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Abstract 

Interior Point algorithms are optimization methods developed over the last three decades following the 1984 

fundamental paper of Karmarkar. Over this period, IPM algorithms have had a profound impact on optimization 

theory as well as practice and have been successfully applied to many problems of business, engineering and 

science. Because of their operational simplicity and wide applicability, IPM algorithms are now playing an 

increasingly important role in computational optimization and operations research. This article provides unified 

interior point algorithms to optimization problems as well as comparing performances with classical algorithms.  
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1. Introduction 

In 1984, Karmarkar [5] inspired the new era of mathematical programming with the publication of his landmark 

paper that sparked the research on polynomial interior point methods. In brief, while the simplex method goes 

along the edges of the polyhedron corresponding to the feasible region, interior point methods pass through the 

interior of this polyhedron [2]. A major attraction of these interior point methods is that its application is not 

limited to the linear optimization problem alone but has found applications in other areas of large scale 

optimization problems in systems and control theory [12]. They are much easier to derive, motivate, and 

understand than they at first appear, Marsten et al (1990), Lesaja (2009), Gondzio and Grothey (2004).  

Lagrange told us how to convert a minimization with equality constraints into an unconstrained minimization; 

Fiacco and McCormick (1968) told us how to convert a minimization with inequality constraints into a sequence 

of unconstrained minimizations, and Newton told us how to solve unconstrained minimizations [7]. 

Consequently, subject to minor modifications, the same linear algebra kernel may be used to implement interior 

point methods for all three classes of optimization problems [4, 7]. Hence, interior point methods provide a 

unified framework for optimization algorithms for Linear, Quadratic and Nonlinear programming and are the 

right way to solve large linear programs. 

The theoretical foundation for interior point methods consists of three crucial building blocks Marsten et al 

(1990). First is the Newton’s [8] method for solving nonlinear equations which is applicable to the solution of 

unconstrained optimization. Second, Lagrange’s method for transforming optimization with equality constraints 

into an unconstrained problem leading to a system of (n+m) equations in (n+m) variables. Thirdly, Fiacco and 

McCormick’s [3] barrier method for optimization with inequality constraints which are converted to equations 

by adding nonnegative slack (or surplus) variables; so that the only essential inequalities are the non-negativity 

conditions; ≥ 0 .  

Adapting the use of the above three building blocks, it is shown in [4, 7, 9] how to construct the primal-dual 

interior point method, which is considered the most elegant theoretically of the many variants of the interior 

point techniques and also the most successful computationally.  The main idea of interior point methods is 

essentially to change the constrained problem into a succession of unconstrained problems using a logarithmic 

barrier penalty function, which was initially introduced by Fiacco and McCormick [11]. 

 

This paper is divided into six sections. In sections 2, 3 and 4 we discuss the unified interior point approach to the 

solution of the linear, quadratic and general nonlinear programming problems, while in section 5, we compare 

the KKT requirements for optimality with the unified form of interior point methods and section 6 gives a 

conclusion of the study. 

 

2. Linear Programming 

Armed with Newton’s method for unconstrained minimization and the Lagrangian and barrier methods for 

converting constrained problems into unconstrained ones, we take a fresh look at linear programming and its 

relatives. 

We consider the primal-dual pair of linear programming problem 

http://www.iiste.org/


Mathematical Theory and Modeling                                                                                                                                                  www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.5, No.12, 2015 

 

48 

                                                                   (P)            minimize         cTx 

                                                                              subject to         Ax = b,   (1) 

       x ≥ 0 

 where A ∈ ℛm×n is the full rank matrix of linear constraints and vectors x, c and b have appropriate dimensions.  

     (D) maximize  bTy 

      subject to ATy +z = c  (2) 

z ≥ 0 

The equations can be handled by Lagrange’s method and the nonnegativity conditions by Fiacco and 

McCormick’s barrier method and the resulting unconstrained functions can be optimized by Newton’s method 

[7]. 

