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Abstract 

In this paper, a mathematical model consisting of a prey-predator involving a prey refuge and infectious disease 

in the predator has been proposed and analyzed. Two types of functional responses are used to describe the 

feeding of the predator on the available prey. The existence, uniqueness and boundedness of the solution of the 

system are discussed. The dynamical behavior of the system has been investigated locally as well as globally 

using suitable Lyapunov function. The persistence conditions of the system are established. Local bifurcation 

near the equilibrium points has been investigated. The Hopf bifurcation conditions around the positive 

equilibrium point are derived. Finally, numerical simulations are carried out to specify the control parameters 

and confirm the obtained results 

Keywords: Prey-Predator, Disease, Refuge, Stability, Bifurcation. 

 

1. Introduction 

It is well known that the term ecology deals with the study of the interactions of organisms (individual 

living creature, either unicellular or multi-cellular) with their physical environment and with one another. The 

interaction between predator and their prey is one of the important subjects in both ecology and applied 

mathematics due to its wide existence in our life and importance. Although such problems may appear to be 

simple mathematically, they are very challenging and complicated [1]. Since the pioneering work of Lotka (1925) 

and Volterra (1926) on predator-prey system, the field of mathematical ecology has reached at the top level in 

theoretical biology and many research works have been down in literature, see for example [2-4] and the 

references therein. Moreover, later on Kaewmanee and Tang [5] studied the dynamics of an age-structured 

prey-predator system incorporating cannibalism. However, Tian and Xu [6] proposed and analyzed a 

predator-prey system with Holling type II functional response and stage structure in predator, and many other 

research works involving different factors have been proposed and studied.  

On the other hand, epidemiology is the study of the spread of diseases in species. It is well known that after 

the pioneering work of Kermack–Mckendrick [7], which is based on classical susceptible, infected, recovered 

model, the field of epidemiology has come into sight and received a lot of attention from the researchers see for 

example [8-9] and the references therein. Moreover, later on Naji and Shafeeq [10], studied the effect of 

treatment and immigrants on the dynamics of SIS epidemic model. Zhou and Yao [11], investigated a host-vector 

epidemic model with stage-structure for the vector. Further investigations have been published in the field of 

epidemiology.  

In fact recently there is increasing interest from the researchers by combining these two fields in one field 

that called eco-epidemiology, which has become a major field of study, see for example [12–19] and the 

references therein. Recently, Pal et al [20], presented an investigation deals with a predator–prey model with 

SI-type of disease that spreads among the predator species only. They assumed that the disease transfers by 
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contact according to mass action law and the predator has another sources of food.  

Finally according to nature, the prey population prefers staying in a safe area where the predation is 

prohibitive. This is known as prey refuge, which reduces the chance of extinction in prey species due to 

predation and damp the oscillation in the system. Therefore the existence of refugees will increase the size of 

prey population and then stabilizing the real world system. The effect of prey refuge on the behavior of 

prey-predator systems has been studied by many researchers in literature see for example [21-22] and the 

references therein. Recently, Pal and Samanta [1], proposed and analyzed a prey-predator model incorporating a 

prey refuge with disease in the prey-population. 

In this paper however, we proposed and studied a mathematical model for prey-predator system involving 

prey refuge and SIS-type of disease in predator. It is assumed that the disease transfer through contact between 

the susceptible and infected individuals as well as through an external resources.    

 

2. Model Formulation 

      In this section, a prey-predator system incorporating a prey refuge and disease in a predator is formulated 

mathematically. The following hypotheses are adopted in constricting the mathematical model that describe the 

dynamics of the above real world eco-epidemiological system. 

1. In the absence of predator, the prey population that denoted by )(tX  grows logistically with carrying 

capacity 0K  and intrinsic growth rate 0r . 

2. In the presence of infections disease, the predator population is divided into two compartments, namely 

susceptible predator that denoted by )(tS  and infected predator, which denoted by )(tI . Therefore at 

time t the total predator population is )()()( tItStP  . 

3. The disease doesn’t transfer to prey population instead of that it spreads among the predator species by 

contact between the susceptible predator individual and infected predator individual with contact 

infection rate 01 c , in addition to an external resources (air, food, etc) with external infection rate 

02 c . The infected predator doesn’t become immune and may be recovers and becomes susceptible 

again with recovering rate 03 c . 

