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Abstract

A Sum of hazard functions of exponential mixtures characterizes a convolution of infinitely
divisible mixed Poisson distributions which is also a convolution of compound Poisson distri-
butions.
For each sum of two special cases of Hofmann hazard function, the following have been ob-
tained:

• the probability generating function (pgf) of the convolution of the mixed Poisson distri-
butions.

• the pgf of the independent and identically distributed (iid) random variables for the
convolution of the compound Poisson distributions.

• the recursive form of the convolution of the compound Poisson distribution.

We also wish to find out whether Panjer’s recursive model holds for all cases.
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functions, characterization, compound Poisson distribution, Panjer’s recursive model, Laplace
transform

1 Introduction

The objective of this paper is to show that a sum of two hazard functions of exponential mixtures
gives rise to a convolution of infinitely divisible mixed Poisson distributions and hence a convolu-
tion of compound Poisson distributions. Pairs of Hofmann hazard functions have been considered
to identify the convolutions.

The rest of the paper is organised as follows: Section 2 briefly discusses the relationship between a
hazard function of an exponential mixture and the corresponding infinitely divisible mixed Poisson
distribution. Section 3 proves that a sum of two hazard functions of exponential mixtures gives
rise to a convolution of two mixed Poisson distributions and a convolution of two corresponding
compound Poisson distributions. Section 4 is an illustration of the results obtained using sums of
various cases of Hofmann hazard function. Concluding remarks are given in section 5.

2 A Single Hazard Function of an Exponential Mixture

A mixed Poisson distribution can be expressed in terms of a Laplace transform as

pn(t) = (−1)n
tn

n!
L

(n)
Λ (t) n = 0, 1, 2, ... (2.1)
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where LΛ(t) is Laplace transform of the mixing distribution

and

L
(n)
Λ (t) =

dn

d tn
LΛ(t) (2.2)

When n = 0, we have

p0(t) = LΛ(t)

= e
−In 1

LΛ(t)

= e−θ(t) (2.3)

where,

θ(t) = In
1

LΛ(t)
(2.4)

∴ θ′(t) = −L
′
Λ(t)

LΛ(t)
(2.5)

= h(t)

which is a hazard function of the exponential mixture.

Since h(t) = θ′(t) is completely monotone and θ(0) = 0, then p0(t) is a Laplace transform of an
infinitely divisible mixing distribution.

Hence the mixed Poisson distribution pn(t) is also infinitely divisible (Feller, Chapter XIII, Vol.
2, 1971).Furthermore, an infinitely divisible mixed Poisson distribution is a compound Poisson
distribution (Feller, Chapter XII, Vol. I, 1968; Ospina and Gerbes, 1987) whose pgf is given by

H(s, t) = e−θ(t)(1−G(s,t)) (2.6)

where G(s, t) is the pgf of the iid random variables.

Since the pgf of the mixed Poisson distribution is

H(s, t) = e−θ(t−ts) (2.7)

by equating the two formulae for pgf, H(s, t), we get

G(s, t) = 1− θ(t− ts)
θ(t)

(2.8)

Therefore the probability mass functions (pmfs) of the iid random variables are

gx(t) =
1

x!

dx

dsx
G(s, t)|s=0

= (−1)x−1 t
x

x!

θx(t)

θ(t)
, x = 1, 2, 3... (2.9)

and

g0(t) = 0 (2.10)

Let x = i+ 1, which implies that x− 1 = i, and hence

gi+1(t) = (−1)i
ti+1

(i+ 1)!

θi+1(t)

θ(t)
, i = 0, 1, 2, 3... (2.11)

The recursive form for the compound Poisson distribution is

n pn(t) = θ(t)

n∑
x=0

x gx(t)pn−x(t) n = 1, 2, 3...

or

(n+ 1)pn+1(t) = θ(t)

n∑
i=0

(i+ 1)gi+1(t)pn−i(t)

=

n∑
i=0

(−1)i
ti+1

i!
θi+1(t)pn−i(t) n = 0, 1, 2, 3... (2.12)

Using the recursive relation, pn(t) can be obtained iteratively.
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3 A sum of two hazard functions of exponential mixtures

3.1 Derivations of key results for convolutions

Let

h1(t) = θ
′

1(t) and h2(t) = θ
′

2(t) (3.1)

be two hazard functions of exponential mixtures.

Further, let

θ(t) = θ1(t) + θ2(t) (3.2)

Applying equation (2.7), the pgf of the mixed Poisson distribution is

H(s, t) = e−θ(t−ts)

= e−{θ1(t−ts)+θ2(t−ts)}

= e−θ1(t−ts)e−θ2(t−ts) (3.3)

which is a product of two pgfs of mixed Poisson distributions.

Hence a sum of two hazard functions of exponential mixtures gives rise to a convolution of two
random variables from mixed Poisson distributions.

Since infinitely divisible mixed Poisson distributions are also compound Poisson distributions,
then the pgf can be expressed as

H(s, t) = e−{θ1(t)+θ2(t)}{1−G(s,t)}

= e−θ1(t){1−G(s,t)}e−θ2(t){1−G(s,t)} (3.4)

implying a convolution of two compound Poisson random variables.

Equating the two formulae for H(s, t), we get the pgf of the iid random variables for the convolution
of the compound Poisson random variables

G(s, t) = 1− θ1(t− ts) + θ2(t− ts)
θ1(t) + θ2(t)

(3.5)

with corresponding pmf of the iid random variables being

g0(t) = 0 (3.6)

and

gx(t) = (−1)x−1 t
x

x!

θx1 (t) + θx2 (t)

θ(t)
, x = 1, 2, 3... (3.7)

or

gi+1(t) = (−1)i
ti+1

(i+ 1)!

θi+1
1 (t) + θi+1

2 (t)

θ(t)
, i = 0, 1, 2, ... (3.8)

The recursive form for the compound Poisson distribution is either given by

n pn(t) =

n∑
x=1

(−1)x−1 tx

(x− 1)!
(θx1 (t) + θx2 (t)) pn−x(t), n = 1, 2, 3, ... (3.9a)

or

(n+ 1)pn+1(t) =

n∑
i=0

(−1)i
ti+1

i!

(
θi+1

1 (t) + θi+1
2 (t)

)
pn−i(t), n = 0, 1, 2, 3...

(3.9b)

Using this recursive relation, pn(t) can be obtained iteratively.
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3.2 A Special Case

When the first hazard function is a constant, we have:

h1(t) = θ′1(t) = δ (3.10)

and hence

θ1(t) = δt (3.11)

Therefore,

θ′1(t) + θ′2(t) = δ + θ′2(t) (3.12a)

θ1(t) + θ2(t) = δt+ θ2(t) (3.12b)

and

H(s, t) = e−δt(1−s)e−θ2(t−ts) (3.13)

which is a product of the pgf of a Poisson distribution with parameter δt and a pgf of a mixed
Poisson distribution.

The pgf of the iid random variables of the convolution of the compound Poisson distributions

G(s, t) = 1− θ1(t− ts) + θ2(t− ts)
θ1(t) + θ2(t)

= 1− δ ∗ (t− ts) + θ2(t− ts)
δt+ θ2(t)

(3.14)

By differentiating G(s, t)

∂ G(s, t)

∂s
= −−δt− tθ

′
2(t− ts)

δt+ θ2(t)

=
δt+ tθ′2(t− ts)
δt+ θ2(t)

(3.15)

∂2 G(s, t)

∂s2
=
−t2θ′′2 (t− ts)
δt+ θ2(t)

(3.16)

we obtain

Gx(s, t) =
(−1)x−1txθx2 (t− ts)

δt+ θ2(t)
x = 2, 3, ... (3.17)

and the pmfs of the iid random variables

∴ g0(t) = G(0, t) = 0 (3.18a)

g1(t) =
∂ G(s, t)

∂s
|s=0=

δt+ tθ′2(t)

δt+ θ2(t)
(3.18b)

gx(t) = (−1)x−1 t
x

x!

∂x G(s, t)

∂sx
|s=0

= (−1)x−1 t
x

x!

