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Abstract:

In this paper, we use a combination of Orthonormal Bernstein functions on the interval [0,1] for degree
m = 5,and 6 to produce anew approach implementing Bernstein Operational matrix of derivative as a method
for the numerical solution of linear Fredholm integral equations of the second kind and Volterra integral
equations. The method converges rapidly to the exact solution and gives very accurate results even by low value
of m. Illlustrative examples are included to demonstrate the validity and efficiency of the technique and
convergence of method to the exact solution.
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1. Introduction:

In the Survey of solutions of integral equations, a large number of analytical but afew approximate methods
for solving numerically various classes of integra equations [1]. Orthogonal functions and polynomial series
have received considerable attention in dealing with various problems of dynamical Systems. The main
Characteristic of this technique is that it reduces these problems to those of solving a system of algebraic
equations, thus greatly simplifying the problem [2,14]. While in recent years interest in the solution of integral
and differential equations, such as Fredholm, Volterra, and integro-differential equations [3]. The general form
of Fredholm, Volterra integral equations respectively are

1- Freholm integral equation: (FIE)
u(x) = g(x) + [ k(x, Hu(t)de x €[0,1] 1)
2- Volterra integral equation: (VIE)
u(x) = f(x) + f, kG, yu(t)dt x €[0,1] @)

Integral equations are widely used for solving many problems in mathematical physics and engineering. In
recent years, many different basic functions have been used to estimate the solution of integral equations, such as
Block-Pulse functions [4,5], Hybrid Legendre and Block-Pulse functions. Bernstein polynomials play a
promineut role in various areas of mathematics. These polynomials, have been frequently used in the solution of
integral equations,differential equations and approximation theory,see [6]. Recently the various operational
matrices of the polynomials have been developed to cover the numerical solution of differential, integral and
integro-differential equations. In [7] the operational matrices of Bernstein polynomials are introduced. Doha [8]
has drived the shifted Jacobi operational matrix of fractional derivatives which is applied together with the
Spectral Tau method for the numerical solution of dynamical systems.Yousefi et al.in [9], [10] and [11] have
presented Legendre wavelets and Berntein operational matrices and used them to solve miscellaneous systems.
Lakestani et al. [12] constracted the operational matrix of fractional derivatives using B-Spline functions.
Another motivation is concerned with the direct solution techniques for solving the Fredholm and Volterra
integral equations respectively on the interval [0,1] using the method based on the derivatives of orthonormal (B-
polynomials) sense for m=5 and 6. Finally, the accuracy of the proposed algorithm is demonstrated by test
problems.

2-Bernstein Polynomials (B-Polynomials):

The Bernstein polynomias (B-Polynomials) [13], are some usfel polynomials defined on [0,1]. The
Bernstein Polynamials of degree m form a basis for the power polynomials of degree m. we can mentioned, B-
Polynomials are aset of Polynomials

Bim () = () x*(1 = x)m~* O<k<m, &)
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Note that each of these m+1 Polynomials having degree m is normalization, i.e
Yo Bim(x) =1, has one root, each of multiplicity k and m-k, at x=0 and x=1 respectively,also By ,,,(x) in

which ke{0,m}has asingle unique local maximum of kX ™(m — k)™ k (r]?) it can provide flexibility

applicable to impose boundary conditions at the end points of the interval. First derivatives of the generalized
Bernstein basis polynomials.

= B () = M[Biymo1(6) + By (%)] @

In this paper, we use ¥, (x) notation to show

Ylm(x) = [BOm(x)v Blm(x)f --'vBmm(x)]T (5)
where we can have
5Ijm(x) = Am(x)Am(x) (6)

that A is the matrix and (k + 1)* row of A is
Agyq = [0,0,..55mes 05 (0,k,m),s_(1,k,m),...,s_(m, k,m) ]

om0, () (5 1.0 ()] e () (2] @

where

S = D () (7Y

l
xO
1
and A,(x) = [* (8)

xm

using MATHEMATICA code, the first six (B-Polynomials) of degree five over the interval [0,1], are given
Bos(x) = (1 —x)*

Bis(x) = 5x(1 — x)*

Bys(x) = 10x2(1 — x)3

B3s(x) = 10x3(1 — x)?

