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Abstract 

The application of capture-recapture methods to the estimation of population parameter for epidemiologic and 

demographic event has been growing recently. This paper presents a robust capture-recapture model for 

estimating the size of elusive epidemiologic event. The proposed estimator ���, the Petersen estimator ��� and 
another estimator ��� were compared using the Akaike Information Criterion (AIC) and the Mean Absolute 

Deviation (MAD) through simulation studies. Both the AIC and MAD revealed that ��� is a better and robust 
estimator. It was discovered that ��� under estimates the total elusive population N, ��� over estimate N while ��� was always consistent and performs better than the other two. ��� is particularly better with lower recaptures 
(‘relisting’) ��� which is the case with elusive events. The Petersen ��� breaks down in the presence of 
elusiveness. The other estimator, ��� always over estimates, except in few cases. It is therefore recommended 

that the proposed estimator ��� be used for estimating dual system elusive events. 

Keywords: Trap Response; Dual System Estimation; Elusive events; Petersen estimator; capture-recapture. 

 

1. Introduction 

Dual System Estimation (DSE) is the nomenclature given to two samples Capture-Recapture Method when 

applied to populations other than animals (Seber, 1965 and IWGDMF, 1990). The classical method of estimation 

for this type of experiment was developed and applied to ecological problem by Petersen in 1896, using tagged 

plaice, and Lincoln in 1930 who used band returns to estimate the size of the North American waterfowl 

population as reported by Seber (1982a). Thus, the two-sample capture-recapture method is tagged 

Lincoln-Petersen methods in some literature (Seber, 1982a; Pollock, 1991; Haines et al., 2000). Since the work of 

Petersen and Lincoln, several authors have applied their model and its modified form under varying situations. 

Sekar and Deming (1949) for instance, estimated birth and death rates using two lists: the registrars list (R) 

and the Interviewers list (I) obtained from a complete house –to – house canvass. They also discussed theoretically 

that stratification can be used to improve the Petersen estimates when heterogeneity is thought to affect the 

estimates. Shapiro (1949) used the Petersen estimates to estimate Birth registration completeness in the United 

States. Birth records on file for infants born during the period December 1, 1939 to March 31, 1940 were matched 

against infants cards filled by enumerators and a set of death records on the file for children whose birthdates were 

within the test period but who died before the census data April 1, 1940. 

Alho (1990) introduced an estimator of the unknown population size in a dual registration process based on a 

logistic regression model. His model allows different capture probabilities across individuals and across capture 

times. The probabilities are estimated from the observed data using conditional maximum likelihood. Alho 

developed his method because the classical estimator is known to be biased under population heterogeneity (Seber, 

1982b; Burnham and Overton, 1978; Alho, 1990). 

A Bayesian modification of the Lincoln index was given by Gaskell and George (1972). They observed that 

when the recaptures (n11) is small the interval between possible values of �� for fixed n1. and n.1 are large and that 

the formula (2.2) is at best a poor estimator of the total animal population N when n11 >10. They incorporated a 

prior based on the belief that the experimenter does begin with an idea about the value of N, this may only be 

possible in animal experiment. This is not possible in demographic or epidemiologic elusive events. For other 

applications and modifications of the Petersen estimator for estimating animal population see Schwarz and Seber 

(1999).  

It was discovered that the Petersen Method is sensitive to the marginal totals and that it depends so much on 

the sampling effort (Jibasen, 2011). That is, if the sampling effort is poor yielding fewer n11, the Petersen 

estimator gets poorer, in line with the observation given by Gaskell and George (1972).  