4. It is assuming that there is a refuge protecting nX  of the prey species where )1,0(n  denotes the 

refuge rate constant. Thus there is Xn)1(  of prey species available to the predator. 

5. Since the susceptible predator is more efficient compared with the infected predator, it is assuming that 

the susceptible predator consumes the prey according to Lotka-Voltter type of functional response with 

attack rate 01 a . However the infected predator consumes the prey according to Holling type-II 

functional response with maximum attack rate 02 a  and half saturation constant 0b . The prey 

converts into predator with conversion rate 10  e . 

6. In the absence of prey the susceptible predator decays with natural death rate 01 d , however the 

infected predator decays with death rate (natural death + disease death) 02 d  

        According to the above hypotheses the dynamics of the above described eco-epidemiological real 

world system can be represented by the following set of differential equations. 

Xnb

XIna
XSna

K

X
rX

dt

dX

)1(

)1(
)1(1 2

1












   

IcSdScSIcXSnea
dt

dS
31211 )1(                   (1) 
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IcIdScSIc
Xnb

XInea

dt

dI
3221

2

)1(

)1(





  

with initial data   00 X ,   00 S  and   00 I . 

Clearly the interaction functions in system (1) are continuously differential functions on the domain 

        0,0,0:,, 33   tItStXRISXR . Hence they are Lipschitzian. Therefore the solution of system (1) 

exits and is unique. Moreover all solutions of system (1) initiated in 3
R  are uniformly bounded as shown in the 

following theorem. 

Theorem (1): All the solutions of system (1), which initiate in 3
R , are uniformly bounded. 

Proof: Let  )(),(),( tItStX  is any solution of system (1) initiated in 3
R , and let W  is a function defined by 

       tItStXtW  . Then by differentiate this function with respect to time gives 

W
X

Xr
dt

dI

dt

dS

dt

dX

dt

dW














1

1)1(  

here 
 

r

rK 1
1


  and  21,,1min dd . Now since we have  

 
2

2
1

1 4

1

4

)1(
1)1(. 





















r

rKrX
XrSup  

Thus       

2  W
dt

dW
 

So by using Grownwall lemma we obtain that  

                 010 2 WeeW tt 



    

where         0,0,00 ISXWW  . Therefore for t  we obtain  

                    


2,,0  tItStXW  

Thus all the solutions of system (1) are uniformly bounded and enter the region 

             








  0,:,, 23
1 




WRISX                           ■     

 

 

3. Stability and persistence 

      In this section, the stability analysis of all possible equilibrium points of system (1) is investigated. The 

persistence conditions of system (1) are established. Now straightforward computation shows that the system (1) 

has at most three nonnegative equilibrium points. The existence conditions for each of them can be summarized 

as follows: 

1. The vanishing equilibrium point, say  0,0,00 E  always exists. 
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2. The predator free equilibrium point, namely )0,0,()0,0,(1 KXE   always exists. 

3. The predator can’t survive in the absence of the prey, therefore there are no equilibrium points on the 

S axis, I axis or in the interior of SI plane. Moreover, since the external infection rate 2c  and 

the recovering rate 3c  are assumed be positive, hence there are no equilibrium points in the 

XS plane and XI plane. 

4. The positive equilibrium point that denoted by   ISXE ,,2 , exists uniquely in the interior of 3
R  

provided that the following algebraic system has a unique positive solution. 

             0
)1(

)1(
)1(1 2

1 














Xnb

Ina
Sna

K

X
r  

              0)()1( 31211  IcSdcSIcXSnea            (2) 

               0)(
)1(

)1(
3221

2 



IcdScSIc

Xnb

XInea
 

 From the second equation we get  

              
 

S
cSc

dcmxea
I 














31

121                    (3a) 

here nm 1  for simplicity and 031  cSc . 

Now by substituting Eq.(3a) in the first and third equations gives the following two isoclines respectively. 