θx2 (t)

δt+ θ2(t)
x = 2, 3, ... (3.18c)
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The recursive form of the compound Poisson distribution is

n pn(t) = θ(t)

n∑
x=1

x gx(t) pn−x(t)

= θ(t)g1(t)pn−1(t) + θ(t)

n∑
x=2

x gx(t) pn−x(t)

= (δt+ tθ′2(t)) pn−1(t) +

n∑
x=2

x
(−1)x−1 tx θx2 (t)

x!
pn−x(t)

= (δt+ tθ′2(t)) pn−1(t) +

n∑
x=2

(−1)x−1 tx θx2 (t)

(x− 1)!
pn−x(t) (3.19)

as given by Walhin and Paris (2002)

Replacing n by n+ 1 in (3.19), we have

(n+ 1) pn+1(t) = (δt+ tθ′2(t)) pn(t) +

n+1∑
x=2

(−1)x−1 tx θx2 (t)

(x− 1)!
pn−(x−1)(t) (3.20)

Let x = i+ 1, which implies that x− 1 = i, and therefore

(n+ 1) pn+1(t) = (δt+ tθ′2(t)) pn(t) +

n∑
i=1

(−1)i ti+1 θi+1
2 (t)

i!
pn−i(t) n = 0, 1, 2... (3.21)

4 Sums of Hofmann hazard functions

Walhin and Paris (1999) defined Hofmann distribution as:

p0(t) = e−θ(t)

and

pn(t) = (−1)n
tn

n!
pn0 (t) n = 1, 2, 3, ...

where

θ′(t) =
p

(1 + ct)a
p > 0, c > 0, a ≥ 0

and

θ(0) = 0

Wakoli and Ottieno (2015) determined that θ′(t) is in fact a hazard function of an exponential
mixture and referred to it as Hofmann hazard function. Let the sum of two hazard functions of
exponential mixture be in the form of Hofmann hazard functions; i.e,

h(t) =
p1

(1 + c1t)a1
+

p2

(1 + c2t)a2

We wish to obtain the following:

• the pgf of mixed Poisson distribution.

• the pgf of the iid random variables.

• the recursive form of the compound Poisson distribution for cases of ai, where i = 1, 2

We also wish to find out whether Panjer’s recursive model still holds for all cases.
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4.1 When the first hazard function is a constant

4.1.1 The case of a1 = 0 and a2 = 1
2

h(t) = θ′(t) = p1 +
p2

(1 + c2t)
1
2

p1 > 0, p2 > 0, c2 > 0

where the second hazard function is that of an exponential-inverse Gaussian distribution.

Therefore

θ1(t) = p1t ; θ2(t) =
2p2

c2

(
(1 + c2t)

1
2 − 1

)
(4.1a)

θ1(t− ts) = p1 ∗ (t− ts) ; θ2(t− ts) =
2p2

c2

(
(1 + c2t− c2ts)

1
2 − 1

)
(4.1b)

The pgf of the convolution is

H(s, t) = e−θ1(t−ts)e−θ2(t−ts)

= e−p1t(1−s) e
2p2
c2

(
(1+c2t−c2ts)

1
2−1

)
(4.2)

The the sum of hazard functions of exponential distribution and that of the exponential-inverse
Gaussian distribution, therefore, gives rise to the convolution of the Poisson distribution and the
Poisson-inverse Gaussian (Sichel) distribution. Using (3.5) the pgf of the iid random variables of
the convolution of the compound Poisson distribution is

G(s, t) = 1− 1

θ(t)
{p1t− p1ts+

2p2

c2
{(1 + c2t− c2ts)

1
2 − 1}

G′(s, t) =
1

θ(t)

{
p1t+

p2

c2
(c2t)

1(1 + c2t− c2ts)−
1
2

}
G′′(s, t) =

1

θ(t)
(
1

2
)
p2

c2
(c2t)

2(1 + c2t− c2ts)−
3
2

G′′′(s, t) =
1

θ(t)
(
1

2
)(

3

2
)
p2

c2
(c2t)

3(1 + c2t− c2ts)−
5
2

Giv(s, t) =
1

θ(t)
(
1

2
)(

3

2
)(

5

2
)
p2

c2
(c2t)

4(1 + c2t− c2ts)−
7
2

Gv(s, t) =
1

θ(t)

2.3− 1

2

2.2− 1

2

2.1− 1

2

p2

c2
(c2t)

4(1 + c2t− c2ts)−
(2.4−1)

2

Gx(s, t) =
1

θ(t)

(
2(x− 1)− 1

2

) (
2(x− 2)− 1

2

)
...

(
2.2− 1

2

) (
2.1− 1

2

)
p2

c2
(c2t)

x{(1 + c2t− c2ts)−
(2x−1)

2

=
1

θ(t)

(
x− 1− 1

2

) (
x− 2− 1

2

)
...

(
2− 1

2

) (
1− 1

2

)
p2

c2
(c2t)

x{(1 + c2t− c2ts)−x+ 1
2

=
1

θ(t)

(
−1

2
+ x− 1

) (
−1

2
+ x− 2

)
...

(
−1

2
+ x− x+ 2

) (
−1

2
+ x− x+ 1

)
p2

c2
(c2t)

x{(1 + c2t− c2ts)−x+ 1
2

=
(x− 1)!

θ(t)

(
− 1

2 + x− 1
x− 1

)
p2

c2
(c2t)

x{(1 + c2t− c2ts)
1
2−x

=
(x− 1)!

θ(t)
p2t

(
1
2 + x− 1− 1

x− 1

)
(

c2t

(1 + c2t− c2ts
)x−1 (

1

(1 + c2t− c2ts
)

1
2

for x = 2, 3, ... (4.3)
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Therefore the pmfs of the iid random variables are

g0(t) = 0 (4.4a)

g1(t) =
1

θ(t)

{
p1t+

p2t

(1 + c2t)
1
2

}
(4.4b)

gx(t) =
1

θ(t)

1

x
p2t

(
− 1

2
x− 1

)
(− c2t

(1 + c2t
)x−1 (1 + c2t)

− 1
2 for x = 2, 3, ...

where

θ(t) = θ1(t) + θ2(t)

= p1t+
2p2

c2

(
(1 + c2t)

1
2 − 1

)
(4.4c)

And so

gx(t)

gx−1(t)
=

1
x

(
− 1

2
x− 1

)
(− c2t

(1+c2t
)x−1

1
(x−1)

(
− 1

2
x− 2

)
(− c2t

(1+c2t
)x−2

=
x− 1

x

(
− 1

2
x− 1

)
(
− 1

2
x− 2

) (
−c2t

(1 + c2t
)

= (
x− 1

x
) (

3
2 − x
x− 1

) (
−c2t

1 + c2t
)

=
c2t

(1 + c2t)
− 3 c2t

2 (1 + c2t)

1

x

which is in Panjer’s recursive form with

a =
c2t

(1 + c2t)
and b = −3

2

c2t

(1 + c2t)

The recursive form for the convolution of compound Poisson distributions is

n pn(t) = θ(t)

n∑
x=1

x gx(t) pn−x(t)

= θ(t) g1(t) pn−1(t) + θ(t)

n∑
x=2

x gx(t) pn−x(t)

=

(
p1t+

p2t

(1 + c2t)
1
2

)
pn−1(t)+

(1 + c2t)
− 1

2 p2t

n∑
x=2

(
− 1

2
x− 1

)
(− c2t

(1 + c2t
)x−1 pn−x(t) n = 1, 2, ... (4.5)

4.1.2 The case of a1 = 0 and a2 = 1

h(t) = p1 +
p2

(1 + c2t)
p1 > 0, p2 > 0, c2 > 0 (4.6)

where the second hazard function is that of Pareto.

