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Abstract 

In this paper, we consider zero-sum nonlinear quadratic differential games which the coefficients of 

the quadratic form are quadratic matrix, function of the state variable. Dynamic constraints are 

represented bilinear differential systems of the form �̇� = 𝐴(𝑥)𝑥 + 𝐵(𝑥)𝑢, 𝑥(0) = 𝑥0. The homotopy 

analysis method (HAM) approach is applied in obtaining the solution of the dependent state matrix 

algebraic Riccati equation. Finally we present certain significant case. 

Keywords: Nonlinear quadratic differential game, Riccati equation, Homotopy analysis method 

1. Introduction       

Differential games have been extensively studied during the recent decades to analyze economic 

problems in areas such as industrial organization, resource and environmental economics or 

macroeconomic policy. The solution concept that is most often used is the open-loop Nash equilibrium 

(OLNE), where controls only depend on time (and the initial state of the system). As it is well known, 

the OLNE is weakly time-consistent but not strongly time-consistent (Bas-ar, 1989): it does not 

possess the Markov perfect property and is not robust against unexpected changes in the state of the 

system. Therefore, the feedback Nash equilibrium (FBNE) is a more satisfactory solution concept. It is 

derived in a dynamic programming framework, so that controls depend on time and state, and the 

solution is Markov perfect by construction. However, solutions are usually very difficult to derive.  

Homotopy analysis method (HAM) initially proposed by Liao in [1, 2] is a powerful method to obtain 

series solution of various nonlinear problems. In recent years, this method has been successfully 

employed to solve many types of nonlinear problems in science and engineering such as the viscous 

flows of non-Newtonian fluids [3--13], the KdV-type equations [14--18], nonlinear heat transfer [19--

21], nonlinear water waves [22], groundwater flows [23], Burgers–Huxley equation [24], time-

dependent Emden–Fowlertype equations [25], differential-difference equation [26], Laplace equation 

with Dirichlet and Neumann boundary conditions [27], MHD Falkner–Skan flow [28], the Sharma–

Tasso–Olver equation [29], the Kawahara equation [30], for multiple solutions of nonlinear boundary 

value problems (BVPs) [31--36] and Abbasbandy et al. [34] applied HAM to predict the multiplicity 

of the solutions of 

nonlinear BVPs and shows that convergence-control parameter h plays basic role in prediction of 

multiplicity of solutions of nonlinear problems. In [37] a new technique of HAM form introducing a 

change in the using of HAM in solving high-order nonlinear initial value problems. HAM enjoys great 

freedom in choosing initial approximations and auxiliary linear operators. The HAM can guarantee the 

convergence of the series solutions by auxiliary parameters especially the so-called convergence-

controller parameter h. 

The State-Dependent algebraic Riccati Equation (SDARE) strategy is well-known and has become 

very popular within the control community over the last decade, providing a very effective algorithm 

for synthesizing nonlinear feedback controls by allowing nonlinearities in the system states while 

additionally offering great design flexibility through state-dependent weighting matrices. This method, 

first proposed by Pearson [38] and later expanded by Wernli & Cook [39], was independently studied 

by Mracek & Cloutier [40] and alluded to by Friedland [41]. 

http://www.iiste.org/


Mathematical Theory and Modeling                                                                                                                                                  www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.5, No.11, 2015 

 

8 

The contribution of our paper is to apply the HAM for solving the SDARE. The application of HJB 

equation to the zero-sum nonlinear quadratic differential games results in a SDARE. As we will point 

out in Section 2, we can achieve the feedback optimal control law, by using SDARE. 

The paper has been organized as follows. Section 2, describes the solution guidelines for linear 

optimal control system (1).  Section 3, presentation Steady-state Riccati equation. In Section 4, HAM 

is applied for solving optimal control problem. Finally, conclusions are given in the last section. 

 

2. Nonlinear  zero-sum quadratic differential games 

In this section, we consider a special class of the zero-sum differential games where the system is 

nonlinear and the cost functions are quadratic functions of the state vector and controls. In proposed 

differential games the coefficients of the quadratic form and state equation are function of the state 

variable.   