It is known in capture-recapture experiments that whether an individual is caught or not depends on a 

variety of circumstances. One of this is trap response in which individual may exhibit an enduring behavioral 

response to the first capture. That is, after an individual has been captured once, the individual has a long 
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memory of its first-capture experience and the effect lasts for the remainder of the experiment, leading to a 

higher (trap-happy) or lower (trap-shy) capture probability for all subsequent recaptures. Behavior of individuals 

towards trap will usually give wrong population estimates; trap-shyness results in over estimates of population 

size, while trap-happiness results to underestimation. Trap response will generally affects the size of the second 

catch (marginal total). In applying this method to elusive populations, individuals are always on the hide or run 

once arrested or even hearing about the presence of law enforcement agents. This is similar to trap-shyness, that 

is, do everything to avoid a re-arrest. Thus an individual may not be easily re-arrested, leading to a lower 

recapture (‘relisting’) probability. In this work therefore, a novel capture-recapture estimation procedure for an 

elusive population is proposed.  

 

2. Methodology 

Consider a closed population of size N individuals. Let a sample of size n1. be drawn from N without 

replacement, marked and returned back into the population. For simplicity, we call this system 1 as presented in 

Table 1 in the appendix. Here, elements of n1. sample may represent a set of drug addicts that were caught by 

narcotic officials (system 1), probably reformed and released back into the population. If at the second time, 

another sample of size n.1 was drawn from the same closed population without replacement using system 2, the 

interest now is to examine the members of the first sample n1. (say, of drug addicts) that were caught the second 

time (i.e. n11) (recaptured) by system 2.  

The Lincoln-Petersen experiment is the simplest capture-recapture method, for estimating the size N of a closed 

population which consists of catching, marking, and releasing a sample (sample 1) of n1 animals. After allowing 

the marked to mix with the unmarked, a second sample, n.1 is taken from the population. In demography, this is 

known as dual system estimation (Erickson and Kadame, 1985). Equating the proportion of the marked 

recovered in the second sample (n11) to the population proportion n1. /N leads to an estimate of N. 

Mathematically, we have that 

                  
�		�.	 � ��.
                                (2.1) 

which simply leads to the estimate, 

                                     �� � ��.�.��		                          (2.2) 

If ��. and �.� are regarded as constants (that is, a random sample without replacement), then from Table 1 ��� 
has a hypergeometric distribution of the form 

                    ������ � �� ��.�		�� ��.��	�
� ��.	� , ��� � ����0, �.� � ��.�, … , � ����., �.��	
0, "#$%&' (%																																																																	         (2.3) 

Sometimes sample 2 is taken with replacement, in this case ��� has a binomial distribution. According to Seber 

(1982a), the use of hypergeometric distribution emphasizes the fact that it is basically the activity of the 

experimenter that brings about randomness. However, another approach in which randomness is related to the 

activity of the animals considers the N animals in the population as N independent multinomial trials each with 

the same probability of belonging to a given capture-recapture category. These categories are; caught in the first 

sample (��)) only, caught in the second sample (�)�) only, caught in both sample (���) and caught in neither 
sample (�))).  
The assumptions of the Petersen estimator are well known (Seber, 1982a; Pollock, 1991). These are; 

i.) The population size is closed so that N is constant. 

ii.) For each sample, each individual has the same probability of being included in the sample. 

iii.) Marking does not affect the catchability of animals. 

iv.) Animals do not lose their marks between samples. 

v.) All marks (or tags) are reported on recovery in the second sample. 

vi.) The animals are independent of one another as far as catching is concerned. 

The third assumption above does not hold in the presence of trap response, similar to elusiveness in human 
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population.  

The assumptions for the elusive events can be reformulated as follows: 

i.) The population size is closed, that is, no addition is allowed at the time of data collection. 

ii.) Individuals can be matched from list to list, that is, individuals will not change their names or identities, 

moving from one system to another. 

iii.) Catching (listing) does affect the catchability (“listability”) of individuals. 

iv.)  The listing systems may not be independent. 

 Solving (2.2) for ��� yields, ��� � ��.�.�
�     

Or more generally,  

                                        *����� � ��.�.�
                               (2.4) 

It can be seen that (2.3) is the expected value of the hypergeometric random variable, intuitively, the Petersen 

Method (2.2) is at its “best” when the recaptures ��� (those re-listed, in terms of epidemiology) follows the 

hypergeometric distribution.  