   
    

0

)(

)()(,

3
22

11
2

11

1223113

23
2

11
2

1
3

3







rKbcXSKmcaKmSbca

SdcabcamrbcKXKmbrc

XSeacKmabKmrcmsXrcmXrcSXf

                    (3b) 

   

    0)(

])())([(

)(,

13122
2

11
2

111

3212211232

22
11

2
322

2
1







SdcdcdbSdbcXSdbeamc

SXccdceaebadccdm

XmSceaSXcdeameaSXg

                (3c) 

Note that, in order to obtain a unique positive equilibrium point for system (1) in the interior of 3
R , it is 

sufficient to show that the two isoclines (3b) and (3c) have a unique positive intersection point, namely  

),(  SX . 

It is clear from Eq. (3b) that, as 0X  we obtain 

       032
2

1   SS                  (3d)            

where 0111  Kmbca ;    0)( 1223112  dcabcamrbcK ; 033  rKbc . 

Straightforward computation gives that Eq. (3d) has two positive roots given by 

31
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Provided that the following condition holds  

31
2
2 4                               (3e) 

Moreover Eq. (3d) has a unique maximum positive value given by 

13
1

2
2

4





                              (3f) 

Similarly, as 0X , Eq. (3c) gives that 

       05
2

4  SS                            (3g) 

where   0)(;0 312125114  cdddcbdbc  . Clearly Eq. (3g) has a zero root and a positive root 

given by: 

  
4

5
3




S   

Further Eq. (3g) has a unique maximum positive value given by 

2
4

2
5

4





                     (3h) 

Consequently the two isoclines (3b) and (3c) has a unique positive intersection point, denoted by ),(  SX  

provided that condition (3e) holds along with the following two conditions 

132 SSS                      (3i) 

        12                       (3j) 

Thus by substituting the value of ),(  SX  in Eq. (3a) gives the value of I , which is positive provided that 

one set of the following sets of conditions hold 

        
mea

dc
X

1

12 
 and 

1

3

c

c
S 

                   (4a) 

or 

        
mea

dc
X

1

12 
 and 

1

3

c

c
S 

                   (4b) 

 

In the following the local stability analysis of the above equilibrium points is carried out. The Jacobian 

matrix of system (1) at the point ),,( ISX  can be written as  

   
33

,,


 ijuISXJ                    (5) 

here 
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)1(

cScu

dcIcXneau

Sneau




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)(
)1(

)1(
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)1(

321
2
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2132

2

2
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cdSc
Xnb
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u

cIcu

Xnb

Inbea
u














 

Therefore the Jacobian matrix at 0E  is 

          
 




















232

3120

0

0

00

dcc

cdc

r

EJ                 (6a) 

Clearly the characteristic equation of  0EJ can be written as: 

          0000
2
00  DTr                   (6b) 

where       0;0 13212023120  dcddcDdcdcT . 

Accordingly, the eigenvalues of  0EJ  in a the X direction, S direction and I  direction can be written 

respectively  

       

0
2

0
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0

0
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0

4
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4
2

1

2

0

DT
T
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r

I

S

X













                  (6c) 

Since 00  rX  with other two eigenvalues have negative real parts, then 0E  is a saddle point. 

The Jacobian matrix of system (1) at the predator free equilibrium point 1E  can be written as: 

   
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EJ 












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










                   (7a) 

Hence the characteristic equation of  1EJ  is: 

         0111
2
11  DTr                  (7b) 

here 
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
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Therefore, the eigenvalues of  1EJ  in the X , S , and I directions respectively are 
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1
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1
1

1
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X


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


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                  (7c) 

Straightforward computations show that, S1  and I1  have negative real parts if the following conditions are 

satisfied.  

)()1( 121 dcKnea                   (8a) 
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)1(

)1(
23

2 dc
Knb
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
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
                 (8b) 

 
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                        (8c) 

Accordingly, the predator free equilibrium point 1E  is locally asymptotically stable under the above conditions. 

Theorem (2):  Suppose that the positive equilibrium point 2E  exists, then it is locally asymptotically stable in 

3
R  if the following conditions hold: 
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Proof: According to Eq. (5) the Jacobian matrix at 2E  is given by  
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Therefore the characteristic equation of  2EJ can be written as: 
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According to Routh-Hurwitz criterion Eq. (10b) has roots (eigenvalues) with negative real parts if and only if 

01 A , 03 A and 0 . 

Straightforward computation shows that all the requirements of Routh-Hurwitz criterion are satisfied provided 

that the condition (9a)-(9e) hold. Hence 2E  is locally asymptotically stable. 