This sum of hazard functions can be obtained by considering an exponential mixture whose mixing
distribution is the shifted-gamma distribution. The mixture is constructed below:
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The pdf of the shifted-gamma distribution is

g(λ) =
βα

Γα
e−β(λ−µ) (λ− µ)α−1 λ > µ, α > 0, β > 0 (4.7)

The survival function of the exponential mixture is

S(t) =

∞∫
λ=0

S(t|λ) g(λ) dλ

=

∞∫
λ=µ

e−λ t
βα

Γα
e−β(λ−µ) (λ− µ)α−1 dλ

Let y = λ− µ hence λ = y + µ and dλ = dy

∴ S(t) =
βα

Γα

∞∫
y=0

e−(y+µ) t e−β y yα−1 dy

=
βα

Γα
e−µ t

∞∫
y=0

e−y (β+t) yα−1 dy

=
βα

Γα
e−µ t

Γα

(β + t)α

= βα e−µ t (β + t)−α (4.8)

−S′(t) = βα (µ) e−µ t (β + t)−α + βα e−µ t (α) (β + t)−α−1

h(t) =
−S′(t)
S(t)

=
βα (µ) e−µ t (β + t)−α + βα e−µ t (α) (β + t)−α−1

βα e−µ t (β + t)−α

= µ+ α (β + t)−1

= µ+
α

β + t

= µ+

α
β

1 + 1
β t

(4.9)

which is the hazard function of the exponential-shifted gamma distribution.

The hazard function of the exponential-shifted gamma distribution is therefore the sum of Hofmann
hazard functions given by

h(t) = p1 +
p2

1 + c2t

where p1 = µ, p2 = α
β and c2 = 1

β

Therefore

θ1(t) = p1t ; θ2(t) =
p2

c2
In(1 + c2t)

θ1(t− ts) = p1 ∗ (t− ts) ; θ2(t− ts) =
p2

c2
In(1 + c2t− c2ts)

The pgf of the convolution is

H(s, t) = ep1t(s−1) e
p2
c2

In
(

1
1+c2t−c2ts

)

= ep1t(s−1) (
1

1 + c2t− c2ts
)
p2
c2

= ep1t(s−1)

(
1

1+c2t

1− ct
1+c2t

s

) p2
c2

= ep1t(s−1)

(
1

1+c2t

1− ct
1+c2t

s

) p2
c2

(4.10)
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Therefore the sum of hazard functions of exponential distribution and that of the exponential-
gamma (Pareto)distribution gives rise to the convolution of the Poisson distribution and the
Poisson-gamma (negative binomial) distribution.

By differentiating the pgf of the iid random variables of the convolution of the compound Poisson
distribution:

G(s, t) = 1− 1

θ(t)
{p1t− p1ts+

p2

c2
In(1 + c2t− c2ts)}

G
′
(s, t) =

∂ G(s, t)

∂s
= − 1

θ(t)
{−p1t+

p2

c2
(−c2t)(1 + c2t− c2ts)−1}

G
′′
(s, t) = − 1

θ(t)
{(−1)

p2

c2
(−c2t)2(1 + c2t− c2ts)−2)}

G′′′(s, t) = − 1

θ(t)
{(−1)(−2)

p2

c2
(−c2t)3(1 + c2t− c2ts)−3)}

Gx(s, t) =
1

θ(t)
(x− 1)!

p2

c2
(

c2t

1 + c2t− c2ts
)x (4.11)

we obtain the pmfs of the iid random variables

g0(t) = G(0, t) = 0 (4.12a)

g1(t) = G′(0, t)

=
1

θ(t)

(
p1t+

p2t

1 + c2t

)
(4.12b)

gx(t) =
1

x!
G(x)(s, t)|s=0

=
1

x!
(x− 1)!

p2t

θ(t)
(1 + c2t)

−x (c2t)
x−1

=
1

x

1

θ(t)

p2

c2

(
c2t

1 + c2t

)x
=

1

x

(
1

p1t+ p2

c2
In(1 + c2t)

)
p2

c2

(
c2t

1 + c2t

)x
x = 2, 3, ... (4.12c)

∴
gx(t)

gx−1(t)
=
x− 1

x

c2t

1 + c2t

=
ct

1 + c2t
+
− c2t

1+c2t

x
x = 2, 3, ...

which is Panjer’s recursive model with

a =
c2t

1 + c2t
and b = − c2t

1 + c2t

Remark 1 This Panjer’s model is the same as that of a logarithmic series distribution with pa-
rameter c2t

1+c2t

The recursive form for the convolution of compound Poisson distributions is:

n pn(t) = θ(t)

n∑
x=1

x gx(t) pn−x(t)

= θ(t) g1(t) pn−1(t) + θ(t)

n∑
x=2

x gx(t) pn−x(t)

= θ(t)
1

θ(t)

(
p1t+

p2t

1 + c2t

)
pn−1(t) + θ(t)

n∑
x=2

x
1

x

1

θ(t)

p2

c2

(
c2t

1 + c2t

)x
pn−x(t)

= θ(t) g1(t) pn−1(t) +

n∑
x=2

p2

c2

(
c2t

1 + c2t

)x
pn−x(t) for n = 1, 2, 3, ...

(4.13)
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and

p0(t) = e−θ(t)

= e−p1t− p2
c2

In(1+c2t)

= e−p1t

(
1

1 + c2t

) p2
c2

(4.14)

Replace n by n+ 1 in (4.13)

(n+ 1)pn+1(t) = θ(t) g1(t) pn(t) +

n+1∑
x=2

p2

c2

(
c2t

1 + c2t

)x
pn−(x−1)(t)

and let x = i+ 1, so that x− 1 = i

(n+ 1)pn+1 = θ(t) g1(t) pn(t) +

n∑
i=1

p2

c2

(
c2t

1 + c2t

)i+1

pn−i(t) (4.15)

To obtain pn(t) explicitly, we use

Method 1: The iteration technique

For n = 1

p1(t) =

(
p1t+

p2t

1 + c2t

)
p0(t) (4.16)

=

(
p1t+

p2

c2

c2t

1 + c2t

)
p0(t)

= (p1t p0(t)) +
p2

c2

(
c2t

1 + c2t

)
p0(t)

Substituting (4.14) into (4.16), we obtain

p1(t) = e−p1t
(p1t)

1

1!

(
c2t

1 + c2t

)0 (
1

1 + c2t

) p2
c2

+ e−p1t
p1t)

0

0!

p2

c2

(
c2t

1 + c2t

) (
1

1 + c2t

) p2
c2

=

1∑
k=0

e−p1t (p1t)
1−k

(1− k)!

(p2

c2
+ k − 1

k

) (
c2t

1 + c2t

)k (
1

1 + c2t

) p2
c2

For n = 2

2 p2(t) =

(
p1t+

p2t

1 + c2t

)
p1(t) +

p2

c2

(
c2t

1 + c2t

)2

p0(t)

Using (4.12)

p2(t) =

{(
p1t+

p2t

1 + c2t

)2

+
p2

c2

(
c2t

1 + c2t

)2
}

p0(t)

2
(4.17)

=

{
(p1t)

2 + 2 p1t
p2t

1 + c2t
+

(
p2t

1 + c2t

)2

+
p2

c2

(
c2t

1 + c2t

)2
}

p0(t)

2

=

{
(p1t)

2 + 2 p1t
p2

c2

(
c2t

1 + c2t

)
+

(
p2

c2

)2 (
c2t

1 + c2t

)2

+
p2

c2

(
c2t

1 + c2t

)2
}

p0(t)

2

=
(p1t)

2

2
p0(t) + p1t

p2

c2

(
c2t

1 + c2t

)
p0(t) +

(
p2

c2
+ 1

)
p2

c2

(
c2t

1 + c2t

)2
p0(t)

2

p2(t) = e−p1t
(p1t)

2

2

(
1

1 + c2t

) p2
c2

+ e−p1t p1t
p2

c2

(
c2t

1 + c2t

) (
1

1 + c2t

) p2
c2

+

1

2
e−p1t

(
p2

c2
+ 1

)
p2

c2

(
c2t

1 + c2t

)2 (
1

1 + c2t

) p2
c2

=

2∑
k=0

e−p1t (p1t)
2−k

(2− k)!

