solving (5.1.2), we have 
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Minimization of the risk with respect to ̂   gives us the optimal estimator 
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Remark: Replacing d=1 in (5.1.3), the same Bayes estimator is obtained as in (4.1.3) 

corresponding to the Jeffrey’s prior. 

Theorem 5.2:- Assuming the loss function   ,ˆ
prL , the Bayes estimate of the scale 

parameter , if the shape parameter  is known, is of the form 
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Proof: - The risk function of the estimator under precautionary loss function   ,ˆ
prL  is 

given by the formula  
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Using (3.2.4) in (5.2.1), we have 
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On solving (5.2.2), we have 
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Minimization of the risk with respect to ̂   gives us the optimal estimator
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Remark: Replacing d=1 in (5.2.3), the same Bayes estimator is obtained as in (4.2.3) 

corresponding to the Jeffrey’s prior. 

Theorem 5.3:- Assuming the loss function   ,ˆ
AlL , the Bayes estimate of the scale 

parameter  , if the shape parameter  is known, is of the form 
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Proof: - The risk function of the estimator under Al-Bayyati’s loss function   ,ˆ
AlL  is 

given by the formula  
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Using (3.2.4) in (5.3.1), we have 
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On solving (5.3.2), we have 
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Minimization of the risk with respect to ̂   gives us the optimal estimator
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Remark: Replacing d=1 in (5.3.3), the same Bayes estimator is obtained as in (4.3.3) 

corresponding to the Jeffrey’s prior. 

 

Table 5a: Estimates using Quasi prior under different loss functions 

n     d 

                   

ML  ln  pr  
Al  

C1=0.5 C1=1.0 

25 

0.5 1.0 

0.5 

1.5 

0.002953972 0.004421171 0.005720343 0.005907945 0.007384931 

0.002953972 0.001473724 0.002558215 0.002953972 0.004430958 

1.0 1.5 
0.5 

1.5 

1.039083e-05 1.558613e-05 2.012176e-05 2.078166e-05 2.597708e-05 

1.039083e-05 5.195376e-06 8.998724e-06 1.039083e-05 1.558625e-05 

50 

0.5 1.0 
0.5 

1.5 

0.0007686316 0.001152283 0.001488449 0.001537263 0.001921579 

0.0007686316 0.0003840944 0.0006656544 0.0007686316 0.001152947 

1.0 1.5 
0.5 

1.5 

7.783175e-07 1.167476e-06 1.507205e-06 1.556635e-06 1.945794e-06 

7.783175e-07 3.891585e-07 6.740428e-07 7.783175e-07 1.167476e-06 

100 

0.5 1.0 
0.5 

1.5 

0.0001960397 0.0002940164 0.0003796293 0.0003920795 0.0004900993 

0.0001960397 9.800546e-05 0.0001697754 0.0001960397 0.0002940596 

1.0 1.5 
0.5 

1.5 

5.800767e-08 8.701151e-08 1.123314e-07 1.160153e-07 1.450192e-07 

5.800767e-08 2.900384e-08 5.023612e-08 5.800767e-08 8.701151e-08 
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Table 5b: MSE using Quasi prior under different loss functions 

n     d ML  ln  pr  
Al  

C1=0.5 C1=1.0 

25 

0.5 1.0 

0.5 

1.5 

0.3739854 0.372529 0.371243 0.3710576 0.3696002 

0.3688046 0.3702782 0.3691981 0.3688046 0.3673385 

1.0 1.5 
0.5 

1.5 

1.062093 1.062083 1.062074 1.062072 1.062062 

1.059558 1.059568 1.059561 1.059558 1.059548 

50 

0.5 1.0 
0.5 

1.5 

0.3008728 0.3004899 0.3001546 0.3001059 0.2997229 

0.2998295 0.3002136 0.2999324 0.2998295 0.299446 

1.0 1.5 
0.5 

1.5 

1.017238 1.017237 1.017236 1.017236 1.017235 

1.016889 1.01689 1.01689 1.016889 1.016889 

100 

0.5 1.0 
0.5 

1.5 

0.3013518 0.3012538 0.3011683 0.3011558 0.3010579 

0.2883791 0.2884771 0.2884053 0.2883791 0.2882811 

1.0 1.5 
0.5 

1.5 

1.010527 1.010527 1.010526 1.010526 1.010526 

1.010421 1.010421 1.010421 1.010421 1.010421 

               ML=Maximum Likelihood, ln=Linex loss function, Pr=Precautionary loss function, Al= Al-Bayyati’s loss 

function 

 

6. Results and Discussion:- 

We primarily studied the Classical Maximum Likelihood estimation and Bayesian estimation 

for Inverse Weibull Distribution using Jeffreys’ and Quasi priors under three different loss 

functions.  

For descriptive manner, we generate different random samples of size 25,50 and 100 to 

represent small, medium and large data set for the Inverse Weibull Distribution in R Software, 

a simulation study was carried out 3,000 times  for each pairs of   ,  where  0.1,5.0  

and  5.1,0.1 .The values of extension were (d=0.5, 1.5). The value for the loss parameter 

(C1 =0.5 and 1.0).This was iterated 2000 times and the estimates of scale parameter for each 

method were calculated. The results are presented in tables (4a, 4b, 5a and 5b) respectively. 

In table 4b, Bayes estimate using Jeffrey’s prior under Al-Bayyati’s Loss function provides 

the smallest values in most cases as compared to other loss functions and classical maximum 

likelihood estimator especially when loss parameter C1 is 1.0. 

In table 5b, Bayes estimate using Quasi prior under Al-Bayyati’s Loss function provides the 

smallest values in most cases as compared to other loss functions and classical maximum 

likelihood estimator especially when loss parameter C1 is 1.0. 

 

7. Conclusion:- 

From the above  results, we observe that Bayes estimate under Al-Bayyati’s Loss function has 

the smallest Mean Squared Error (MSE) values for both prior’s (Jeffrey’s and Quasi prior) as 

compared to other loss functions and classical maximum likelihood estimator especially when 
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loss parameter C1 is 1. Thus we can conclude that Bayes estimate under Al-Bayyati’s Loss 

function is efficient.   
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