Now, the global dynamics of system (1) is investigated using suitable Lyapunov functions as shown in the 

following theorem. 

Theorem (3): Assume that the predator free equilibrium point 1E  is locally asymptotically stable, then it is a 

globally asymptotically stable in 3
R  provided that  
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Proof: Consider the positive definite function  
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





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
 ln1   

It is clear that RRL 
3

1 :  and   00,0,1 KL  with   0,,1 ISXL ;    0,0,,, KISX   

in 3
R . Since the derivative of 1L  with respect to time can be written as 

    I
b
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edSKneadKX

K

r
e
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






 


)1(
)1( 2

211
21         

Therefore, by using condition (11) we get 
dt

dL1  is negative define in 3
R . Thus according to Lyapunov second 

theorem 1E  is globally asymptotically stable.                   ■ 

Theorem (4): Assume that the positive equilibrium point ),,(2
 ISXE  is locally asymptotically stable, 

then it is globally asymptotically stable in 3
R  provided that 
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Proof: Consider the following positive definite 
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Clearly RRL 
3

2 :  and 0),,(2  ISXL  with   0,,2 ISXL ;   ),,(,,  ISXISX  in 3
R . Now, 

by differentiating 2L  with respect to time and then simplifying the resulting terms we obtain that: 
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Consequently by using conditions (12a)-(12b) we obtain 
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which is negative definite function. Therefore according to Lyapunov second theorem 2E  is a globally 

asymptotically stable.                           ■ 

 

 It is well known that, the persistence of an ecological system means the coexistence of all the species for all 

positive time. Since the coexistence of all the species for all the positive time is satisfied mathematically if the 

solution of the system doesn’t has omega limit set on the boundary planes, therefore the conditions of the 

persistence of the system (1) are established in the following theorem. 

Theorem (5): Suppose that  

 


 13212231

1122

)())1()((

))1((
)1(

)1(

dcddcKnbdca

Kneadca
Knb

Kne








                 (13) 

Then system (1) is uniformly persistence. 

Proof. Let p  be any point in the positive octant and let )( po  be the orbit through it. Let )( p  denotes the 

omega limit set of the orbit through the point p . Clearly )( p  is bounded due to the boundedness of the 

system (1). We claim that )(0 pE  . If )(0 pE   then according to the Butler-McGehe lemma [23], there 

is a point )()( 0EWpq s , where )( 0EW s  represents the stable manifold of 0E . Now since )(qo  lies 

in )( p  and )( 0EW s  is the SI plane, then the orbit through q , which denoted by )(qo , is unbounded 

orbit which leads to contradiction.  

Now we claim that )(1 pE  , otherwise  )(1 pE  . Since 1E  is saddle point due to condition (13) with 

stable manifold represented by X axis, hence again by Butler-McGehe lemma there is a point 

)()( 1EWpq s , where )( 1EW s  is the stable manifold of 1E . Moreover since )(qo  lies in )( p  and 
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)( 1EW s  is the X axis then the orbit through q  that denoted by )(qo  is unbounded orbit which leads to 

contradiction too.  

Therefore )( p  doesn’t intersect any of boundary planes of the 3
R ,  then system (1) is persistent. In addition 

to that since system (1) is bounded system then according to theorem of Butler et al [24], system (1) becomes 

uniformly persistent.                                     ■  

  

4. Local bifurcation  

      It is clear that system (1) consisting of three first order nonlinear differential equations, which depends on 

parameters that characterize properties of the real worlds system being modeled. The bifurcation theory is 

concerned with changes in the qualitative behavior of the solution of system (1) as a control parameters varied. 

Therefore it is important to determine the set of parameters that control the system’s behavior. In this section, the 

occurrence of local bifurcation near the equilibrium points of system (1) is investigated, with the help of 

Sotomoyor’s theorem [25], in case of varying one parameter keeping the others fixed. It is well known that the 

existence of a non hyperbolic equilibrium point is a necessary but not sufficient condition for occurrence of 

bifurcation. Therefore the parameters that change the equilibrium points 1E  and 2E  from hyperbolic to non 

hyperbolic equilibrium points are considered as a candidate bifurcation parameters of system (1) as shown in the 

next theorems. 