For the ith player, i=1,2  the problem is to choose a control strategy 𝑢𝑖 = 𝜓𝑖(𝑥, 𝑡) to minimize  

𝐽𝑖 =
1

2
∫ [𝑥𝑇𝑄𝑖(𝑥)𝑥𝑇 + ∑ 𝑢𝑗

𝑇𝑆𝑖𝑗(𝑥)𝑢𝑗

2

𝑗=1

] 𝑑𝑡
∞

0

                                                                                     (1) 

For which the state variable 𝑥 ∈ 𝑅𝑛 and the control variables 𝑢𝑗 ∈ 𝑅𝑚, 𝑗 = 1, 2 satisfy the system [10] 

�̇� = 𝐴(𝑥)𝑥 + ∑ 𝐵𝑗(𝑥)𝑢𝑗

2

𝑗=1

,            𝑥(0) = 𝑥0 ∈ 𝑅𝑛                                                                                 (2) 

Where 𝑄𝑖(𝑥) ∈ 𝑅𝑛×𝑛, 𝑆𝑖𝑗(𝑥) ∈ 𝑅𝑚×𝑚, 𝑖, 𝑗 = 1, 2 are quadratic symmetrical matrices and 𝑄2 = −𝑄1,

𝑆12 = −𝑆22, 𝑆21 = −𝑆11 for all 𝑥 ∈ 𝑅𝑛. The matrices 𝐴(𝑥) ∈ 𝑅𝑛×𝑛, 𝐵𝑗(𝑥) ∈ 𝑅𝑛×𝑚, 𝑗 = 1,2 are 

continuous function together with their derivatives.  

The Hamiltonian for the ith player is 

𝐻𝑖(𝑥, 𝑢, 𝜆) =
1

2
𝑥𝑇𝑄𝑖(𝑥)𝑥 +

1

2
∑ 𝑢𝑗

𝑇𝑆𝑖𝑗(𝑥)𝑢𝑗 + 𝜆𝑗
𝑇(𝐴(𝑥)𝑥 + ∑ 𝐵𝑗(𝑥)𝑢𝑗)

2

𝑗=1

2

𝑗=1

                                    (3) 

With the necessary extreme conditions 

     𝐻𝑖𝑢
= 0        (𝑎)                                                 

�̇�𝑖 = −𝐻𝑖𝑥
     (𝑏)                                                                                                                                                  (4)̇  

      �̇� = 𝐴(𝑥)𝑥 + ∑ 𝐵𝑗(𝑥)𝑢𝑗

𝑁

𝑗=1

      (𝑐) 

Using the value-function approach, one see that the game is normal and from the (4a) the optimal 

control for the ith player is 

  𝑢𝑖
∗

= −𝑆𝑖𝑖
−1(𝑥)𝐵𝑖

𝑇𝜆𝑖                                                                                                                                                   (5) 
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The Hamilton-Jacobi associated equation for the first player will be written by using (5) 

𝜕𝑉1

𝜕𝑡
+

1

2
𝑥𝑇𝑄1(𝑥)𝑥 +

1

2
𝑢1

𝑇𝑆11𝑢1 −
1

2
𝑢2

𝑇𝑆22𝑢2 + (
𝜕𝑉1

𝜕𝑥
)

𝑇

𝐴(𝑥)𝑥 + (
𝜕𝑉1

𝜕𝑥
)

𝑇

𝐵1(𝑥)𝑢1 + (
𝜕𝑉1

𝜕𝑥
)

𝑇

𝐵2(𝑥)𝑢2 = 0 (6) 

In the case of infinite time one will selects the solution of equation (6) as function of the state variable 

𝑉 = 𝑉(𝑥). We consider the solution of (6) of the form  

  
𝜕𝑉𝑖

𝜕𝑥
= 𝑃𝑖(𝑥)𝑥                                                     𝑖 = 1,2                                                                 (7) 

That 𝑃𝑖(𝑥), 𝑖 = 1, 2 is a symmetric positive semidefinite matrix. By  

    𝑥𝑇𝑃𝑖(𝑥)𝐴(𝑥)𝑥 = 𝑥𝑇
𝑃𝑖(𝑥)𝐴(𝑥) + 𝐴𝑇(𝑥)𝑃𝑖(𝑥)