(p2

c2
+ k − 1

k

) (
c2t

1 + c2t

)k (
1

1 + c2t

) p2
c2
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For n = 3

3p3(t) =

(
p1t+

p2t

1 + c2t

)
p2(t) +

p2

c2

3∑
x=2

(
c2t

1 + c2t

)x
p3−x(t)

=

(
p1t+

p2t

1 + c2t

)
p2(t) +

p2

c2

(
c2t

1 + c2t

)2

p1(t) +
p2

c2

(
c2t

1 + c2t

)3

p0(t)

=

(
p1t+

p2t

1 + c2t

) {(
p1t+

p2t

1 + c2t

)2

+
p2

c2

(
c2t

1 + c2t

)2
}

p0(t)

2
+

p2

c2
(

(
c2t

1 + c2t

)2 {
p1(t) +

(
p2t

1 + c2t

)}
p0(t)) +

p2

c2

(
c2t

1 + c2t

)3

p0(t)

=

(
p1t+

p2t

1 + c2t

)3
p0(t)

2
+
p2

c2

(
p1t+

p2t

1 + c2t

) (
c2t

1 + c2t

)2
p0(t)

2
+

p2

c2
(

(
c2t

1 + c2t

)2 (
p1t+

p2t

1 + c2t

)
p0(t) +

(
c2t

1 + c2t

)3

p0(t))

=

(
p1t+

p2t

1 + c2t

)3
p0(t)

2
+

3

2

p2

c2

(
p1t+

p2t

1 + c2t

) (
c2t

1 + c2t

)2

p0(t) +
p2

c2

(
c2t

1 + c2t

)3

p0(t)

= (p1t)
3 p0(t)

2
+ 3 (p1t)

2

(
p2t

1 + c2t

)
p0(t)

2
+ p1t

{
3

(
p2t

1 + c2t

)2

+ 3
p2

c2

(
c2t

1 + c2t

)2
}

p0(t)

2
+{(

p2t

1 + c2t

)3

+ 3

(
p2t

1 + c2t

)
p2

c2

(
c2t

1 + c2t

)2

+ 2
p2

c2

(
c2t

1 + c2t

)3
}

p0(t)

2

= (p1t)
3 p0(t)

2
+ 3 (p1t)

2 p2

c2

(
c2t

1 + c2t

)
p0(t)

2
+ 3 p1t

{ (
p2

c2

)2(
c2t

1 + c2t

)2

+
p2

c2

(
c2t

1 + c2t

)2
}

p0(t)

2
+{(

p2

c2

)3 (
c2t

1 + c2t

)3

+ 3

(
p2

c2

)2 (
c2t

1 + c2t

)3

+ 2
p2

c2

(
c2t

1 + c2t

)3
}

p0(t)

2

= (p1t)
3 p0(t)

2
+ 3 (p1t)

2 p2

c2

(
c2t

1 + c2t

)
p0(t)

2
+ 3 (p1t)

(
p2

c2
+ 1

) (
p2

c2

) (
c2t

1 + c2t

)2
p0(t)

2
+{(

p2

c2

)2

+ 3

(
p2

c2

)
+ 2

} (
p2

c2

) (
c2t

1 + c2t

)3
p0(t)

2

p3(t) = e−p1(t) (p1t)
3

3!

(
1

1 + c2t

) p2
c2

+ e−p1(t) (p1t)
2

2!

p2

c2

(
c2t

1 + c2t

) (
1

1 + c2t

) p2
c2

+

e−p1(t) (p1t)

1!

(p2

c2
+ 1

2

) (
c2t

1 + c2t

)2 (
1

1 + c2t

) p2
c2

=

3∑
k=0

e−p1t (p1t)
3−k

(3− k)!

(p2

c2
+ k − 1

k

) (
c2t

1 + c2t

)k (
1

1 + c2t

) p2
c2

In general therefore,

pn(t) =

n∑
k=0

e−p1t (p1t)
n−k

(n− k)!

(p2

c2
+ k − 1

k

) (
c2t

1 + c2t

)k (
1

1 + c2t

) p2
c2

n = 1, 2, 3, ...

(4.18)

Method 2: The pgf technique

H(s, t) =

∞∑
n=0

pn(t) sn

= e−p1t(1−s)

(
1

1+c2t

1− ct
1+c2t

s

) p2
c2

= e−p1t

(
1

1 + c2t

) p2
c2

ep1ts

(
1− ct

1 + c2t
s

)− p2
c2
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But

ep1ts = 1 +
p1t

1
s+

(p1t)
2

2
s2 +

(p1t)
3

3
s3 + ...

=

n∑
k=0

{
(p1t)

n−k

(n− k)!

}
sn−k

(
1− ct

1 + c2t
s

)− p2
c2

= 1 +

(
−p2

c2
1

)
−c2t

1 + c2t
s+

(
−p2

c2
2

) (
−c2t

1 + c2t

)2

s2 + ...

=

n∑
k=0

{(
−p2

c2
k

) (
−c2t

1 + c2t

)k}
sk

∴ H(s, t) =

∞∑
n=0

{
e−p1t

(
1

1 + c2t

) p2
c2

n∑
k=0

(p1t)
n−k

(n− k)!

(
−p2

c2
k

) (
−c2t

1 + c2t

)k}
sn

∴ pn(t) =

n∑
k=0

e−p1t
(p1t)

n−k

(n− k)!

(
−p2

c2
k

) (
−c2t

1 + c2t

)k (
1

1 + c2t

) p2
c2

=

n∑
k=0

e−p1t
(p1t)

n−k

(n− k)!
(−1)k

(
−p2

c2
k

) (
c2t

1 + c2t

)k (
1

1 + c2t

) p2
c2

=

n∑
k=0

e−p1t
(p1t)

n−k

(n− k)!

(p2

c2
+ k − 1

k

) (
c2t

1 + c2t

)k (
1

1 + c2t

) p2
c2

(4.19)

which is a convolution of a Poisson distribution and negative binomial distribution.

4.1.3 The case of a1 = 0 and a2 = 2

h(t) = θ′(t) = p1 +
p2

(1 + c2t)2
p1 > 0, p2 > 0, c2 > 0

where the second hazard function is what we have called Polya-Aeppli hazard function (Wakoli
and Ottieno 2015, p. 234)

∴ θ1(t) = p1t ; θ2(t) =
p2

c2

(
1− (1 + c2t)

−1
)

θ1(t− ts) = p1 ∗ (t− ts) ; θ2(t− ts) =
p2

c2

(
1− (1 + c2t− c2ts)−1

)
The pgf of the convolution is

H(s, t) = e−p1t(1−s) e
p2
c2

(1−(1+c2t−c2ts)−1) (4.20)

Therefore the sum of hazard functions of the exponential distribution and that of Polya-Aeppli
distribution gives rise to the convolution of the Poisson distribution and Polya-Aeppli distribution.

The pgf of the iid random variables of the convolution of the compound Poisson distribution is

G(s, t) = 1− θ(t− ts)
θ(t)

= 1− 1

θ(t)
(p1t− p1ts+

p2

c2

(
1− (1 + c2t− c2ts)−1

)
)

G′(s, t) = − 1

θ(t)

(
−p1t−

p2

c2
(−1) (−c2t)1 (1 + c2t− c2ts)−2

)
G′′(s, t) = − 1

θ(t)

(
−p2

c2
(−1)(−2) (−c2t)2 (1 + c2t− c2ts)−3

)
G′′′(s, t) = − 1

θ(t)
{−p2

c2
(−1)(−2)(−3) (−c2t)3 (1 + c2t− c2ts)−4}

∴ G(x)(s, t) =
1

θ(t)

p2

c2
x! (c2t)

x (1 + c2t− c2ts)−(x+1)

=
1

θ(t)

p2

c2
x! (

c2t

(1 + c2t− c2ts)
)x

1

(1 + c2t− c2ts)
, x = 2, 3, ... (4.21)
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The pmfs of the iid random variables are

g0(t) = 0 (4.22a)

g1(t) =
1

θ(t)

(
p1t+

p2

c2

c2t

(1 + c2t)2

)
(4.22b)

gx(t) =
1

θ(t)

p2

c2
(

c2t

(1 + c2t
)x

1

(1 + c2t)
x = 2, 3, ... (4.22c)

And so

gx(t)

gx−1(t)
=

(
c2t

1 + c2t

)x
(
(1 + c2t)