    Consider first the general Jacobian matrix of system (1) that is given in Eq. (5), then it is easy to verify that 

  13
2 )(,  ijuVVFD                     (14) 

here 

        312
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
  

        31121121 2)1(2 vvcvvneau   

        321312

22
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2
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)1(
2 vvcvv

Xnb

nbea
v

Xnb

Inbea
u 









  

with  TvvvV 321 ,,  is any vector in 3
R  and    TfffISXF 321 ,,,,  ; )3,2,1( ifi  are given in the right 

hand sides of system (1). 

Now, since 0D  is always positive in Eq.(6a), therefore the determinate of )( 0EJ can’t be zero an hence 0E  

is a hyperbolic equilibrium point which indicates to non existence of local bifurcation near 0E . 

Theorem (6): Suppose that conditions (8a)-(8b) hold together with the following condition 

31222232321
ˆˆˆˆ)(ˆˆ DDdcDcDdcDD                (15) 

where KneaDKnbDKneaD )1(ˆ,)1(ˆ,)1(ˆ
23211  . Then as the susceptible predator natural death 

rate parameter passes through the value *
11 dd  ,  system (1) near the predator free equilibrium point 1E  
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undergoes transcritical bifurcation but neither saddle node nor pitchfork bifurcation can occur.  

       

3232

123222231
1 ˆ)(ˆ

)ˆ(ˆˆ))(ˆ(

DdcD

DcDDdcdcD
d




                            (16) 

Proof: It is easy to verify that 01 D , in Eq.(7b) at the value of 
1d , which is positive under the conditions 

(8a), (8b) and (15). Therefore the Jacobian matrix of system (1) at 1E  and 
1d  becomes 

       3311 )ˆ(),(ˆ


  ijbdEJ  

where ijij bb ˆ  in Eq. (7a); for all 3,2,1, ji  with 
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0
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ˆ
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232
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
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b . 

Clearly 0)],(ˆ[.det *
11 dEJ , and hence ),(ˆ

11
dEJ  has zero eigenvalue, say 0ˆ  . This means that 1E  

becomes a non hyperbolic point at 
1d . 

Let  TvvvV 321
ˆ,ˆ,ˆˆ   be the eigenvector of ),(ˆ *

11 dEJ  that corresponding 0ˆ  , then 0ˆˆ VJ , which gives: 

 33231
ˆ,ˆˆ,ˆˆˆ vvvV                                    (17a) 

where 3v̂  be any nonzero real number and 0ˆ
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under condition(8a). 

Let  T321
ˆ,ˆ,ˆˆ    be the eigenvector of  TdEJ )],(ˆ[ *

11  that corresponding 0ˆ  , then 0ˆˆ TJ  that 

gives that  

 T333
ˆ,ˆˆ,0ˆ                   (17b)  

where 3̂  be any nonzero real number and 0ˆ
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b
   under condition (8a). 

Now, by computing the derivative of ),,( ISXF  with respect to 1d , we obtain 
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Therefore 0),(ˆ
11 dEFT  and hence according to Sotomoyor’s theorem saddle node bifurcation can’t occur. 
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Further by determining the Jacobian to ),( 11
dFd   given by (17c) we get 
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Now by substituting 1E  and 
1d  in Eq (14), then after doing some algebraic calculations we get that: 
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Therefore system (1) undergoes transcritical bifurcation near 1E  at  11 dd , but no pitchfork bifurcation can 

occur.                           ■ 

Theorem (7): Suppose that conditions (9b)-(9d) hold together with  
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Then as the infected predator death rate parameter passes through the value *
22 dd  , system (1) near the 

positive equilibrium point 2E  undergoes a saddle bifurcation but neither transritical nor pitchfork bifurcation 

can occur. 






















 










31
2

21122211

31223221133211311223
2

)1()()(
cSc

R

Xnea

aaaa

aaaaaaaaaa
d       (19) 

Proof:  It is easy to verify that 03 A , in Eq. (10b) at the value of 
2d , which is positive under the conditions 

(9b)-(9a) and (18). 

Therefore the Jacobian matrix of system (1) at 2E  and 
2d  becomes 

3322 )(),( 
  ijadEJ  

where ijij aa   in Eq. (10a) with 0)( 23333   daa . 

