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Abstract

In this paper we use Modified form of Adomian’s Decomposition Method Laplace, which is a mixture of
Laplace transforms and Adomian’s Decomposition Method called the Laplace Decomposition Method (LDM) to
solve the system of ordinary differential equation of the first order and an ordinary differential equation of any
order by converting it into a system of differential equation of order one. Some examples are presented to show
the ability of the method for linear and non-linear systems of differential equations also present the comparison
of their solution with the exact solution through graphically.
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1. Introduction

Adomian’s Decomposition Method was introduced by Adomian in [1, 2] and used heavily in the literature to
solve the wide class of natural and engineering problems [3-9]. Adomian’s Decomposition Method has been
applied to a vast wide variety of problems in Physics, Biology and Chemical reactions. This method was applied
to Non-linear differential equation [10], Non-linear Dynamic system [11], The Heat equation [12, 13], The Wave
equation [14] Coupled Non-Linear Partial differential equation [15, 16] Linear and Non-linear Integro-
differential equation [17] and Airy’s equation [18] successfully.

Laplace Adomian’s Decomposition Method (LADM) was first introduced by Suheil A. Khuri [19, 20], and has
been successfully used to find the solution of differential equations [21-26]. The Laplace Adomian’s
Decomposition Method is a combination of ADM and Laplace Transforms. This Method is successfully used to
find the exact solution of the Bratu and Duffing equation in [27, 28]. The Significant advantage of this method is
its capability of combining the two powerful methods to obtain exact solution for non-linear equation.

2. The System of Differential Equation

Consider the system of ordinary differential equations of the first order as follow [29]:

Vi =0: (X Y1s Yar o V)
; = X1 H k) o .1
ve- 9z (%, Y1 ¥arr s ¥a) "
Yo =00 (X Y0 Yarr s Vo),
Where each represents the derivative of first order of one of the unknown functions as a mapping depending on

the independent variable x, and n unknown functions J;,0,,**,{, . Since every ordinary differential equations

of n order can be written as a system consisting of n ordinary differential equation of order one, we restrict our
study to a system of differential equation of the first order.

3. Analysis of Adomian’s Decomposition Method

Consider the differential equation in the general form [30],

Ly(x)+Ry(x)+Ny(x)=f(x), @)
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where L is the linear operator of the highest-order derivative which is assume to be invertible easily, R is also a
linear operator of order less than L, and N y (x) indicate the non-linear term and f is the source term. Thus

applying the inverse operator L_l y to Eq. (2) on both sides, we get
y(x)=g, + L7 ( (x)-Ry (x)-N y(x)), ©

where {; , is the solution of the homogeneous equation,

Ly(x)=0. %)

The constants of integration involved in the solution of homogeneous Eq. (4) are to be determined by the initial
conditions, according to the problem, whether it is initial value problem or boundary value problem. According
to ADM, the solution of the unknown function y(x), can be expressed by an infinite series of the form

y(><)=ni0 Yo (X). (5)

and the non-linear term can be decomposed by the infinite series of the form
Ny(x)=> A, . (6)
n=0

and AnS y are called Adomian’s Polynomials, which can be determined by the algorithm defined in [31, 32].

By substituting Eq. (5) and (6) into (3),

S 000,017 160 Sy, (- 3a |

n=0
where the components Yq ;Y15 Y5 ..., are determined by the recursive relation.

Yo=0o:
)
Y =~ L (R Yk )_ L (Ak )’ k=0.
Hence the series solution from Eq. (4) can be obtained immediately.
4. Analysis of Laplace Decomposition Method (LDM)
We represent the system (1) by using the ith equation as [33]:

D[y, J=0: (0¥, ¥4y, 1=1,2,3, ®

where D is the linear differential operator. Appling Laplace Transform on both sides on Eg. (8), we get

L[yi]%yi (0)+§L[gi(X,yl,yz,---,yn)], i=1,2,3,---,n ©)

where L is a Laplace operator,

according to Adomian’s Decomposition Method, the solution of Eq. (9) will be the some of the series:
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yi:Zgi,j’ (10)
j=0

and the non-linear terms can be written as the sum of the following series:
gi (X’ Yoo yn):ZAi,j (gi,o 19i1 i )1 11)
j=0

where A,j (gilo,gi,l,---,gi,j), are called Adomian’s polynomials. Which can be determined by the
algorithm described in [31, 32].