The usual transformation in interior point methods consists in replacing inequality constraints with the 

logarithmic barrier and then form the Lagrangian [3, 4, 7] to get 

     min   cTx − μ ∑ ln xj
n
j=1    

                                                                         s.t.         Ax = b,     (3) 

where  μ ≥ 0 is a barrier parameter. The Lagrangian associated with the primal problem has the form 

                                              L(x, y, μ) = cTx − yT(Ax − b) − μ ∑ ln xj
n
j=1     (4) 

and the conditions for a stationary point given by 

                                                            

∇xL(x, y, μ) = c − ATy − μX−1e = 0 

                                                           ∇yL(x, y, μ) =                     Ax − b = 0,   (5) 

 

where X−1 = diag{x1
−1, x2

−1, … . , xn
−1}.  

Having denoted                                                                            

                                   s = μX−1e,       i.e.            XSe = μe, 

where S = diag{s1, s2 … , sn} and e = (1,1 … ,1)T, the first order optimality conditions (for the barrier problem) 

are:                                                    

        Ax = b,     

                                                                      ATy + s = c, 

                                                                             XSe = μe                (6)                                                                                                                                                  

      (x, s) ≥ 0.                          

Interior point algorithm for linear programming [9] applies Newton method to solve this system of nonlinear 

equations and gradually reduces the barrier parameter μ to guarantee the convergence to the optimal solution of 

the original problem. The Newton direction is obtained by solving the system of linear equations: 

  

                                                                   [
𝐴 0 0
0 𝐴𝑇 𝐼
𝑆 0 𝑋

] [
∆𝑥
∆𝑦
∆𝑠

] = [

𝜉𝑝

𝜉𝑑

𝜉𝜇

],         (7)                                                  

where 

                                               𝜉𝑝 = 𝑏 − 𝐴𝑥,       𝜉𝑑 = 𝐴𝑇𝑦 − 𝑠,        𝜉𝜇 = 𝜇𝑒 − 𝑋𝑆𝑒. 

By elimination of 

                                                        ∆𝑠 = 𝐴−1(𝜉𝜇 − 𝑆∆𝑥) = −𝑋−1𝑆∆𝑥 + 𝑋−1𝜉𝜇 , 

from equation (7) we get the symmetric indefinite augmented system of linear equations 

                                                                 [
− ⊝𝑝

−1 𝐴𝑇

𝐴 0
] [

∆𝑥
∆𝑦

] = [
𝜉𝑑 − 𝑋−1𝜉𝜇

𝜉𝑝
].   (8) 

where  ⊖𝑝= 𝑋𝑆−1 is a diagonal scaling matrix. By eliminating ∆𝑥 from equation (6) we can reduce (8) further 

to the form of normal equations 

                                                                      (𝐴 ⊖𝑝 𝐴𝑇) △ 𝑦 = 𝒃𝐿𝑃. 

3. Quadratic Programming 

Following the presentation in [4] we consider the convex quadratic programming problem 

                                                                  min  𝑐𝑇𝑥 +
1

2
𝑥𝑇𝑄𝑥 

                                                                    s.t.       𝐴𝑥 = 𝑏,      (9) 

                                                                                  𝑥 ≥ 0, 

whe𝑟𝑒  𝐴 ∈ ℛ𝑛×𝑛 is positive semidefinite matrix, 𝐴 ∈ ℛ𝑚×𝑛 is the full matrix of linear constraints and vectors 

𝑥, and 𝑏 have appropriate dimensions. The inequality constraints are again replaced with the logarithmic barriers 
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𝑚𝑖𝑛   𝑐𝑇𝑥 +
1

2
𝑥𝑇𝑄𝑥 − ∑ 𝑙𝑛 𝑥𝑗

𝑛

𝑗=1

 

                                                                s.t.                    𝐴𝑥 = 𝑏,                                                             (10) 

 

where  𝜇 ≥ 0 is a barrier parameter and the associated 𝐿agrangian has the form: 

                                                            

                                         𝐿(𝑥, 𝑦, 𝜇) = 𝑐𝑇𝑥 +
1

2
𝑥𝑇𝑄𝑥 − 𝑦𝑇(𝐴𝑥 − 𝑏) − 𝜇 ∑ 𝑙𝑛 𝑥𝑗

𝑛
𝑗=1 ,    (11) 

The conditions for a stationary point [3], are as usual 

    

𝛻𝑥𝐿(𝑥, 𝑦, 𝜇) = 𝑐 − 𝐴T𝑦 − 𝜇𝑋−1𝑒 + 𝑄𝑥 = 0 

                                                           𝛻𝑦𝐿(𝑥, 𝑦, 𝜇) =                     𝐴𝑥 − 𝑏 = 0.                                    (12) 