Since   0),(.det 322  AdEJ . Then ),( 22
 dEJ  has a zero eigenvalue, namely 0  and hence 2E  

is a non hyperbolic equilibrium point at  22 dd . 

Let TvvvV ),,( 321
   be the eigenvector of ),( 22

 dEJ  that corresponding 0 . So 0VJ  gives 
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that  

),,( 33132
  vvvV                  (20a) 
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Now, since 
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Moreover, Since 
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Hence according to Sotomoyor’s theorem, system (1) satisfied the first condition of saddle node bifurcation near 

2E  when  22 dd . 

Finally, by substituting the value of 2E  and 
2d  in Eq. (14), and then doing some algebraic computations, it is 

observed that  
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Thus saddle node bifurcation occurs but neither transcitical nor pitchfork bifurcation can occur and hence the 

proof is complete.                          ■ 
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5. Hopf-bifurcation 

 In this section, the possibility of occurrence of a simple Hopf bifurcation near the positive equilibrium point 

of system (1) is studied. It is well known that, system (1) undergoes a simple Hopf bifurcation near 2E  if and 

only if there exists a parameter say r , such that the following conditions hold. 

1. The Jacobian matrix )( 2EJ  of system (1) has a simple pair of complex conjugate eigenvalues 

)()()( 21 rirr   , which become pure imaginary at  rr , while the third eigenvalue remain real 

and negative. 

2. 0
)(1 

rrdr

rd
, which is known as transversality condition  

Consequently, in order to satisfying the above conditions we should have that 

0)( 321   AAAr                  (21) 

 where 1A , 2A  and 3A  are given in Eq. (10b). Therefore the characteristic equation (10b) at the specific value 

of the bifurcation parameter that satisfies Eq. (21), say  rr , will be written as  

     02
2

13  AAP                  (22) 

which gives that  

11 )( Ar                       (23a) 

)()( 222
  riAir                  (23b) 

)()( 223
  riAir                   (23c) 

Then the first condition of Hopf bifurcation accrued when 3,2,1;0  iAi  and condition (21) are hold. 

Moreover to establish the conditions that guarantee the occurrence of the trasversality condition, the following is 

down. 

It is well known that in the neighborhood of  rr  the complex eigenvalues can be written as 

)()()( 21 rirr   . Substituting the value of  r  in Eq. (22) and determine the derivative with respect to 

the bifurcation parameter r  and then comparing the two sides of the resulting equation with equating their real 

and imaginary parts we obtain that 

)()()()()(

)()()()()(

42112

32211

rHrrHrrH

rHrrHrrH








               (24) 

here 

)()(2)()(3)(3)( 112
2
2

2
11 rArrArrrH    

        )(26 12212 rArrrrH    

))()(()()()()()()()( 211
2
21

2
1213  rArArArrArrArrH   

)()()()()(2)( 221214 rArrArrrH    
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Thus by solving system (24), its obtain that 

 
       

   

 
       

   rHrH

rHrHrHrH
r

rHrH

rHrHrHrH
r

2
2

2
1

3241
2

2
2

2
1

4231
1















                 (25) 

Clearly in order for the transversality condition holds, we should have 

               04231   rHrHrHrH                 (26) 

Consequently the Hopf bifurcation conditions of system (1) near 2E  are derived in the following theorem. 

Theorem (8): Suppose that conditions (9a)-(9d) are satisfied together with  

    IcScbRScIc )( 3121               (27a) 

03 M                      (27b) 

where 1M , 2M  and 3M  are given in the proof. Then system (1) undergoes a Hopf bifurcation around the 

positive equilibrium point 2E  in the interior of 3
R  when the intrinsic growth rate parameter r  passes 

through the value. 

 31
2
1

11

2* 4
2

1

2
MMM

MM

M
r   

here 1M , 2M  and 3M  are given in proof.  

Proof: Clearly according to the  2EJ  conditions (9a)-(9d) guarantee that .3,2,1,0  iAi  while condition 

(27a) guarantees that 0322113312312  aaaaaa , otherwise 0  always. 