2
𝑥   𝑖 = 1,2                                                    (8) 

And (7) and by the choice 𝑃1 = −𝑃2 = 𝑃, the Hamilton-Jacobi equation (6) becomes 

𝐴𝑇(𝑥)𝑃(𝑥) + 𝑃(𝑥)𝐴(𝑥) − 𝑃(𝑥)(𝐵2𝑆22
−1𝐵2

𝑇 − 𝐵1𝑆11
−1𝐵1

𝑇)𝑃(𝑥) + 𝑄1(𝑥)

= 0                                              (9) 

Above equation is a Riccati algebraic matrix equation of dependent state. The solution of (9) is the 

symmetric matrix 𝑃(𝑥) ≥ 0. Thus, the nonlinear feedback control could be writhed as 

𝑢1
∗ = −𝑆11

−1(𝑥)𝐵1
𝑇𝑃𝑥,                                  𝑢2

∗ = 𝑆22
−1(𝑥)𝐵2

𝑇𝑃𝑥                                                  (10) 

According to Hamilton-Jacobi equation and choice  𝑃1 = −𝑃2 = 𝑃 , we obtain 

𝜆1 = −𝜆2 = 𝑃(𝑥)𝑥                                                                                                                         (11) 

From (4b) it follows 

�̇�1 = −𝑄1𝑥 −
1

2
𝑥𝑇𝑄1𝑥

𝑥 −
1

2
𝑢1

𝑇𝑆11𝑥𝑢1 +
1

2
𝑢2

𝑇𝑆22𝑥𝑢2 − (𝑥𝑇𝐴𝑥
𝑇 + 𝐴𝑇 + 𝑢1

𝑇𝐵1𝑥

𝑇 + 𝑢2
𝑇𝐵2𝑥

𝑇 )𝜆1 (12) 

Derivating of expression (11) and using the dynamic constraints (2) and optimal control value (10) it 

results   

�̇�𝑥 +
1

2
𝑥𝑇𝑄𝑥𝑥 +

1

2
𝑢1

𝑇𝑆11𝑥𝑢1 −
1

2
𝑢2

𝑇𝑆22𝑥𝑢2 + 𝑥𝑇𝐴𝑥
𝑇𝑃𝑥 − 𝑥𝑇𝑃(𝑥)(𝐵2𝑆22

−1𝐵2𝑥

𝑇 − 𝐵1𝑆11
−1𝐵1𝑥

𝑇 )𝑃(𝑥)𝑥

+ 𝑥𝑇[𝐴𝑇(𝑥)𝑃(𝑥) + 𝑃(𝑥)𝐴(𝑥) − 𝑃(𝑥)(𝐵2𝑆22
−1𝐵2

𝑇 − 𝐵1𝑆11
−1𝐵1

𝑇)𝑃(𝑥) + 𝑄1(𝑥)]𝑥

= 0 (13) 

Using (9) and substituting the controls 𝑢1, 𝑢2with its optimal control value (10), equation (13) is 

reduced to  

�̇�𝑥 +
1

2
𝑥𝑇𝑄𝑥𝑥 −

1

2
(𝑃(𝑥)(𝐵2𝑆22

−1𝐵2
𝑇 − 𝐵1𝑆11

−1𝐵1
𝑇)𝑃(𝑥)) + 𝑥𝑇𝐴𝑥

𝑇𝑃𝑥

− 𝑥𝑇𝑃(𝑥)(𝐵2𝑆22
−1𝐵2𝑥

𝑇 − 𝐵1𝑆11
−1𝐵1𝑥

𝑇 )𝑃(𝑥)𝑥 = 0                                                  (14) 

The Riccati differential equation of dependent states (14) represents the optimality criterium. 