Bus(x) = 5x*(1 — x)

Bss(x) = x°

and the first seven (B-Polynomials) of degree six over [0,1] are given
Bos(x) = (1 —x)°

Bie(x) = 6x(1 — x)°

Bys(x) = 15x2(1 — x)*

B3e(x) = 20x3(1 — x)3

By (x) = 15x*(1 — x)?

Bge(x) = 6x°(1 — x)

Bge(x) = x®
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3- (B-Polynomials) Approximation:

A function u(x) equation, square integrable in (0,1), many be expressed in terms of Bernstein basis [7]. In
practice, only the first (m+1)-terms Bernstein polynomials are considered. Hence if we write

u(x) = Lo cxBrm (x) = CT D (x) )
where @ (x) = [Bom (%), Bi (%), v, By ()] and
CT = [co, €1, -, €] Can be calculated by:
¢ = (J, uG)e" (x)dx) @, (10)
where Q is an (m + 1) X (m + 1) matrix and is said dual matrix of &(x)
Q) = (@(x), 2(x)) = [ B(x) 67 (x)dx
=[1 (A8, () (AL, (1)) " dx
= A [y 8a (AL (x)dx] AT
= AHA", (11)

A is defined by eqs.(7) and H is a Hilbert matrix

[ 1 L ;]
2 m+1
1 1 1
H—l 2 3 m+2 | and
N L
+1 m+2 7 2m+1
Q, 0 0
0 0
o=|7 % ]
0 0 .. Qn

The elements of the dual matrix Q, are given explicity by
Qmi+1i+1 = fol Bim () Bim (x)dx
m\ /m i .
= (k) ( ; ) fol(l — ) 2mCkD) yhH g (12)
where k,i =0,1,..,m

4- The Derivative for Orthonormal (B-Polynomials):

The representation of the orthonormal Bernstein Polynomials, denoted by b;s(x), bjs(x) here, was
discovered by analyzing the resulting orthonormal polynomials after applying the Gram-Schmidt process on sets
of Bernstein polynomials of degree five and six.

We get the following sets of orthonormal polynomials [10],[11].

bos(x) = VIL(1 - »)°

bis(x) = 6 [St(l —0t-21- x)S]
bas(0) = 27 [10(1 - 0)*62 = 5(1 = 0)*t + = (1 — )]

bas (x) = %[10(1 — )% = 15(1 - 2% + 2 (1 -t - 2 (1 - 0)7]
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bus(xX) = 73 [5(1 — x)x* = 20(1 — x)%¢% + 18(1 — x)*x? — 4(1 - x)*x + 2 (1 - x)s]
bss(x) = 6 [xs —Z@-0xt + 22 (1 - 023 = 25(1 — x0)°x% + 5(1 — x)*x — (1 - x)S]

and

bos(x) = V13(1 — x)°

big(x) = VAZ[6t(1 —x)° = (1 — x)°

bye(x) = 11 [15(1 —x)*x? = 6(1 - 2)%x + = (1 — x)6]

bye(x) = \/— [20(1 —x)3x3 - E(1 - x)‘*x2 +5(1 —x)°x — E(1 - x)6]

bae(x) = [15(1 — )%t = 40(1 - 0)°x° + 2 (1 - 0)* 2 = 2 (1 - )% + = (1 - x)° ]

bse(x) = ﬁ [6t5(1 —-x)— ?(1 —x)%x* + 60(1 —x)3x3 - 30(1 —x)*x% + 7(1 —x)°x — g (1- x)6]
bes(x) =7 [x6 —18(1 — x)x> + 75(1 — x)?x* — 100(1 — x)3x3 + 45(1 — x)*x? — 6t(1 — x)° +
(-0