For demographic and epidemiologic elusive events, one cannot influence the recaptures, since lists form the 

sampling occasions. Moreover, for such events the recaptures are relatively small, yielding low recapture 

(re-listing) probabilities.  Hence, we seek to estimate N via a Horvitz-Thompson method, where the listing 

probabilities (‘listabilities’) of all individuals is used.  This approach was used by Huggins (1991), who 

proposed modeling the capture probabilities �+  of animals. Huggins used a form of the Horvitz-Thompson 

estimator, where the capture probabilities of the animals �̂- are estimated for which 

                                      �� � ∑ �/0
123	-4�                                  (2.5) 

For dual system estimates (single recaptures), this yields exactly the Petersen estimator (see Jibasen, 2011). That 

is, 

                                   �̂- � 1 � ∏ �1 � �̂��)7  

                           →		 �̂- � 1 � �1 �	��.��1 �	�.��                             (2.6) 
It can be shown that �̂- � 9
� where �� is the Petersen estimator (which is ��� in this work). That is, the 
Huggins (1991) method is related to the Petersen estimator by   

                                        ��� � 9/:0 
 Here we replaced �̂-with another probability � (which we called ‘coverage probability’)	given as 
                                    � � ∑ ;<=>=∑ �<=�=                                        (2.7) 

(see Seber, 1982b) where, x = 0,1,.., s, is the number of times an individual is listed, ?; is the frequency of 
individuals occurring x times and s is the number of systems (sources). 

For a two system formulation,  

                                  �̂ � ∑ ;<=>=∑ �<=�= � �9�                                  (2.8) 

where r is the number of different individuals listed (caught), n is the total number of individuals on both lists 

and s is the number of systems. Following the multinomial setting, the joint probability density function for this 

model is given by Jibasen (2011) as; 

                  ?���., �.�, ���� � � 9�	.� � 9@��.�.�@�		� ���.�		� ���.A�.��1 � ���9@��.@�.�              (2.9) 
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The maximum likelihood estimator (MLE) of 	� is �̂ � ��9 which finally leads to our proposed estimator 

                                 ��� � ∑ �/:974� � 9/:                                (2.10) 
The listing probabilities (‘listabilities’) for this model are a random sample of all individuals in the population, 

that is, �� is based on all listed individuals. 
Another estimator used in this work is the no factor model estimator ��� (Jibasen, 2011). This estimator is given 

as;  

                                      ��� � ��
B�		                        (2.11) 

Under this model it is assumed that all individuals have equal chance of being listed (caught) regardless of 

systems, occasion, or even individual heterogeneity. This assumption is purely unrealistic especially for elusive 

events in which a drug addict caught the first time will always developed measures to avoid being caught the 

second or subsequent times, thereby having different probabilities (chances) of being caught at different times 

and by different systems. However, the new proposed estimator ��� has largely catered for such a realistic 
situation. 

 

3. Simulation Studies 

Simulation was carried under the hypergeometric setting 2.3 using equation 2.2, where the population size N was 

assumed, the marginal totals ��. and �.� were fixed, but the recaptures ��� was generated randomly. The 

values assumed for N are 90, 100, 300, 500, 1000, 2000, 3000 with corresponding values of ��. and �.� fixed 
at 50, 50, 150, 260, 450, 900, 1500 and 10, 10, 80, 30, 40, 80, 100 respectively. From the above, the values of ��. needed to simulate number of recapture ��� are simply obtained by the difference � � ��.. For each triplet 
(�, ��., �.�) as specified above, the simulation scheme was repeated ten times and the total size of the elusive 

population N was estimated using the two estimators ��� , ���  and the newly proposed estimator ���  as 
considered in this study. The performance of each estimator was assessed using Akaike Information Criterion 

(AIC) and the Mean Absolute Deviation (MAD). All the simulations and data analysis were performed within the 

environment of R statistical package (www.cran.org). 