Now, substituting Eq. (10), Eq. (11) in Eq. (9), we get

< 1 1 .
L Zgi,j ZEYi (0)+g|—[Ai,j (gi,o 1Gi1 ""1gi,j)]’ 1=1,2,3,---,n (12)
i=0
taking the inverse Laplace Transform of Eq. (12), then we write its recurrence relations as:

0.0-1[1y.0)]

gi,n+1:L_l‘:%L[Ai,n (gi,o Gige gi,n)]:l; n>0, (13)

Hence the series solution from Eq. (10) can be obtained immediately.
5. Numerical Applications

Example 5.1 Consider the following system of three differential equations of first order,

Y1 =Y3—COSX, (14)
Y=Y, —€", (15)
yé =Y1—Y,, (16)

subjected to the initial conditions,

v.©0)=1, v,0)-0, ¥;(0)=2.
Appling Laplace Transform on Eq. (14), (15) and (16), we get

1 1 1
L[yl]_g_sz +1+g|-[y3]’ (17)
1 1 1
L =————+ZL
[YZ] s S—l+S [ys]’ (18)
L[y3]=§+% LIy, —v,]. (19)

According Adomian’s Decomposition method, the solution of Eq. (17), (18) and (19) is
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x):iyi’j (x), 1=1,2,3. (20)
=0

Then, Eq. (17), (18), (19), becomes

2 1
L Zyl,j( {Zyu } (1)
| i=0 j=0

ss+1s

- 1
L ZY2,J‘( U |:ZY3J } (22)
L =0 j=0

ssls

{5y, 002 S 0-Sy, 0)]. -

Taking inverse Laplace transforms of Eq. (21), (22) and (23), we get

AT ﬁ . iJ L{% {z Ve, (x)ﬂ,
% Y, (x)=L" %—SL_J +L {% L[g Vs, (x)ﬂ,

]2 y,  (x)=L" % } fL E LL: ¥o.; (%)= ,i; Yai (x)ﬂ.

Its recurrence relation can be written as,

[ a1
Yo (0)=L" _%—Si J, Vye1 (X)=L 1[; LY., (X)ﬂ, n0 (24)
T SRl } n>0
yz,o (X) L _S S—l] y2,n+1 (X) _S [ys,n (X)] (25)
4|2 _
y3,0 (X): L ' [g:li y3,n+1 (X): L ’ L[yl n y2 n ( )]:| nZO (26)

Thus, from Eq. (24), (25) and (26) we get
V1o (X)=1-sinx,
Y20 (X):l_ex ,

Y30 (X)=2

for n=0, Eq. (24), (25) and (26) gives
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ST

Vi1 (X)= LlE Ly (X)]} =2x,

Yoa (X): L _% L[ys,o (X)ﬂ =2X,

Y31 (X): L™ _% L[yl,O (X)_ Y20 (X)ﬂ =cosx+e" -2,

for n=1, Eq. (24), (25) and (26) becomes

Yo, (X)= L‘1E L[ysy1 (x)ﬂ =sinx+e* —2x-1,
Yy, (X)=L" E L[y&1 (x)ﬂ:sin X+eX—2x-1,

Yo, (X)=L" E L[yl'1 (X)=¥s, (x)]} -0

Now by putting all values in Eq. (20), we get the result
Yi =e’,
y, =sinx,

Y, =C0S X+e*

Which the same result as obtained by ADM in [29].