(c2t)
)x−1 =

c2t

1 + c2t

= (
c2t

1 + c2t
+

0

x
) x = 2, 3, ...

which is Panjer’s recursive form with

a =
c2t

1 + c2t
and b = 0

The recursive form for the convolution of compound Poisson distribution is:

npn(t) = θ(t)

n∑
x=1

x gx(t) pn−x(t)

= θ(t) g1(t) pn−1(t) + θ(t)

n∑
x=2

x gx(t) pn−x(t)

=

(
p1t+

p2

c2

c2t

(1 + c2t)2

)
pn−1(t) +

n∑
x=2

x
p2

c2
(

c2t

(1 + c2t
)x

1

(1 + c2t)
pn−x(t)

=

(
p1t+

p2

c2

c2t

(1 + c2t)2

)
pn−1(t)+

1

(1 + c2t)

p2

c2

n∑
x=2

x (
c2t

(1 + c2t
)x pn−x(t), n = 1, 2, ... (4.23)

4.1.4 The case of a1 = 0 and a2 →∞

h(t) = θ′(t) = p1 + lim
a2→∞

p2 (1 + c2t)
−a2 p1 > 0, p2 > 0, c2 > 0

= p1 + lim
a2→∞

p2

∞∑
k=0

(
−a2

k

)
(c2t)

k

h(t) = p1 + p2 e
−bt (4.24)

where

b = lim
a2 →∞

a2 c2

The second hazard function is that of the Gompertz distribution and the sum is known as the
Gompertz-Makeham hazard function.

∴ θ1(t) = p1t ; θ2(t) =
p2

b

(
1− e−bt

)
θ1(t− ts) = p1 ∗ (t− ts) ; θ2(t− ts) =

p2

b

(
1− e−bt(1−s)

)
The pgf of the convolution is:

H(s, t) = e−p1t(1−s) e−
p2
b (1−e−bt(1−s)) (4.25)
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Thus the sum of hazard functions of exponential distribution and that of the Gompertz distribution
gives rise to a convolution of the Poisson distribution and the Neyman type A (Poisson-Poisson)
distribution.

The pgf of the iid random variables of the convolution of the compound Poisson distribution is:

G(s, t) = 1− θ(t− ts)
θ(t)

= 1−

{
p1 ∗ (t− ts) + p2

b

(
1− e−bt(1−s)

)
θ(t)

}

= 1−

{
p1t− p1ts+ p2

b

(
1− e−bt ebts

)
θ(t)

}

= 1−

{
p1t− p1ts+ p2

b

(
1− e−bt ebts

)
θ(t)

}

= 1−


p1t− p1ts+ p2

b −
p2

b e−bt
∞∑
x=0

(bts)x

x!

θ(t)


=

θ(t)− p1t+ p1ts− p2

b + p2

b e−bt
∞∑
x=0

(bts)x

x!

θ(t)

But

θ(t) = p1t+
p2

b

(
1− e−bt

)
Therefore

G(s, t) =

p1t+ p2

b

(
1− e−bt

)
− p1t+ p1ts− p2

b + p2

b e−bt
∞∑
x=0

(bts)x

x!

θ(t)

=

−p2

b e−bt + p1ts+ p2

b e−bt
∞∑
x=0

(bts)x

x!

θ(t)

=

p1ts+ p2

b e−bt
∞∑
x=1

(bts)x

x!

θ(t)
(4.26)

By differentiating G(s,t)

G′(s, t) =

p1t+ p2

b e−bt
∞∑
x=1

(bt)x sx−1

(x−1)!

θ(t)

=

p1t+ p2

b e−bt (bt)
∞∑
x=1

(bt)x−1 sx−1

(x−1)!

θ(t)

G′′(s, t) =

p2

b e−bt (bt)2
∞∑
x=2

(bt)x−2 sx−2

(x−2)!

θ(t)

Gx(s, t) =

p2

b e−bt (bt)x
∞∑
x=2

(bt)x−x sx−x

(x−x)!

θ(t)

=
p2

b e−bt (bt)x

θ(t)
(4.27)

and the pmfs of the iid random variables are
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g0(t) = 0 (4.28a)

g1(t) =
p1t+ p2

b e−bt bt

θ(t)

=
1

θ(t)

{
p1t+ p2t e

−bt} (4.28b)

gx(t) =
1

θ(t)

p2 e
−bt

b

(bt)x

x!
x = 2, 3, ... (4.28c)

By power series expansion and using (4.22), the pmfs of the iid random variables are

g0 = 0

the coefficient of s0

g1(t) =
1

θ(t)

{
p1t+ p2t e

−bt}
the coefficient of s1

gx(t) =
1

θ(t)

p2 e
−bt

b

(bt)x

x!
x = 2, 3, ...

the coefficient of sx

∴
gx(t)

gx−1(t)
=

1

x
bt

= 0 +
bt

x
x = 1, 2, ...

which is in Panjer’s recursive form, with parameters 0 and bt

The recursive form for the convolution of compound Poisson distribution is:

(n+ 1) pn+1(t) = θ(t)

n∑
i=0

(i+ 1) gi+1(t) pn−i(t) n = 0, 1, 2, ...

= θ(t)g1(t) pn(t) + θ(t)

n∑
i=1

(i+ 1) gi+1(t) pn−i(t)

= θ(t)

{
1

θ(t)

(
p1t+ p2te

−bt)} pn(t) + θ(t)

n∑
i=1

(i+ 1)

{
1

θ(t)

p2e
−bt

b

(bt)i+1

(i+ 1)!

}
pn−i(t)

=
(
p1t+ p2te

−bt) pn(t) +

n∑
i=1

(i+ 1)

{
p2e
−bt

b

(bt)i+1

(i+ 1)!

}
pn−i(t)

=
(
p1t+ p2te

−bt) pn(t) +
p2

b
bt

n∑
i=1

e−bt
{

(bt)i

i!

}
pn−i(t)

=
(
p1t+ p2te

−bt) pn(t) + p2t

n∑
i=1

e−bt
(bt)i

i!
pn−i(t) n = 0, 1, 2, ... (4.29)

4.2 When the first hazard function is that of a Pareto

4.2.1 The case of a1 = 1 and a2 = 1

h(t) =
p1

(1 + c1t)
+

p2

(1 + c2t)
p1 > 0, p2 > 0, c1 > 0, c2 > 0

The second hazard function is also that of a Pareto.

∴ θ1 (t) =
p1

c1
In (1 + c1t) ; θ2 (t) =

p2

c2
In (1 + c2t)

θ1 (t− ts) =
p1

c1
In (1 + c1t− c1ts) ; θ2 (t− ts) =

p2

c2
In (1 + c2t− c2ts)
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The pgf of the convolution is

H (s, t) = e−
p1
c1

In(1+c1t−c1ts) e−
p2
c2

In(1+c2t−c2ts)

=

(
1

1 + c1t− c1ts

) p1
c1
(

1

1 + c2t− c2ts

) p2
c2

(4.30)

Therefore the sum of hazard functions of two Pareto distributions gives rise to the convolution of
two negative binomial distributions.

When c1 = c2 = c, then we have a single hazard function

h(t) =
p1 + p2

1 + ct
where p1 + p2 > 0 and c > 0

Its associated Poisson mixture is a negative binomial distribution with parameters p1+p2

c and 1
1+ct

.

whose pgf is

H(s, t) =

(
1

1+ct

1− ct
1+ct s

) p1+p2
c

The pgf of the iid random variables of the convolution of the compound Poisson distribution is

G(s, t) = 1− 1

θ(t)

{
p1

c1
In(1 + c1t− c1ts) +

p2

c2
In(1 + c2t− c2ts)

}
and

Gx(s, t) =
1

θ(t)

{
(x− 1)!

p1

c1
(

c1t

1 + c1t
)x + (x− 1)!

p2

c2
(

c2t

1 + c2t
)x
}

refer to (4.11)

The pmfs of the iid random variables are

g0(t) = 0 (4.31a)

gx(t) =
1

x

1

θ(t)

{
p1

c1
(

c1t

1 + c1t
)x +

p2

c2

(
c2t

1 + c2t

)x}
(4.31b)

where

θ(t) = In
(

(1 + c1t)
p1
c1 (1 + c2t)

p2
c2

)
gx(t)

gx−1(t)
=


p1

c1
( c1

1+c1
)x + p2

c2

(
c2t

1+c2t

)x
p1

c1
( c1

1+c1
)x−1 + p2

c2

(
c2t

1+c2t

)x−1

 x− 1

x

which is not in Panjer’s recursive form, since the term in the curled bracket is not a constant.