3. Special class of differential game 
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We consider the class of differential game that for each player  

𝐽𝑖 = ∫ 𝐿1(𝑥, 𝑢1, 𝑢2)
∞

0

𝑑𝑡                          𝑖 = 1,2                                                                                        (15) 

Satisfying the constraints 

�̇� = 𝑓(𝑥, 𝑢1, 𝑢2)                                                                                                                                        (16)   

Where 𝐿: 𝑅𝑛×𝑚 → 𝑅, 𝑥𝜖𝑅𝑛 , 𝑢1, 𝑢2𝜖𝑅𝑚.  

Where control functions 𝑢1, 𝑢2  are continuous on [0, ∞), differential equation (16) has a unique 

solution on [0, ∞) and one determinate the control function 𝑢𝑖, 𝑖 = 1,2 which minimize (15) and 

implies that 𝑥(𝑡) → 0 as 𝑡 → ∞.  

Theorem 1. Assume that there exist continuous differentiable functions 𝑉𝑖(𝑥): 𝑅𝑛 → 𝑅, 𝑖 = 1,2 

positevly defined satisfying for each 𝑥𝜖𝑅𝑛, Bellman state equation: 

𝑚𝑖𝑛𝑢𝜖Ω{𝐿𝑖(𝑥, 𝑢1, 𝑢2) + 𝑉1𝑥
(𝑥)𝑓(𝑥, 𝑢1, 𝑢2)} = 0                                                                                         (17) 

Let 𝑢𝑖
∗ , 𝑖 = 1,2 be the optimal control defined by: 

𝑢∗(𝑥) = 𝑎𝑟𝑔𝑚𝑖𝑛𝑢𝜖Ω{𝐿𝑖(𝑥, 𝑢1, 𝑢2) + 𝑉1𝑥
(𝑥)𝑓(𝑥, 𝑢1, 𝑢2)} = 0                                                                 (18) 

Such that the solution of the differential system (16) corresponding to 𝑢𝑖
∗ , 𝑖 = 1,2 approaches zero as 

→ ∞ . In these conditions it follows: 

min 𝐽𝑖 = 𝑉𝑖(𝑥0),                 𝑖 = 1,2  

Proof. Along the trajectory of (16) we have: 

𝑉𝑖(𝑥(𝑡)) − 𝑉𝑖(𝑥(0)) − ∫
𝑑𝑉𝑖

𝑑𝜏
𝑑𝜏 = 0

𝑡

0

            𝑖 = 1,2                                                                        (19)   

This can be written as  

𝑉𝑖(𝑥(𝑡)) − 𝑉𝑖(𝑥(0)) − ∫ 𝑉𝑖𝑥
(𝑥)𝑓(𝑥, 𝑢1, 𝑢2)𝑑𝜏 = 0

𝑡

0

            𝑖 = 1,2                                                (20) 

Using the identity 

∫ 𝑚𝑖𝑛𝑢𝜖Ω{𝐿𝑖(𝑥, 𝑢1, 𝑢2) + 𝑉𝑖𝑥
(𝑥)𝑓(𝑥, 𝑢1, 𝑢2)}𝑑𝜏

𝑡

0

= 0               𝑖 = 1,2                                         (21) 

The expression of the functional 𝐽𝑖 will become 

𝐽𝑖 = ∫ 𝐿𝑖(𝑥, 𝑢1, 𝑢2)𝑑𝜏 + 𝑉𝑖(𝑥(0)) − 𝑉𝑖(𝑥(𝑡)) +
𝑡

0

∫ {𝑉𝑖𝑥
(𝑥)𝑓(𝑥, 𝑢1, 𝑢2)

𝑡

0

− 𝑚𝑖𝑛𝑢𝜖Ω{𝐿𝑖(𝑥, 𝑢1, 𝑢2) + 𝑉𝑖𝑥
(𝑥)𝑓(𝑥, 𝑢1, 𝑢2)}}𝑑𝜏 = 0       𝑖 = 1,2                      (22) 
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According to hypothesis, we will consider only the control that for which 𝑥(𝑡) → 0 𝑎𝑠 𝑡 → ∞. Since 

𝑉(𝑥) is positively defined thus 𝑉(𝑥(𝑡)) → 0 𝑎𝑠 𝑡 → ∞. 