 

With the usual notation for diagonal matrices:  𝑋−1 = 𝑑𝑖𝑎𝑔{𝑥1
−1, 𝑥2

−1, … . , 𝑥𝑛
−1} and  𝑆 = 𝑑𝑖𝑎𝑔{𝑠1, 𝑠2 … , 𝑠𝑛}, the 

first order optimality conditions (for the barrier problem) are: 

                                                                     𝐴𝑥            = 𝑏, 

                                                            𝐴𝑇𝑦 + 𝑠 − 𝑄𝑥 = 𝑐, 

                                                                              𝑋𝑆𝑒 = 𝜇𝑒                       (13)                                                                   

                                                                          (𝑥, 𝑠) ≥ 0.  

Interior point algorithm for quadratic programming [3, 9] applies 𝑁ewton method to solve this system of 

nonlinear equations and gradually reduces the barrier parameter 𝜇 to guarantee the convergence to the optimal 

solution of the original problem. The Newton direction is obtained by solving the system of linear equations:    

                                                            [
𝐴 0 0
0 𝐴𝑇 𝐼
𝑆 0 𝑋

] [
∆𝑥
∆𝑦
∆𝑠

] = [

𝜉𝑝

𝜉𝑑

𝜉𝜇

],                          (14)                                                 

where 

                                                       𝜉𝑝 = 𝑏 − 𝐴𝑥,       𝜉𝑑 = 𝐴𝑇𝑦 − 𝑠 + 𝑄𝑥,        𝜉𝜇 = 𝜇𝑒 − 𝑋𝑆𝑒. 

By elimination of 

                                                        ∆𝑠 = 𝐴−1(𝜉𝜇 − 𝑆∆𝑥) = −𝑋−1𝑆∆𝑥 + 𝑋−1𝜉𝜇 , 

from equation (14) we get the symmetric indefinite augmented system of linear equations  

                                                              [
−𝑄 −⊝𝑝

−1 𝐴𝑇

𝐴 0
] [

∆𝑥
∆𝑦

] = [
𝜉𝑑 − 𝑋−1𝜉𝜇

𝜉𝑝
].         (15)                                   

where  ⊖𝑝= 𝑋𝑆−1 is a diagonal scaling matrix. By eliminating ∆𝑥 from the first equation we could reduce (15) 

further to the form of normal equations 

                                                                                 (𝐴(𝑄 +⊝𝑃
−1)−1𝐴𝑇) △ 𝑦 = 𝒃𝑄𝑃 .  (16) 

                                         

Nonlinear Programming 

We begin by considering the convex optimization problem 

                                                                         min         𝑓(𝑥) 

                                                                       s.t.         𝑔(𝑥) ≤ 0,    (17) 

where 𝑥 ∈ ℛ𝑛, 𝑓: ℛ𝑛 ↦ ℛ and g : ℛ𝑛 ↦ ℛ𝑚 are convex, twice differentiable. Replacing the inequality 

constraints with an equality g(𝑥) + 𝑧 = 0, where 𝑧 ∈ ℛ𝑚 is a nonnegative slack variable, we can formulate the 

associated barrier problem 

                                                                               

𝑚𝑖𝑛   𝑓(𝑥) − 𝜇 ∑ 𝑙𝑛 𝑧𝑗

𝑛

𝑗=1

 

                                                                          s.t.         𝑔(𝑥) + 𝑧 = 0.    (18) 

and obtain the 𝐿agrangian as 

                                                       

                      𝐿(𝑥, 𝑦, 𝑧, 𝜇) = 𝑓(𝑥) + 𝑦𝑇(𝑔(𝑥) + 𝑧 − 𝜇 ∑ 𝑙𝑛 𝑥𝑗.
𝑚
𝑖=1     (19) 

The condition for a stationary point given by 

                                                              L(𝑥, 𝑦, 𝜇) = 𝑐 − 𝐴𝑇𝑦 − 𝜇𝑋−1𝑒 = 0 
                                                              𝛻𝑦𝐿(𝑥, 𝑦, 𝑧, 𝜇) =                𝑔(𝑥) + 𝑧 = 0  (20) 