In addition, we have determind the explicit representation for the orthonormal Bernstein polynomials as
[16]

b () = (20n =) + 1) (1 = 0" Tl o (1) (P LT ) (K)o (13)

l

The eqs(13) can be written in terms of the Bernstein basis functions as

2m+1-i\(k
bym (x) = (\/ 2(m —k) + 1) 5‘:0(—1)1‘( IE;ni_i)(i)Bk—i,m—i(x) (14)
k—i

Any generalized Bernstein basis polynomials of degree m can be wretten as a linear combination of the
generalized Bernstein basis polynomials of degree m+1

m—k+1

By (x) = 1 B, ma1 () + 111 By t1,m+1 (%) (15)

By utilizing eqs(15),the following functions can be written as

Bim—1(6) = " B (%) + “* By () (16)
and
Bie—1m-1(0) = "= Bi_y (%) + = By () (17)

Substituting these eqs(16) and (17) into the right hand side of the eqs(4), we get the following derivatives of
Bernstein basis polynomials

= Bem(®) = (= k + DBy (x) + 2k = M) By () = (k + 1By m () (18)
In [10], the derivative of the orthonormal (B-Polynomials)of degree five are introducedas given

bgs = [~5V11 Bys — V11B;s]

bis = [45Bys — 15B5 — 2B,5]

, 121\/— 187 54./7
bys = [23\/7 Bos + ——Bis + ——Bas _TB35]
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, 145 235 78 154 113
b3s = [EBOS _me +ﬁ325 +ﬁ335 _EB“S]

b!l_s = [_33\/§B05 + #Bls - %BZS %/5335 + 77\/§B45 - 35\/?355]

bés = [35305 - 55315 + 63325 + 35335 - 119345 + 105355]

and we introduce the derivative of the orthonormal (B-Polynomials) for degree six

boe = [_6\/H Bos — ‘/ﬁBm]

bis = [8V11Bys — 7V11B;¢ — 4V11By|

bye = [—84 By + 96B¢ + Byg — 3B36]

bie = [36V7Bos — 64V7B16 + 32V7By6 + 27N 7B3g — 24\7 By

bie = [—42V5Byg + 95V5B;¢ — 150.263681B, — 40.24922359B;4 + 187.8297101B,¢ — 42v5Bsg]

bse =
[46V3B, — 206.1140461B;, + 235.5589098B,4 — 14v3B;s — 242.4871131B,, + 266.7358244B5, —
56v3Bgg]

béﬁ = [_48306 + 132316 - 168326 + 42336 + 16834_6 - 252356 + 168366]
5. Second kind integral equations:

In this section, we use Orthonormal Polynomials for solving second kind Fredholm and Volterra integral
equations.

1- Fredholm integral equation (FIE):
Where in eq(l) g(x) € L2[0,1], k(x, t) € L?([0,1] x [0,1]) are known and u(t) is unknown function to be
determined.
First we assume the unknown functions
w;(x) = CTB(x),i =12,..,n (19)
by substituting (19)in (1) we have:

1

CrB(x) = g;(x) +j ki ;(x,t) C/ B(t)dt
0
CTB(x) = [, kyj(x,t) CTB(8)dt = g;(x) (20)
Pick distinct node points t;, t,, ..., t, € [0,1]

This leads to determining { ¢y, ¢, ..., ¢, } as the solution of linear system
1
1 G [BG) = [ kg, t) B(t)at| = g(x) (21)
In this paper Collocation points are t; = i fori=1,2,..,nso that we have a system of linear equations
L,X =1, where
1 n .
Ln =BG - k(xj,ti)B(ti)dtL:O j=12,..,n

b = [g(x), i=01,..,n

2- Volterra integral equation (VIE):
Similarly above section by using Collocation points ¢t; = i fori=1.2,..,n
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n .
L, = |B(x) - foxk(xj,ti)B(tl-)dtL:O j=12..,n
L, = [f (x)], i=o0,1,..,n
6.Numerical Results:

In this section VIE, FIE is considered and solved by the introduced method.

Example 1: Consider the following FIE
u(x) =sinx + fol(l — x cos xt) u(t)dt (22)
the exact solution u(x)=1. Solving eqs(20) and (21) we get the values of C T
€=[0.91402903 0.10091438 3.48867166 —2.7619172 3.51373945 0.15379915 0.98896685]"

Tablel shows the numerical results for this example.