Example 5.2 Consider the non-linear system of differential equations,

dy

dxl: v, @7)
dy,

_:e ’ 28
dx Y (28)
dy

d_x3:y2+y31 (29)

subjected to the initial conditions,

Y1 (0)21! Y2 (0):1- Ys (O):O
Its exact solutions are as follows, Y, =%, y, =€*, and y, =xe*,

Appling Laplace Transform on Eq. (27), (28) and (29), we get
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Ly =200 20y, (30)
L[y,]= yzs( += L[e v.) (31)
L[ye,]=YST(0)+%L[y2 +vs]. (32)

According Adomian’s Decomposition method, the solution of Eq. (30), (31) and (32) is

x):iyi’j (x), 1=1,2,3. (33)
i—0

. 2 . .
And non-linear term Y, (X) can be written as the sum of the series,
2 00
Vo ()= 2 A (), (34)
j=0

where, Az,j 'S, are called Adomian’s Polynomials, which can be determined by the algorithm defined in [31,
32].

Then, Eq. (30), (31) and (32), becomes

L Zyu(X)} %), ZL{iAz (X)} (35)

LZyz, } y,(0)

S

| =

L{e‘x io Vi, (x)} , (36)

(72}

L Zy31 x)} ¥%:(0),1 L{Zyzj(x iys, J.(x)}. (37)

Taking inverse Laplace transforms of Eq. (35), (36) and (37), we get

Zyl, {yls(o)} L 1{%{% A, (X)ﬂ’ (39)

j=0

3.0 L[y—@)}Lf {e-xiyl,jwﬂ, o

S

Z v, ( { Ya (O)} ALt {% L{i Y, (X)+ i Vi, (x)} } (40)

S

Its recurrence relation can be written as,

Yoo (x)=L" {le(O)} Yina=L" { § L[i A, , (x)ﬂ n>0, (41)
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Ly, (0)] Y A -
Yoo (X):L ' ZS( ) ) Yona=L EL e Xzyl,n (X) , N0, (42)

n=0

Va0 (X)=L" y3s(o)_ , Yana=L" & L{ZO Yo (X)+n2 Vs (X
Thus, from Eq. (41), (42) and (43) we get

Yio (X)=L

Va0 (0)=1,

Y0 (X)=0,

for n=0, Eq. (41), (42) and (43) gives

Y=L % LA, (X)ﬂ=2x,

Y, =L % L[e’X Yio (x)ﬂzl—eX ,

o= F o (00 (]|

for n=1, Eq. (41), (42) and (43) gives

12= L %L[AZl (X)]}=—4+4X+4e‘x ’

Y,,=L" % L[e‘X Yis (x)ﬂ:Z—Ze‘2X —2xe™*,

2

L[t N
Y3,2=L{gL[yzvl(x)+y3’l(x)]}:—1+e +X+X?,

for n=2, Eq. (41), (42) and (43) gives

Y13 =L{§L[A2,2 (x)]}=—15+10x+12ex +3e " +8xe7",

Yo3= L {% L[e_x Y12 (X)]:|=2—2€_2X —4xe™,
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2 X3

Yaa=L" E L[yz,z (X)+Ys, (x)]}: —2+42xe +2xe "+ X

Approximations to the solutions with the five terms are as follows:
y; (X)~4(26 x+31)e ™ +(-4x? ~6x+15)e > ~3.11111e > +58.6666 X 134,888
Y, (X)=—4(8x-7)e™* -8(2x+5)e * +0.111111(12x+13)e~** +11.5555,

¥, (X)=(12x+3) ™ +(2x+7.5)e > —0.111111e > +0.0083333x° + x* +4.6666 x—10.3888,

This is same as obtain by ADM in [29].

Some numerical values of these solution are presented in Table 1.