 

4. Results 

Various results from the simulations carried out are presented in Table 2 and Tables A1 to A6 in the appendix. 

It is observed from Table 2 that our new proposed estimator ��� provides better estimates of N than either the ��� or ��� estimator as evident from the results of the AIC and MAD. However, at the seventh iteration of the 

simulation (Table 2) where  �.� � ���, the ��� yielded a perfect estimate of N like ��� in many instances. This 

better performance of ��� at this iteration level could be attributed to chance factor since it is just one out of 
several results obtained. The performances of the three estimators based on their AIC values are presented by the 

plot of their respective AIC estimates versus the number of times the simulation scheme was repeated as shown 

in Figure 1. The superiority of ��� over the other two estimators is clearly shown by this plot. 

When the size of the elusive population  N increases from 90 to 100, results of AIC and MAD in Table 3 in the 

Appendix indicated that the new estimator ��� consistently performed better than both the Petersen estimator  ��� and ���. More specifically, it is observed that as the number of recapture (relisting) ��� gets fewer, both the ��� and ��� estimators get poorer while the ��� estimator continues to yield better estimates of the intended size 

of the elusive population. 

Without loss of generality, various results obtained in this work showed that the new proposed estimator ��� of 
the size of elusive population N is more efficient and robust than the other two (��� and ���) based on the AIC 
and MAD criteria employed as evident from various tables of results (Tables 2 to 8 in the appendix). 

For better understanding of the performances of the three estimators ��� , ���  and ���  under different  
simulation schemes as defined by the triplet (�, ��., �.�), we plotted their respective AIC values against the 
number of times the simulation was performed (iterations) as presented in Figure 2 in the appendix. Only the 

graphs for (300, 150, 80), (500, 260, 30), (1000, 450, 40) and (3000, 1500, 100) schemes based on the results in 

Tables 4, 5, 6 and 8 respectively are presented in Figure 2 due to space. It is easily observed from the four plots 

in Figure 2 that the AIC values of our new estimator ��� is relatively smaller and more stable (less variable) than 

that of  ��� and ��� across all the ten repetitions irrespective the size of the elusive population. 
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5. Discussions and Conclusion 

The work here presents a novel estimator of capture-recapture events in elusive population. A thorough 

comparison of our proposed estimator with two of the existing ones through simulation studies clearly shows the 

superiority of our estimator over others in terms of better performance at estimating the size of the elusive 

population  N. Various results from Table 2 and Tables 3 to 8 in the Appendix show that the estimator ��� 
always overestimates the size of the elusive population N, ��� underestimates N while our new proposed 

estimator ��� always performs better in term of the closeness of its estimates to the target population of 

elusiveness. Further, the results show that ��� is a better estimator of the targeted elusive population irrespective 

the population size. Also, our proposed estimator performs better with fewer ‘relistings’ ���, this is the case of 
elusiveness. 

In other words, the Petersen is at its best when the expected value of ���  follows the hyper geometric 

distribution; but the use of hypergeometric distribution emphasizes the fact that it is basically the activity of the 

experimenter that brings about randomness.  Elusive events are such that the experimenter cannot influence 

randomness. Thus, Petersen performs very poor with fewer ‘relistings’ ���  which is the case of elusive 
population.  

Results from this work suggest that both ��� and ��� cannot be used to estimate the size of elusive populations. 

The work established that the new proposed ��� is a better model compared to ��� and ��� (the Petersen’s 
estimator). This turns to suggest that for elusive epidemiologic populations, the popular Petersen’s model cannot 

be used. In such cases our proposed estimator ���  is a better estimator. 

Estimation of these types of Events (��� and ���) has been focused towards multiple recaptures in literature, but 

some demographic events are such that multiple recaptures may not be possible. This is the case with elusive 

populations. Hence, the need for this proposed method for estimating the size of such events. 
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Appendix 

Table 1: A 2C2 contingency table illustrating capture-recapture scheme from a closed population of size N 

individuals using two systems. 