Table 1:some numerical results for example 1

X AbsouteError
Approximat Approximat lexact — Byel

solution b, (x) | solution B, (x)

0 0.91402333 0.99993256 6.7440e-005
0.1 | 0.93422123 0.99993267 6.7330e-005
0.2 | 0.96878356 0.99994532 5.4680e-005
0.3 | 0.96878320 0.99994444 5.5560e-005
0.4 | 0.97843933 0.99995324 4.6760e-005
0.5 | 0.93270466 0.99995417 4.5830e-005
0.6 | 0.99388042 0.99996618 3.3820e-005
0.7 ] 0.99963715 0.99997654 2.3460e-005
0.8 | 0.98888323 0.99998790 1.2100e-005
0.9 | 0.99999668 0.99999999 1.0000e-008
1 0.99999998 1.00000000 0.00000000
M.S. E =6.7440e-005
L.S.E=2.1286e-008

Example 2: Consider the following FIE
1
u(x) =e™* —J xetu(t)dt
0

the exact solution u(x) =e™ — ’2—‘ Solving eqs(20) and (21) we get the valuesof ¢ T

C=[1 1.13944655 —0.05603088 0.85196593 —0.13491534 0.11655846 — 0.16383600]"
Table2 shows the numerical results for this example.

3
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Table2:some numerical results for example 2

X
Exact solution | Approximat Approximat AbsouteError
lexact — Byl
solution b, (x) | solution B, (x)
0 1 1 1 0.00000000
0.1 | 0.85483742 0.94188967 0.85488967 0.00005225
0.2 | 0.71873075 0.76843118 0.71811760 0.00008101
0.3 | 0.59081822 0.59503874 0.59081874 0.00000052
0.4 | 0.47032005 0.46240281 0.47032115 0.00000110
0.5 | 0.35653066 0.35230187 0.35653066 0.00352200
0.6 | 0.24881164 0.24605093 0.24880053 0.00001111
0.7 | 0.14658530 0.13907957 0.14658510 0.00000020
0.8 | 0.04932896 0.04047384 0.04932895 0.00000001
0.9 | -0.04343034 -0.04663478 -0.04343155 0.00000121
1 -0.13212056 -0.16383600 -0.13212056 0.00000000
M.S.E =0.00352200
L.S.E=0.00000000
12 U |5 L L T L C C

exact

Figl of examplel
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Fig 2 of example3

Example 3: Consider the following VIE

u(x) =x— fox(x —tu(t)de

0.8 0.9 1

(23)

The exact solution u(x) = sin x. Table(3) shows the numerical results for this example(3)

C=[0 0.15606151 0.37680718 0.40682330 0.73751386 0.68080388 0.84172197]"

Table3:some numerical results for example 3

X
Exact solution | Approximat Approximat AbsouteError
lexact — Byel
solution b, (x) | solution B, (x)
0 0.00000000 0.00000000 0.00000000 0.00000000
0.1 | 0.09983342 0.09924030 0.09983389 0.00000059
0.2 | 0.19866933 0.19972478 0.19865878 0.00001055
0.3 | 0.29552021 0.29617066 0.29552053 0.00000065
0.4 | 0.38941834 0.38930420 0.38941820 0.00000014
0.5 | 0.47942554 0.47990931 0.47942560 0.00000048
0.6 | 0.56464247 0.56604342 0.56604342 0.00140095
0.7 | 0.64421769 0.64342047 0.64342047 0.00007972
0.8 | 0.71735609 0.70896119 0.71732785 0.00008394
0.9 | 0.78332691 0.76751046 0.78331110 0.00001581
1 0.84147098 0.84172197 0.84147073 0.00000025
M.S.E =0.00140095
L.S. E=0.00000000
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Conclusion:

In this work, VIE,FIE have been solved by using Bernstein basis polynomials of degree m in collocation
method. Comparison of the approximate solutions and the exact solutions show that the proposed method is
efficient tool. Illustrative examples are included to demonstrate the validity and applicability of the technique.
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