However, in the case where c1 = c2 = c

gx(t)

gx−1(t)
=

{
x− 1

x

p1+p2

c ( ct
1+ct )

x

p1+p2

c ( ct
1+ct )

x−1

}

=

{
x− 1

x
(

ct

1 + ct
)

}
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which is Panjer’s recursive model with

a =
ct

1 + ct
and b = − ct

1 + ct

The recursive form for the convolution of compound Poisson distribution is:

npn = θ(t)

n∑
x=1

x gx(t) pn−x(t)

= θ(t)

n∑
x=1

x
1

x

1

θ(t)

{
p1

c1
(

c1t

1 + c1t
)x +

p2

c2

(
c2t

1 + c2t

)x}
pn−x(t)

=

n∑
x=1

{
p1

c1
(

c1t

1 + c1t
)x +

p2

c2

(
c2t

1 + c2t

)x}
pn−x(t)

=
p1

c1

n∑
x=1

(
c1t

1 + c1t
)x pn−x(t) +

p2

c2

n∑
x=1

(
c2t

1 + c2t

)x
pn−x(t) n = 1, 2, 3, ...

(4.32)

4.2.2 The case of a1 = 1 and a2 = 1
2

h(t) = θ′(t) =
p1

(1 + c1t)
+

p2

(1 + c2t)
1
2

p1 > 0, p2 > 0, c1 > 0, c2 > 0

where the second hazard function is that of an exponential-inverse Gaussian distribution.

This sum of hazard functions can be obtained by considering reciprocal inverse Gaussian as the a
mixing distribution in an exponential mixture as described below:

Let X = 1
Λ where X is a random variable from an inverse-Gaussian distribution. We wish to

determine the distribution of Λ.

The pdf of Λ is

g(λ) = f(x)|J |

= f(x)|dx
dλ
|

∴ g(λ) = f(x)|− 1

λ2
|

The pdf of an inverse Gaussian distribution is

f(x) =

(
φ

2 π x3

) 1
2

exp

{
−φ (x− µ)2

2 µ2 x

}
x > 0, φ > 0, −∞ < µ <∞

The pdf of the reciprocal inverse Gaussian distribution is

g(λ) =

(
φλ3

2π

) 1
2

exp

{
−
φ( 1

λ − µ)2

2 µ2 1
λ

}
1

λ2

=

(
φ

2πλ

) 1
2

exp

{
− φλ

2µ2

(
1

λ2
− 2µ

λ
+ µ2

)}
=

(
φ

2πλ

) 1
2

exp

{
− φ

2µ2λ

(
1− 2µλ+ (µλ)2

)}
=

(
φ

2 π λ

) 1
2

exp

{
−φ(1− µ λ)2

2 µ2 λ

}
λ > 0

The survival function of an exponential mixture is the Laplace transform of the mixing distribution.
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That is

S(t) = LΛ(t)

=

∞∫
0

e−t λ g(λ) dλ

=

∞∫
0

e−t λ (
φ

2 π λ
)

1
2 exp

{
−φ(1− µ λ)2

2 µ2 λ

}
dλ

= (
φ

2 π
)

1
2

∞∫
0

λ−
1
2

{
−t λ− φ(1− µ λ)2

2 µ2 λ

}
dλ

= (
φ

2 π
)

1
2

∞∫
0

λ−
1
2 exp

{
−t λ− φ(1− 2µ λ+ µ2 λ2)

2 µ2 λ

}
dλ

= (
φ

2 π
)

1
2

∞∫
0

λ−
1
2 exp

{
−t λ− φ

2µ2 λ
+
φ

µ
− φ λ

2

}
dλ

= (
φ

2 π
)

1
2

∞∫
0

λ−
1
2 exp

{
−(
φ

2
+ t) λ− φ

2µ2 λ
+
φ

µ

}
dλ

= (
φ

2 π
)

1
2 e

φ
µ

∞∫
0

λ−
1
2 exp

{
−(
φ

2
+ t) λ− φ

2µ2

1

λ

}
dλ

= (
φ

2 π
)

1
2 e

φ
µ

∞∫
0

λ−
1
2

{
−(
φ

2
+ t) (λ+

φ

2µ2 (φ2 + t)

1

λ
)

}
dλ

= (
φ

2 π
)

1
2 e

φ
µ

∞∫
0

λ−
1
2 exp

{
−(
φ

2
+ t) (λ+

φ

µ2 (φ+ 2t)

1

λ
)

}
dλ

Let λ =
√

φ
µ2 (φ+2t) z ∴ dλ =

√
φ

µ2 (φ+2t) dz

Lλ(t) =

(
φ

2 π

) 1
2

e
φ
µ

(√
φ

µ2 (φ+ 2t)

) 1
2 ∞∫

0

z
1
2−1 exp

{
−1

2

√
φ(φ+ 2t)

µ2
(z +

1

z
)

}
dz

=

(
φ

2 π

) 1
2

(√
φ

µ2 (φ+ 2t)

) 1
2

e
φ
µ 2 K 1

2

(√
φ(φ+ 2t)

µ2

)

where Kv(ω) is the modified Bessel function of the third kind of order v.

But K 1
2
(ω) =

√
π

2 ω e
−ω (Watson, 1952).

In this case ω =

√√
φ(φ+2t)
µ2
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Therefore

Lλ(t) = e
φ
µ

(
φ

2 π

√
φ

µ2 (φ+ 2t)

) 1
2

2

√√√√ π

2 (
√

φ(φ+2t)
µ2 )

exp

{
−(

√
φ(φ+ 2t)

µ2
)

}

= 2 e
φ
µ

(
φ

4

√
φ

µ2 (φ+ 2t)

1
φ(φ+2t)
µ2

) 1
2

exp

{
−(

√
φ(φ+ 2t)

µ2
)

}

= 2 e
φ
µ

(
φ

4

√
1

(φ+ 2t)2

) 1
2

exp

{
−(

√
φ(φ+ 2t)

µ2
)

}

= 2 e
φ
µ (

φ

4 (φ+ 2t)
)

1
2 exp

{
−(

√
φ(φ+ 2t)

µ2
)

}

= e
φ
µ (

φ

φ+ 2t
)

1
2 exp

{
−(

√
φ(φ+ 2t)

µ2
)

}

= (1 +
2

φ
t)−

1
2 exp

{
−(
φ2

µ2
(
φ+ 2t

φ
))

1
2

}
e
φ
µ = (1 +

2

φ
t)−

1
2 exp

{
φ

µ
− φ

µ
(
φ+ 2t

φ
)

1
2

}
= (1 +

2

φ
t)−

1
2 exp

{
φ

µ
− φ

µ
(1 +

2

φ
t)

1
2

}
= (1 +

2

φ
t)−

1
2 exp

{
φ

µ
(1− (1 +

2

φ
t)

1
2 )

}
L
′

λ(t) = (1 +
2

φ
t)−

1
2 exp

{
φ

µ
(1− (1 +

2

φ
t)

1
2 )

}
.
φ

µ

1

2
(1 +

2

φ
t)−

1
2 (− 2

φ
)+

exp

{
φ

µ
(1− (1 +

2

φ
t)

1
2 )

}
(−1

2
) (1 +

2

φ
t)−

3
2 (

2

φ
)

= (1 +
2

φ
t)−

1
2 exp

{
φ

µ
(1− (1 +

2

φ
t)

1
2 )

}
.