 System 2 
Total 

Caught Uncaught 

System 1 
Caught  n11 n12 n1. 

Uncaught n21 n22 n2. 

Total n.1 n.2 N 

 

Table 2: Table of results of the three estimators (���, ���, ���) of elusive population N for simulation scheme with 

N = 90, n1. = 50 and n.1 = 10. The AIC values of the estimators at each simulation (iteration) as well as their 

respective computed MADs are equally reported in the table. 

Iteration ��� ��� AIC ��� AIC ��� AIC 

1 7 129 7.141 71 5.366 94 4.272 

2 7 129 7.141 71 5.366 94 4.272 

3 6 150 9.137 83 4.490 97 4.543 

4 8 113 5.760 63 6.112 90 4.010 

5 8 113 5.760 63 6.112 90 4.010 

6 8 113 5.760 63 6.112 90 4.010 

7 10 90 4.000 50 7.124 83 4.490 

8 7 129 7.141 71 5.366 94 4.272 

9 8 113 5.760 63 6.112 90 4.010 

10 5 180 12.197 100 4.759 101 4.824 

MAD  44  28  5  
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Table 3 : Table of results of the three estimators (���, ���, ���) of elusive population N for simulation scheme 

with N = 100, ��.= 50 and �.� = 10. The AIC values of the estimators at each simulation (iteration) as well as 

their respective computed MADs are equally reported in the table. 

Iteration ��� ��� AIC ��� AIC ��� AIC 

1 4 225 16.29 125 6.018 105 4.348 

2 6 150 8.281 83 5.225 97 4.211 

3 6 150 8.281 83 5.225 97 4.211 

4 7 129 6.327 71 6.101 94 4.476 

5 7 129 6.327 71 6.101 94 4.476 

6 7 129 6.327 71 6.101 94 4.476 

7 7 129 6.327 71 6.101 94 4.476 

8 8 113 4.978 63 6.880 90 4.733 

9 6 150 8.281 83 5.225 97 4.211 

10 5 180 11.29 100 4.000 101 4.063 

 MAD    48       23  5  

 

 

Table 4: Table of results of the three estimators (���, ���, ���) of elusive population N for simulation scheme with 

N= 300, ��. = 150 and �.�= 80. The AIC values of the estimators at each simulation (iteration) as well as their 

respective computed MADs are equally reported in the table. 

Iteration ��� ��� AIC ��� AIC ��� AIC 

1 52 254 6.698 231 8.106 276 5.456 

2 55 240 7.519 218 8.906 266 5.996 

3 54 245 7.253 222 8.643 269 5.818 

4 49 270 5.786 245 7.254 285 4.904 

5 51 259 6.405 235 7.830 279 5.274 

6 53 250 6.980 226 8.377 272 5.638 

7 57 232 8.030 211 9.424 260 6.351 

8 53 250 6.980 226 8.377 272 5.638 

9 55 240 7.519 218 8.906 266 5.996 

10 55 240 7.519 218 8.906 266 5.996 

MAD  52  75  29  

 

Table 5: Table of results of the three estimators (���, ���, ���) of elusive population N for simulation scheme with 

N = 500, ��. = 260 and �.� = 30. The AIC values of the estimators at each simulation (iteration) as well as their 

respective computed MADs are equally reported in the table. 