Now, straightforward computation shows that 321 AAA   can be written as a function of parameter r  in 

the form 

  32
2

1 MrMrMr                   (28) 

where 

  03322

2

1 

















aa
K

X
M  






























 




2

332231132112

2
2

33222 )(
)1(

)(2 aaaaaaIX
R

na
aa

K

X
M  

 


3221133123123113322333

332233223223211222

2
22

332231132112

2
2

2
33223

)(

)()(

)1(
)(

)1(
)(

aaaaaaaaaaa

aaaaaaaaa

IX
R

na
aaaaaa

IX
R

na
aaM















 












 










 

Therefore due to condition (27b),  rr  represents the positive root of Eq. (28), that satisfies 

0)()()()( 321   rArArAr . 
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Consequently, the Jacobian matrix  rEJ ,2  has two pure imaginary eigenvalues with the third real and 

negatives given in Eq. (23a)-(23c). 

Now in order to complete the proof we have to satisfy the transversality condition as given in Eq. (26). Thus by 

substituting the value of r  in Eq. (26), we get after doing some calculations that  

)(2)( 21
  rArH  

)()(2)( 23322112
  rAaaarH  

][)( 31133311211222113 aaaaaaaa
K

X
rH 

















  

  )()( 233224



 














 rAaa

K

X
rH  

Thus by substituting theses values in Eq. (26), its observed that   

    

  0)()(2

)(2)()()()(

31132112
2

3322332211

*
24231





















aaaaaaaaa

rA
K

X
rHrHrHrH

 

Therefore all the conditions of Hopf bifurcation near 2E  are satisfied when *rr  , and hence the proof is 

complete.                              ■ 

 

6. Numerical simulation 

In this section the dynamical behavior of system (1) is investigated numerically. Two objectives are assigned 

from such type of investigation, the first is verification of our obtained analytical results and the second is to 

specify the control set of parameters that characterize the behavior of the system.  It is observed that for the 

following hypothetical biologically feasible set of parameters the solution of system (1) approaches 

asymptotically to the positive equilibrium point as shown in Fig. (1).  

 
2.0,4.0,1.0,1.0,2.0

,5.0,4,75.0,6.0,1,100,1

23121

21





dcdcc

ebanaKr
                  (29) 

According to Fig. (1), system (1) has a globally asymptotically stable positive equilibrium point for the set of 

data (29), starting from three different initial points. This is verifying our obtained analytical result regarding to 

global stability and persistence of the system. Now in order to investigate the effect of varying each parameter on 

the system’s behavior we start varying one parameter at a time from the set (29) and drawing the solution of 

system (1).  
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Fig. 1: The solution of system (1) approaches asymptotically to )73.1,17.2,14.1(2 E  for the data (29) starting 

from three different initial points. (a) 3D positive point attractor. (b) The trajectory of X  as a function of time. 

(c) The trajectory of S  as a function of time. (d) The trajectory of I  as a function of time. 

For varying the parameter r  keeping the rest of parameters as in (29), its observed that, decreasing the 

parameter r  has no effect on the dynamical behavior of the system while increasing the value of r  in the 

range 27.2r  destabilizes the positive equilibrium point and the solution of system (1) approaches 

asymptotically to periodic dynamics as shown in Fig. (2) for 3.2r  and Fig. (3) for 5.2r . Clearly the last 

two figures show the occurrence of Hopf bifurcation around the positive equilibrium point. In fact as the 

bifurcation parameter r  increases the period size of limit cycle increases too.  

Now increasing the parameter 1a  above the given value in (29) keeping the rest of other parameters fixed do 

not has effect on the solution of system (1) and the system still approaches to a positive equilibrium point. 

However decreasing the value of 1a  in the range 43.01 a  destabilizes the positive equilibrium point and 

again Hobf bifurcation occurred as shown in Fig. (4). 
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Fig. 2: The solution of system (1) for the data (29) with 3.2r . (a) 3D periodic attractor. (b) Time series of the 

attractor in (a). 
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Fig. 3: The solution of system (1) for the data (29) with 5.2r . (a) 3D periodic attractor. (b) Time series of the 

attractor in (a). 
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Fig. 4: The solution of system (1) for the data (29) with 3.0,4.0,5.01 a  respectively. (a) The trajectory of 

system (1) approaches to positive point when 5.01 a . (b) The trajectory of system (1) approaches to periodic 

attractor when 4.01 a . (c) The trajectory of system (1) approaches to periodic attractor when 3.01 a . 