X, v (%) ey,(x)  v.(x) ey, (x)  vi(x) ey, (x)
0 1.00008 0 1 0 0 0

0.1 1.22132 1.6535E-5 1.10516 2.9323E-6 0.110517 0

0.2 1.49186 5.3375E-5 1.22139 1.1211E-5 0.244275 0

0.3 1.82161 5.9740E-4 1.34974 1.1407E-4 0.404906 5.1165E-5
0.4 2.22249 3.1315E-3 1.49125 5.7298E-4 0.594560 2.7328E-4
0.5 2.70702 1.1341E-2 1.64676 1.9591E-3 0.823372 9.8853E-4
0.6 3.28813 3.2068E-2 1.81686 5.2497E-3 1.090460 2.8076E-3
0.7 3.97860 7.6660E-2 2.00184 1.1909E-2 1.402860 6.7609E-3
0.8 4.79050 6.6253E-1 2.20161 2.3929E-2 1.766030 1.1440E-2
0.9 5.73528 3.1445E-1 2.41576 4.3841E-2 2.185680 2.7962E-2

Table 1: Numerical values of the solutions of problem 2

Graphical solutions are presented as:

Fig. 1: Comparison of exact and
approximate solution of y,

131


http://www.iiste.org/

Mathematical Theory and Modeling www.iiste.org
ISSN 2224-5804 (Paper) ISSN 2225-0522 (Online) JJH.i.l
Vol 5, No.12, 2015 NIS'E

22

20 [

16 -

14

WO
00 0.2 04 06 08

Fig. 2: Comparison of exact and
approximate solution of y,

Fig. 3: Comparison of exact and
approximate solution of y,,
Example 5.3: Consider a non-linear ordinary difterential equation ot order 3,

3
¢y 1,4y

: 44
dx* x~ dx (44)

subjected to the boundary conditions,
y(0)=0, y'(0)=1, y"(0)=2,
and the exact solution is Y (X)Z xe* ,

Considering three functions, y, (x)=y(x), y, (x)=y’(x), and Y3 (X): y' (X), we convert Eq.
(44) in the system of non-linear of three differential equation of order one, i.e.

yi ()=y, (), (45)

Y5 ()= (), (46)
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, 1
Y3 (X)Z; Y1 (X)"' Y3 (X)’ (47)
Appling Laplace Transform on Eq. (45), (46) and (47), we get
1 1
L [y1 (X)]: g A (O)“Lg L [yz (X)]’ (48)
1 1
L [yz (X)]: g Y, (0)+g L [Y3 (X)]’ (49)
1 111
Llya ()= < v2 0+ L{; y: (x)+ yz}, (50)
According Adomian’s Decomposition method, the solution of Eq. (48), (49) and (50) is
yi (X)=>"y;; (x), i=1,2,3. (51)
j=0
Then, the recurrence relation of Eq. (48), (49) and (50), can be written as,
4|1
yl,o (X): L . ‘:g yl (O)} ‘ Yin+1 :% L [yz,n (X)]’ (52)
L[l 1
Voo (K)=L7| Y2 0)), Vanea= 5 LlYsn (0] (53)
L1 L1 1
Vao (0)=L7] < Vs (0)}, Ya 1=k 1[;{; Vi (X)+ yz,nﬂ. (54)

Therefore,

Y10 (X):O’
Y20 (X):li
Y30 (X):27

Let yr=y1,o+y1,1+y1,2 +-+-+Y,, is a notation for an approximation to the solution with p+1 term.

Therefore, some computed approximations are as follows:

2
Sox| 1exa 2|,
o)

2 3
y*=x Tex+ X |,
2 12

y®=x 1+X+X—Z+X—3+X—4
2 6 60)
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6 x> x> 7xt X
V=X I+ X —+—+—+— |,
2 6 180 360

Hence, we get the exact solution i.e. y(x): xe* ,

This solution same as obtain by ADM in [29].

Conclusion

We conclude that, Laplace Decomposition Method is a reliable and a powerful tool to solve the system

of ordinary differential equations. It is demonstrated that, this modified form of Adomian’s Decomposition
Method has the ability of solving system of both linear and non-linear differential equations.
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