It follows that for  t → ∞, the equation (27) will be written  

𝐽𝑖 = ∫ 𝑉𝑖(𝑥(0)) +
𝑡

0

∫ {𝐿𝑖(𝑥, 𝑢1, 𝑢2) + 𝑉𝑖𝑥
(𝑥)𝑓(𝑥, 𝑢1, 𝑢2)

𝑡

0

− 𝑚𝑖𝑛𝑢𝜖Ω{𝐿𝑖(𝑥, 𝑢1, 𝑢2) + 𝑉𝑖𝑥
(𝑥)𝑓(𝑥, 𝑢1, 𝑢2)}}𝑑𝜏 = 0       𝑖 = 1,2                  (22) 

Consequently 

𝑚𝑖𝑛 𝐽𝑖 = 𝑉𝑖(𝑥(0))                                                                                                                      (23) 

This ends the proof of the theorem. □ 

Consider the scalar function 𝑉: 𝑅𝑛 → 𝑅, given by: 

𝑉(𝑥) = 𝑥𝑇𝑃(𝑥)𝑥                                                                                                                     (24) 

Where 𝑃(𝑥) is a symmetric matrix and  𝑃(𝑥) ≥ 0. 

We determine 𝑃(𝑥). Then we construct the optimal controls and we solve the above differential game. 

4. HAM to solve dependent state algebraic Riccati equation 

To solve dependent state Riccati algebraic equation (9) by means of the HAM, let us define: 

𝐺(𝑃) = 𝐴𝑇(𝑥)𝑃(𝑥) + 𝑃(𝑥)𝐴(𝑥) − 𝑃(𝑥)(𝐵2𝑆22
−1𝐵2

𝑇 − 𝐵1𝑆11
−1𝐵1

𝑇)𝑃(𝑥) + 𝑄1(𝑥)

= 0                            (25) 

We construct 0
th
-order deformation equation 

(1 − 𝑞)(𝐺[𝜑(𝑞)] − 𝐺(𝑃0)) = 𝑞ℎ𝐺[𝜑(𝑞)]                                                                            (26) 

Since ℎ ≠ 0, the above equation at 𝑞 = 1 becomes ℎ𝐺[𝜑(𝑞)] = 0, which is equivalent to the original 

equation 𝐺(𝑝) = 0, provided 𝑃 = 𝜑(1). Taking the 1st -order homotopy-derivative on both sides of 

(26), we have the corresponding 1st –order deformation equation 

𝑌1𝐺′(𝑃0) − ℎ𝐺(𝑃0) = 0                                                                                                          (27) 

Whose solution is 

        𝑃1 = ℎ
𝐺(𝑃0)

𝐺′(𝑃0)
                                                                                                     (28) 

Taking the 2nd –order homotopy-derivative on both sides of (26) gives the 2nd –order deformation 

equation: 

𝑃2𝐺′(𝑃0) − (1 + ℎ)𝑃1𝐺′(𝑃0) +
1

2
𝑃1

2𝐺′′(𝑃0) = 0                                                        (29) 

𝑃2 is obtained as follows: 
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𝑃2 = (1 + ℎ)𝑃1 −
𝑌1

2𝐺′′(𝑃0)

2𝐺′(𝑃0)
= ℎ(1 + ℎ)

𝐺(𝑃0)

𝐺′(𝑃0)
−

ℎ2

2

𝐺2(𝑃0)𝐺′′(𝑃0)

[𝐺′(𝑃0)]3                               (30)  

In this way, one obtains 𝑃𝑘 one by one in the order 𝑘 = 1, 2, 3, … . Here, we emphasize that all of these 

high order deformation are linear, and therefore are easy to solve. Then, we have the 1st-order 

homotopy-series approximation 

𝑃 ≅ 𝑃0 + 𝑃1 = 𝑃0 + ℎ
𝐺(𝑃0)

𝐺′(𝑃0)
                                                                                          (31)      

And the 2nd-order homotopy-series approximation 

   𝑃 ≅ 𝑃0 + 𝑃1 + 𝑃2 = 𝑃0 + (2ℎ + ℎ2) 
𝐺(𝑃0)

𝐺′(𝑃0)
 −

ℎ2

2

𝐺2(𝑃0)𝐺′′(𝑃0)

[𝐺′(𝑃0)]3                          (32)          

Obviously, (31) when ℎ = −1, is exactly the same as the famous Newton’s  iteration formula, and 

thus (32) when ℎ = −1, can be regarded as the 2nd-order Newton’s iteration formula. In fact, one can 

give a family of Newton’s iteration formula in a similar way.                        