                                                             𝛻𝑧𝐿(𝑥, 𝑦, 𝑧, 𝜇) =                𝑦 − 𝜇𝑍−1𝑒 = 0,  

𝑤ℎ𝑒𝑟𝑒 𝑍−1 = 𝑑𝑖𝑎𝑔{𝑧1
−1, 𝑧2

−1, … . , 𝑧𝑚
−1}. The first order optimality conditions (for the barrier problem) have the 

form 
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                                                                              𝛻𝑥𝑓(𝑥) + 𝛻𝑔(𝑥)𝑇𝑦 = 0, 

                                                                               g(𝑥) + 𝑧                  = 0, 

                                                                               𝑌𝑍𝑒  =               = 𝜇𝑒                                               (21) 

                                                                               (𝑦, 𝑧)                        ≥ 0 

where 𝑌 = 𝑑𝑖𝑎𝑔{𝑦1, 𝑦2 … , y𝑚}. Interior point algorithm for linear programming, Nocedal and Wright (2006) 

applies Newton method to solve this system of equations and equally reduces the barrier parameter  𝜇 to 

guarantee the convergence to the optimal solution of the original problem. The Newton direction is obtained by 

solving the system of linear equations: 

                             [
𝑄(𝑥, 𝑦) 𝐴(𝑥)𝑇 0

𝐴(𝑥) 0 𝐼
0 𝑍 𝑌

] [
∆𝑥
∆𝑦
∆𝑧

] = [
−𝛻𝑓(𝑥) − 𝐴(𝑥)𝑇𝑦

−𝑔(𝑥) − 𝑧
𝜇𝑒 − 𝑌𝑍𝑒,

],           (22)                                                

where 

                                                         𝐴(𝑥) = 𝛻𝑔(𝑥)   ∈  ℛ𝑚×𝑛 
                                                       

𝑄(𝑥, 𝑦) = 𝛻2𝑓(𝑥) + ∑ 𝑦𝑖𝛻2𝑔𝑖(𝑥)          ∈      ℛ𝑛×𝑛   

𝑚

𝑖=1

. 

 

Using the third equation in (22) we eliminate 

                                                                       ∆𝑧 = 𝜇𝑌−1𝑒 − 𝑍𝑒 − 𝑍𝑌−1∆𝑦, 

from the second equation and get 

                                                        [
−𝑄(𝑥, 𝑦) 𝐴(𝑥)𝑇

𝐴(𝑥) ⊖𝐷
]  [

∆𝑥
−∆𝑦

] = [
𝛻𝑓(𝑥) + 𝐴(𝑥)𝑇𝑦

−𝑔(𝑥) − 𝜇𝑌−1𝑒
],  (23) 

 

where  ⊖𝐷 𝑍𝑌−1 is a diagonal scaling matrix. The matrix involved in this set of linear equation is symmetric and 

indefinite. For convex optimization problem (that is, when 𝑓 and g are convex), the matrix 𝑄 is positive 

semindefinite and if  𝑓 is strictly convex, Q is positive definite. Similarly to the case of quadratic programming 

by eliminating ∆𝑥 from the first equation in (14) we could reduce this system further to the form of normal 

equations 

                                                                   (𝐴(𝑥)𝑄(𝑥, 𝑦)−1)𝐴(𝑥)𝑇 + 𝑍𝑌−1)∆𝑦 = 𝒃𝑁𝐿𝑃.  (24) 

 

Hence, the application of the lagrangian method coupled with the logarithm barrier approach lead to the system 

of equations for which the Newton method is applicable for their solutions 

 

4. The K-K-T Conditions. 

Following the work of 𝑄𝑖  and Jiang (1997), the nonlinearly constrained programming problem (NLP) 

                                    Min {𝑓(𝑥): 𝑔(𝑥) ≤ 0, ℎ(𝑥) = 0}                                                                            (25) 

where 𝑓, 𝑔 𝑎𝑛𝑑 ℎ are continuously differentiable functions from ℛ𝑛 to ℛ, ℛ𝑝 and ℛ𝑞 respectively. 

Let 𝑁 = 𝑛 + 𝑝 + 𝑞.  