(
− 1

µ
(1 +

2

φ
t)−

1
2 − 1

φ
(1 +

2

φ
t)−1

)
and

h(t) = −L
′

λ(t)

Lλ

=
1

µ
(1 +

2

φ
t)−

1
2 +

1

φ
(1 +

2

φ
t)−1

=

1
µ

(1 + 2
φ t)

1
2

+

1
φ

(1 + 2
φ t)

≡ p1

1 + c1t
+

p2

(1 + c2 t)
1
2

θ1(t) =
p1

c1
In(1 + c1t) ; θ2(t) =

2p2

c2

(
(1 + c2t)

1
2 − 1

)
θ1(t− ts) =

p1

c1
In(1 + c1t− c1ts) ; θ2(t− ts) =

2p2

c2

(
(1 + c2t− c2ts)

1
2 − 1

)
The pgf of the convolution is

H(s, t) = e−
p1
c1

In(1+c1t−c1ts) e
− 2p2

c2

(
(1+c2t−c2ts)

1
2−1

)

= (
1

1+c1t

1− ct
1+c1t

s
)
p1
c1 e

− 2p2
c2

(
(1+c2t−c2ts)

1
2−1

)
(4.33)

The sum of the hazard functions of the exponential-gamma and that of the exponential-inverse
Gaussian distribution, therefore, gives rise to the convolution of the negative binomial and the
Poisson-inverse Gaussian (Sichel) distributions.
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The pgf of the iid random variables of the convolution of the compound Poisson distribution is

G(s, t) = 1− 1

θ(t)

(
p1

c1
In(1 + c1t− c1ts) +

2p2

c2
[(1 + c2t− c2ts)

1
2 − 1]

)
∴ Gx(s, t) =

(x− 1)!

θ(t)
{ p1

c1
(

c1t

1 + c1t− c2ts
)x+(

1
2 + x− 1− 1

x− 1

)
p2

c2
(

c2t

(1 + c2t− c2ts)
)x(

1

(1 + c2t− c2ts)
)−

1
2 })

=
(x− 1)!

θ(t)

{
p1

c1
(

c1t

1 + c1t− c2ts
)x
}

+

(x− 1)!

θ(t)

{
p2t

(
1
2 + x− 1− 1

x− 1

)
(

c2t

(1 + c2t− c2ts)
)x−1(

1

(1 + c2t− c2ts)
)

1
2

}
(4.34)

Therefore, the pmfs of the iid random variables are

g0(t) = 0 (4.35a)

gx(t) =
1

x θ(t)

{
p1

c1
(

c1t

1 + c1t
)x + p2t

(
1
2 + x− 1− 1

x− 1

)
(

c2t

(1 + c2t)
)x−1(

1

(1 + c2t)
)

1
2

}
x = 1, 2, 3, ... (4.35b)

where

θ(t) =
p1

c1
In(1 + c1t) +

2p2

c2

(
(1 + c2t)

1
2 − 1

)
Panjer’s recursive model does not hold in general case, unless p1 = p2 = p say and c1 = c2 = c.

In this case the Panjer’s model is

gx(t)

gx−1(t)
=
x− 1

x
(

ct

1 + ct
)

The recursive form for the convolution of compound Poisson distributions is:

n pn(t) = θ(t)

n∑
x=1

x gx(t) pn−x(t)

=

n∑
x=1

{
p1

c1
(

c1t

1 + c1t
)x + p2t

(
1
2 + x− 1− 1

x− 1

)
(

c2t

(1 + c2t)
)x−1(

1

(1 + c2t)
)

1
2

}
pn−x(t)

n = 1, 2, 3, ... (4.36)

4.2.3 The case of a1 = 1 and a2 = 2

h(t) = θ′(t) =
p1

(1 + c1t)
+

p2

(1 + c2t)2
p1 > 0, p2 > 0, c1 > 0, c2 > 0

where the second hazard function will be referred to as Polya-Aeppli hazard function (Wakoli and
Ottieno 2015, p. 234).

∴ θ1(t) =
p1

c1
In(1 + c1t) ; θ2(t) =

p2

c2

(
1− (1 + c2t)

−1
)

θ1(t− ts) =
p1

c1
In(1 + c1t− c1ts) ; θ2(t− ts) =

p2

c2

(
1− (1 + c2t− c1ts)−1

)
The pgf of the convolution is

H(s, t) = e
−
(
p1
c1

In(1+c1t−c1ts)
)
e
−p2
c2

(1−(1+c2t−c2ts)−1)

=

(
1

1+c1t

1− ct
1+c1t

s

) p1
c1

e−
p2
c2

(1−(1+c2t−c2ts)−1) (4.37)
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The sum of hazard function of a Pareto distribution and the Polya-Aeppli hazard function, there-
fore, gives rise to the convolution of the negative binomial distribution and the Polya-Aeppli
distribution.

The pgf of the iid random variables of the convolution of the compound Poisson distribution is

G(s, t) = 1− θ(t− ts)
θ(t)

= 1− 1

θ(t)

(
p1

c1
In(1 + c1t− c1ts) +

p2

c2

(
1− (1 + c2t− c1ts)−1

))
G(x)(s, t) =

(x− 1)!

θ(t)

{
p1

c1
(

c1t

1 + c1t− c1ts
)x
}

+
x!

θ(t)

{
p2

c2
(

c2t

1 + c2t− c2ts
)x

c2t

1 + c2t− c2ts

}
=

1

θ(t)

(
(x− 1)!

p1

c1
(

c1t

1 + c1t− c1ts
)x +

p2

c2
x! (

c2t

(1 + c2t− c2ts)
)x

1

(1 + c2t− c2ts)

)
(4.38)

and the pmfs of the iid random variables are

g0(t) = 0 (4.39a)

gx(t) =
1

θ(t)

1

x

p1

c1

(
c1t

1 + c1t

)x
+

1

θ(t)

p2

c2

(
c2t

1 + c2t

)x
1

1 + c2t

for x = 1, 2, .. (4.39b)

Again Panjer’s recursive model is not satisfied, unless c1 = c2 = c, in which case

gx(t)

gx−1(t)
=

{
x− 1

x

p1+p2

c ( ct
1+ct )

x

p1+p2

c ( ct
1+ct )

x−1

}

=
x− 1

x

(
ct

1 + ct

)
The recursive form for the convolution of compound Poisson distributions is

npn(t) = θ(t)

n∑
x=1

x gx(t) pn−x(t)

= θ(t)

n∑
x=1

x
1

θ(t)

(
1

x

p1

c1
(

c1t

1 + c1t
)x +

p2

c2
(

c2t

(1 + c2t)
)x

1

(1 + c2t)

)
pn−x(t)

=
p1

c1

n∑
x=1

(
c1t

1 + c1t

)x
pn−x(t) +

p2

c2

n∑
x=1

x

(
c2t

(1 + c2t)

)x
1

(1 + c2t)
) pn−x(t) n = 1, 2, 3, ...

(4.40)

4.3 The case of a1 =
1
2

and a2 =
1
2

h(t) = θ′(t) =
p1

(1 + c1t)
1
2

+
p2

(1 + c2t)
1
2

p1 > 0, p2 > 0, c1 > 0, c2 > 0

Both hazard functions belong to the exponential-inverse Gaussian distributions.

∴ θ1(t) =
2p1

c1

(
(1 + c1t)

1
2 − 1

)
; θ2(t) =

2p2

c2

(
(1 + c2t)

1
2 − 1

)
θ1(t− ts) =

2p1

c1

(
(1 + c1t− c1ts)

1
2 − 1

)
; θ2(t− ts) =

2p2

c2

(
(1 + c2t− c1ts)

1
2 − 1

)
The pgf of the convolution is

H(s, t) = e
− 2p1

c1

(
(1+c1t−c1ts)

1
2−1

)
e
− 2p2

c2

(
(1+c2t−c1ts)

1
2−1

)
(4.41)

and therefore the sum of two hazard functions of exponential-inverse Gaussian distributions gives
rise to the convolution of two Poisson-inverse Gaussian distributions.
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The pgf of the iid random variables of the convolution of the compound Poisson distribution is

G(s, t) = 1− 1

θ(t)

{
2p1

c1

(
(1 + c1t− c1ts)

1
2 − 1

)
+

2p2

c2

(
(1 + c2t− c2ts)

1
2 − 1

)}
Gx(s, t) =

1

θ(t)
(x− 1)! {p1t

(
− 1

2
x− 1

)
(− c1t

(1 + c1t− c1ts
)x−1 (1 + c1t− c1ts)−

1
2 +

p2t

(
− 1

2
x− 1

)
(− c2t

(1 + c2t− c2ts
)x−1 (1 + c2t− c2ts)−

1
2 }

=
1

θ(t)
(x− 1)!