5. Application 

Example 1. Consider zero-sum nonlinear quadratic differential game as follows: 

Minimizing the functional: 

−𝐽2 = 𝐽1 =
1

2
∫ [𝑥1

4 + 𝑥2
4 − 2𝑢1

2 − 2𝑢2
2]𝑑𝑡

∞

0
 ,                                                                        (33)     

Subject to 

[
�̇�1

�̇�2
] = [

√2
𝑥2

2

𝑥1
2 0

𝑥2 0
] [

𝑥1

𝑥2
] + [

𝑥2
2

𝑥1

0
] (𝑢1 + 𝑢2),           𝑋(0) = [

𝑥1
0

𝑥2
0]                                        (34)                 

Defined in the domain 

 𝐷 = {(𝑥1, 𝑥2): 𝑥1 > 0, 𝑥2 ≠ 0}                                                                                  (35)  

Expressing (33) in form (1), it follows 

𝑄(𝑥) = [
𝑥1

2 0

0 𝑥2
2],    𝑆11 = −𝑆22 =

−2                                                                                                               (36)   

Example 2. Consider the system 

�̇� = 𝑥(𝑡)2 + 𝑥(𝑡)𝑢1(𝑡) + √2𝑥(𝑡)𝑢2(𝑡)                                                                                                                  

Objective function in this differential game as follows: 

𝐽1 = −𝐽2 =
1

2
∫ [−𝑥(𝑡)4 − 𝑢1

2 − 𝑢2
2]

∞

0

𝑑𝑡                                                                                                                

Example 3. This case corresponds to the zero-sum nonlinear quadratic differential game of a bilinear 

system of the form 

http://www.iiste.org/
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�̇� = 𝐵(𝑋)𝑋(𝑢1 + 𝑢2)                                                                                                                                                         

Where 𝑋𝜖𝑅𝑛, 𝑢1, 𝑢2𝜖𝑅 and 𝐵(𝑋) is a quadratic matrix of range 𝑛 × 𝑛. 

Objective function in this differential game as follows: 

𝐽1 = −𝐽2 =
1

2
∫ 𝑋𝑇𝑄𝑋𝑑𝑡

∞

0
                                                                                                                                                      

The matrix 𝑄(𝑋) is positively defined, and the controls belongs to domain 

Ω = {𝑢: |𝑢| ≤ 1}                                                                                                      

The bellman equation () associated to the differential game is given by 

𝑚𝑖𝑛𝑢1
[
1

2
𝑋𝑇𝑄𝑋 + 𝑋𝑇𝑃(𝑋)𝐵(𝑋)𝑋(𝑢1 + 𝑢2)] = 0                                                                          

The condition () is satisfied by the optimal control 

𝑢1
∗ = −𝑠𝑖𝑔𝑛[𝑋𝑇𝑃(𝑋)𝐵(𝑋)𝑋]                                                                                                       

Or 

𝑢1
∗ = {

1                          𝑟𝑒𝑎𝑙 𝑝𝑎𝑟𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑒𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝐵(𝑋)𝑖𝑠 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

−1                        𝑟𝑒𝑎𝑙 𝑝𝑎𝑟𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑒𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝐵(𝑋)𝑖𝑠 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 

And 𝑢2
∗ = −𝑢1

∗ . 

6. Conclusions 

This paper studies the two-person, zero-sum linear quadratic differential games on a finite horizon. 

Some necessary and sufficient conditions for the existence of the value of the game are derived. 

Although we obtain the open loop–open loop saddle points whenever the value of the game exists, 

nothing is said about their synthesis as state feedback. In subsequent papers, we shall further 

investigate the relationship among open loop saddle points, closed loop saddle points, value of the 

game, and the Riccati differential equations. Another future research will discuss infinite horizontal 

differential game problems. 
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