The Karush-Kuhn-Tucker (KKT) system for this problem is: 

                          ∇f(x) + ∑ uj∇gj + ∑ ϑj∇hj(x)q
j=1

p
j=1                                (26)                                                

                                        u ≥ 0,   g(x) ≤ 0, uTg(x) = 0, h(x) = 0. 

The KKT system plays a central role in the theory and algorithm for the NLP in (25). 

In [10] two forms of the NLP is considered. One form is that f, g and h are twice continuously differentiable 

and ∇2f, ∇2g, ∇2h are locally Lipschitzian. Such an NLP are referred to as LC
2
 NLP or simply and LC

2
 

problem [10]. Similarly, smooth functions are referred to as an LC
1 

function if its derivative is locally 

Lipschitzian. 

The case when f, g and h are not necessary twice continuously differentiable but their derivatives are 

semismooth are called an NLP and SC
1
 NLP or simply an SC

1
 problem, Qi and Jiang (1997). The applications 

of the SC
1
 problem include the LC

2
 problem; the stochastic quadratic program and the minimax problem (see 

[10] and quoted references therein). 

Different methods have been developed to formulate the KKT system as a system of nonsmooth   equations 

(NE) (see [10], [3], [4], [7]). A recent approach to construct generalizations of classical Newton and quasi-

Newton methods for solving these nonsmooth KKT equations are due to several   authors (see [10] and 

references quoted). Such methods are called NE methods for solving the NLP defined in (25). In 1994, Pang [32] 

constructed a sequential quadratic such problems and merit functions with these equivalent KKP equations. 

These methods are called NE/SQP methods. It is also possible to form smooth KKT equations; however a 

drawback is that these smooth KKT equations may be singular or ill-conditioned at a solution if strict 
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Complementarity is not satisfied. On the other hand, singularity occurs less for nonsmooth versions of KKT 

equations. 

Variants of generalized Newton methods have been developed for nonsmooth KKT equations. Some of them 

are Q-quadratically convergent under suitable conditions for the LC
2 

problem [1, 4]. However, a general theory 

is still needed for Q-quadratic convergence of generalized Newton methods for nonsmooth KKT equations Qi 

and Jiang (1997). Similarly, Negin and Nezan (2014) indicate that effective methods for computing the positive 

definite matrix satisfying KKT conditions have yet to be developed. However, the new matrix-free method in 

which the normal equations are solved by the conjugate gradient method may have significant computational 

advantage over the simplex for linear programming instance, see [13]. 

 

5. Conclusion 

We observe that each iteration of interior point method for linear, quadratic or nonlinear programming requires 

the solution of a possibly large and most always sparse linear system of the form 

                         [
−Q −⊝p

−1 AT

A ⊖D

] [
∆x
∆y

] = [
ξd − X−1ξμ

ξp
].           (27) 

Therefore the three symmetric indefinite augmented system of linear equations formed for linear, quadratic and 

nonlinear programming have essentially the same structure, and only the diagonal scaling matrix ⊖p= XS−1 

changes from iteration to iteration.  

 

In expression (27), ⊖p∈ ℛn×n and ⊖D∈  ℛm×n are diagonal scaling matrices with strictly positive elements. 

Depending on the problem type, one or both matrices ⊖p and ⊖D may be present in this system.  

 

For linear and quadratic programs with equality constraints, ⊖D= 0. For nonlinear programs with inequality 

constraints (and variables without sign restriction)  ⊝p
−1 =0. With assumption of convexity, the Hessian Q ∈

ℛn×n is a symmetric positive definite matrix, where A∈  ℛm×n is the matrix of linear constraints (or the 

linearization of nonlinear constraints), with full rank. 

 

In the area of implementation, the most surprising and important characteristic of the interior point methods is 

that the number of iterations required is very insensitive to problem size [7]. Given this behavior, the advantage 

of an interior method as compared to the simplex method depends on how efficiently the individual steps of the 

interior method can be executed. 

 

The main weakness of the interior point methods involves the issue of dense columns. For example, a single 

column in A with a nonzero in every will cause AA
T
 to be completely dense. However, a small number of dense 

columns (say 10) can be handled successfully, but that a large number presents a very real stumbling block to the 

use of interior point methods [10]. However, further research on the new matrix-free method in which the normal 

equations are solved by the conjugate gradient method may offer some advantage as noted in [13]. 
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