 

Note that, although the parameter 1a   do not used as a bifurcation parameter analytically, system (1) still 

sensitive to the changing in this parameter. This indicates to important of simulation study to specify the control 

set of parameters. In addition to that the forms of bifurcation parameters given in Eq. (16) and Eq. (19) depend 

on different parameters of the system so any change in those parameters my causes changing in the bifurcation 

parameter it self and then leads to changing in dynamical behavior of the system (1).  

Further numerical analysis shows that, increasing the parameter n  or decreasing the parameter e  causes 

destabilizing of the positive equilibrium point and the solution of system (1) approaches asymptotically to the 

predator free equilibrium point as shown in Fig. (5). Clearly the Fig. (5), indicates to occurrence of bifurcation in 

system (1) as changing in the parameters n  and e  respectively. Moreover, it is observed that the parameters 

2a  and 1c  have the same effect on the dynamical behavior of system (1) as that of the parameter r . While the 

parameter b  has similar effect, as that of 1a , on the dynamics of system (1).  

Finally for the same set of data (29), it is observed that changing the other parameters, one at a time, do not 

affect the behavior of the system. However these parameters may have clear effect on the dynamics of system (1) 

for other set of hypothetical data. 
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Fig. 5: The solution of system (1) for the data (29) with 999.0n  and 001.0e  respectively. (a) The 

trajectory of system (1) approaches )0,0,100(1 E  when 999.0n . (b) The trajectory of system (1) 

approaches to )0,0,100(1 E  when 001.0e . 

  

6. Discussion and conclusion 

 In this paper, an eco-epidemiological model consisting of prey-predator system with infectious disease in 

predator has been proposed and analyzed.  The effect of existence of prey’s refuge on the system is included in 

the model. Two types of functional responses are used. The existence, uniqueness and boundedness of the 

solution of the system are studied. The local stability and global stability of the all possible equilibrium points 

are investigated. The persistence conditions of the system are derived analytically and shown numerically. Local 

bifurcation near the equilibrium points and the Hopf bifurcation around the positive equilibrium point are 

investigated. Finally, numerical simulations are carried out to specify the control parameters and confirm our 

obtained analytical results using biologically feasible set of parameters given in (29). Finally in the following we 

summarize the obtained numerical results.  

1. The system (1) has only to types of dynamics approaches to an equilibrium point or approaches to a 

periodic dynamics. 

2. Decreasing the intrinsic growth rate parameter of the prey don’t change the dynamical behavior of 

system (1) and the solution still approaches asymptotically to the positive equilibrium point, however 

increasing this parameter causes destabilizing of positive equilibrium point and the solution approaches 

asymptotically to a stable limit cycle in the interior of positive octant, which indicate to occurrence of 

Hopf bifurcation. Consequently, system (1) still persists for all values of intrinsic growth. Similar 

behavior has been observed in case of varying the maximum attack rate of the infected predator and 

contact infection rate as that of intrinsic growth rate. 

3. Increasing the attack rate of the susceptible predator don’t change the dynamical behavior of system (1) 

and the solution still approaches asymptotically to the positive equilibrium point, however decreasing 

this parameter causes destabilizing of positive equilibrium point and the solution approaches 

asymptotically to a stable limit cycle in the interior of positive octant, which indicate to occurrence of 
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Hopf bifurcation too. Again, system (1) still persists for all values of attack rate of the susceptible 

predator. Similar behavior has been observed in case of varying the half saturation constant as that of 

intrinsic growth rate. 

4. Decreasing the value of prey’s refuge rate or increasing the value of conversion rate don’t have any 

effect on the dynamical behavior of the system (1) and the solution still approaches to the positive 

equilibrium point. However, increasing the value of prey’s refuge rate or decreasing the value of 

conversion rate lead to destabilizing the positive equilibrium point and the solution approach to the 

predator free equilibrium point, which means that system (1) losses  its persistence . This is indicates 

to occurrence of local bifurcation in the system (1).  

5. For the set of hypothetical data (29) it is observed that changing other parameters don’t have affect on 

the dynamical behavior of the system (1) and the system still persists at the positive equilibrium point. 
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