Iteration ��� ��� AIC ��� AIC ��� AIC 

1 17 1237 85.62 459 7.46 514 5.20 

2 19 1107 68.92 411 11.43 506 4.55 

3 23 914 45.76 339 17.64 492 4.71 

4 16 1314 95.88 488 5.06 518 5.53 

5 22 956 50.59 355 16.19 495 4.40 

6 20 1051 62.06 390 13.13 503 4.24 

7 22 956 50.59 355 16.19 495 4.40 

8 16 1314 95.88 488 5.06 518 5.53 

9 18 1168 76.71 433 9.56 510 4.88 

10 20 1051 62.06 390 13.13 503 4.24 

MAD   607   89   9   
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Table 6: Table of results of the three estimators (���, ���, ���) of elusive population N for simulation scheme with 

N = 1000, ��. = 450 and �.� = 40. The AIC values of the estimators at each simulation (iteration) as well as 

their respective computed MADs are equally reported in the table. 

Iteration ��� ��� AIC 	�D� AIC ��� AIC 

1 30 2001 117.7 600 38.61 864 16.29 

2 29 2070 126.8 621 36.54 867 15.96 

3 29 2070 126.8 621 36.54 867 15.96 

4 28 2144 136.6 643 34.44 871 15.63 

5 24 2501 186.1 750 25.07 886 14.30 

6 33 1819 94.4 545 45.04 852 17.27 

7 31 1936 109.3 581 40.68 860 16.62 

8 22 2728 219.0 818 19.24 894 13.62 

9 27 2223 147.3 667 32.28 875 15.30 

10 23 2610 201.7 783 22.28 890 13.96 

MAD  1210  337  127  

Table 7: Table of results of the three estimators (���, ���, ���) of elusive population N for simulation scheme with 

N = 2000, ��. = 900 and �.� = 80. The AIC values of the estimators at each simulation (iteration) as well as 

their respective computed MADs are equally reported in the table. 

Iteration ��� ��� AIC ��� AIC ��� AIC 

1 49 4900 353.7 1469 49.74 1769 24.93 

2 48 5002 368.2 1500 47.13 1773 24.60 

3 57 4212 259.1 1263 67.99 1739 27.59 

4 63 3811 206.8 1143 80.48 1716 29.56 

5 52 4617 314.2 1385 57.05 1758 25.94 

6 60 4002 231.4 1200 74.22 1727 28.58 

7 59 4069 240.3 1220 72.15 1731 28.25 

8 56 4288 269.2 1286 65.88 1742 27.26 

9 55 4365 279.7 1309 63.74 1746 26.93 

10 60 4002 231.4 1200 74.22 1727 28.58 

MAD  2327  702  257  

 

Table 8: Table of results of the three estimators (���, ���, ���) of elusive population N for simulation scheme with 

N = 3000, ��. = 1500 and �.� = 100. The AIC values of the estimators at each simulation (iteration) as well as 

their respective computed MADs are equally reported in the table. 

Iteration ��� ��� AIC ��� AIC ��� AIC 

1 71 9014 784.4 2113 86.04 2922 11.45 

2 71 9014 784.4 2113 86.04 2922 11.45 

3 65 9846 914.1 2308 67.57 2945 9.26 

4 76 8421 694.3 1974 100.21 2903 13.27 

5 74 8649 728.6 2027 94.61 2911 12.55 

6 67 9552 867.8 2239 73.99 2938 9.99 

7 71 9014 784.4 2113 86.04 2922 11.45 

8 64 10000 938.5 2344 64.24 2949 8.89 

9 55 11636 1205 2727 28.85 2984 5.56 

10 64 10000 938.5 2344 64.24 2949 8.89 

MAD  6515  770  65  
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Figure 1: The plot of Akaike Information Criteria (AIC) of the three estimators, ���, ��� and ��� of the elusive 
population N. The plot shows better performance (low AIC values) of our new proposed estimator ��� over 
others. 

 

Figure 2: The plot of the AIC values of each of the estimators ���, ��� and ��� against the number of times 

simulation scheme was repeated for the selected schemes (�, ��., �.�) = {(300, 150, 80), (500, 260, 30), (1000, 
450, 40), (3000, 1500, 100)} where N is the assumed size of the elusive population, ��. and �.� are the total 
number of persons (drug addicts) caught by systems 1 and 2 respectively.   
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