(
− 1

2
x− 1

)
{p1t (− c1t

(1 + c1t− c1ts
)x−1 (1 + c1t− c1ts)−

1
2 +

p2t (− c2t

(1 + c2t− c2ts
)x−1 (1 + c2t− c2ts)−

1
2 } (4.42)

and the pmfs of the iid random variables are

g0(t) = 0 (4.43a)

gx(t) =
1

θ(t)

1

x
{p1t

(
− 1

2
x− 1

)
(− c1t

(1 + c1t
)x−1 (1 + c1t)

− 1
2 +

p2t

(
− 1

2
x− 1

)
(− c2t

(1 + c2t
)x−1 (1 + c2t)

− 1
2 } (4.43b)

In the case where c1 = c2 = c

gx(t)

gx−1(t)
=
x− 1

x

(
− 1

2
x− 1

)
(
− 1

2
x− 2

) (− c2t

(1 + c2t
)

= (
x− 1

x
) (

3
2 − x
x− 1

) (
−c2t

1 + c2t
)

=
c2t

(1 + c2t)
− 3 c2t

2 (1 + c2t)

1

x

which is in Panjer’s recursive form with

a =
c2t

(1 + c2t)
and b = − 3 c2t

2 (1 + c2t)

The recursive form for the convolution of the compound Poisson distribution is:

n pn(t) = θ(t)

n∑
x=1

x gx(t) pn−x(t)

=

n∑
x=1

{p1t

(
− 1

2
x− 1

)
(− c1t

(1 + c1t
)x−1 (1 + c1t)

− 1
2 +

p2t

(
− 1

2
x− 1

)
(− c2t

(1 + c2t
)x−1 (1 + c2t)

− 1
2 } pn−x(t)

= p1t (1 + c1t)
− 1

2

n∑
x=1

(
− 1

2
x− 1

)
(− c1t

(1 + c1t
)x−1 pn−x(t)

+ p2t (1 + c2t)
− 1

2

n∑
x=1

(
− 1

2
x− 1

)
(− c2t

(1 + c2t
)x−1 pn−x(t) n = 1, 2, ... (4.44)

4.4 The case of a1 = 2 and a2 = 2

h(t) = θ′(t) =
p1

(1 + c1t)2
+

p2

(1 + c2t)2
p1 > 0, p2 > 0, c1 > 0, c2 > 0
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Both are the Polya-Aeppli hazard functions

.

∴ θ1(t) =
p1

c1

(
1− (1 + c1t)

−1
)

; θ2(t) =
p2

c2

(
1− (1 + c2t)

−1
)

θ1(t− ts) =
p1

c1

(
1− (1 + c1t− c1ts)−1

)
; θ2(t− ts) =

p2

c2

(
1− (1 + c2t− c1ts)−1

)
The pgf of the convolution is

H(s, t) = e−
p1
c1

(1−(1+c1t−c1ts)−1) e−
p2
c2

(1−(1+c2t−c1ts)−1) (4.45)

and therefore the sum of two Polya-Aeppli hazard functions gives rise to the convolution of two
Polya-Aeppli distributions.

The pgf of the iid random variables of the convolution of the compound Poisson distribution is

G(s, t) = 1− θ(t− ts)
θ(t)

= 1− 1

θ(t)

(
p1

c1
{1− (1 + c1t− c1ts)−1 +

p2

c2
{1− (1 + c2t− c1ts)−1

)
∴ G(x)(s, t) =

x!

θ(t)

{
p1

c1
(

c1t

1 + c1t− c1ts
)x

1

1 + c1t− c1ts

}
+

x!

θ(t)

{
p2

c2

(
c2t

1 + c2t− c2ts

)x
1

(1 + c2t− c2ts)

}
(4.46)

and the pmfs of the iid random variables are

g0(t) = 0 (4.47a)

gx(t) =
1

θ(t)

{
p1

c1
(

c1t

1 + c1t
)x

1

1 + c1t

}
+

1

θ(t)

{
p2

c2

(
c2t

1 + c2t

)x
1

(1 + c2t)

}
for x = 1, 2, ... (4.47b)

Panjer’s recursive model does not hold, unless c1 = c2 = c, in which case

gx(t)

gx−1(t)
= (

ct

1 + ct
)x (

(1 + ct)

(ct)
)x−1 =

ct

1 + ct
x = 2, 3, ...

= (
ct

1 + ct
+

0

x
) for x = 2, 3, ...

which is Panjer’s form with

a =
ct

1 + ct
and b = 0

The recursive form for the convolution of the compound Poisson distribution is

npn(t) = θ(t)

n∑
x=1

x gx(t) pn−x(t) n = 1, 2...

= θ(t)

n∑
x=1

x
1

θ(t)

(
p1

c1
(

c1t

1 + c1t
)x

1

1 + c1t
+
p2

c2

(
c2t

1 + c2t

)x
1

1 + c2t

)
pn−x(t)

=

n∑
x=1

(
p1

c1
x (

c1t

1 + c1t
)x

1

1 + c1t
+
p2

c2
x

(
c2t

1 + c2t

)x
1

1 + c2t

)
pn−x(t)

=
p1

c1

1

1 + c1t

n∑
x=1

x

(
c1t

1 + c1t

)x
pn−x(t) +

p2

c2

1

1 + c2t

n∑
x=1

x

(
c2t

1 + c2t

)x
pn−x(t) for n = 1, 2, 3, ...

(4.48)
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5 Concluding Remarks

Sums of two hazard functions gives rise to convolutions of infinitely divisible mixed Poisson distri-
butions which are also convolutions of compound Poisson distributions. The sums can be extended
to more than two hazard functions. The sum of the hazard function of exponential distribution
and that of Pareto distribution is the same as the hazard function of exponential-shifted gamma
distribution. Similarly, the sum of the hazard function of Pareto and exponential-inverse Gaussian
is the same as the hazard function of exponential-reciprocal inverse Gaussian.

It is easier to express the convolutions in terms of pgfs and recursive forms rather than obtaining
pmfs explicitly. Panjer’s recursive model holds for Hofamman hazard function when:

• one of the two hazard functions is a constant.

• when a1 = a2, p1 = p2 and c1 = c2

Further work is to identify other families of hazard functions of exponential mixtures, which are not
necessarily members of the family of Hofmann distributions, and whose sums of hazard functions
give rise to convolutions of Poisson mixtures.

References

[1] Feller, W. An Introduction to probability Theory and Its Applications Vol I, 3rd Edition,
John Wiley and Sons (1968):.

[2] Feller, W. An Introduction to probability Theory and Its Applications. Vol II. John Wiley
and Sons (1971):.

[3] Ospina,V and Gerber, M.U “A Simple Proof of Feller’s Characterizations of the Compound
Poisson Distribution.” Insurance Mathematics and Economics, 6, (1987): 63-64.

[4] Wakoli, M.W. and Ottieno J.A.M. “Mixed Poisson Distributions Associated with Hazard
Functions of Exponential Mixtures Mathematical Theory and Modeling Vol.5, No. 6 (2015):
pages 209-244.

[5] Walhin, J.F and J. Paris “Using Mixed Poisson Processes in Connection with Bonus –
Malus Systems” Astin Bulletin, Vol 29, No.1, (1999): pp 81 – 99.

[6] Walhin, J.F and J. Paris “A General Family of Over-dispersed Probability Laws” Belgian
Actuarial Bulletin, Vol 2, No.1, (2002): pp 1 – 8.

[7] Watson, G. N. “A Treatise on the Theory of Bessel Functions” Cambridge: The University
Press (1952).

197



The IISTE is a pioneer in the Open-Access hosting service and academic event management.  

The aim of the firm is Accelerating Global Knowledge Sharing. 

 

More information about the firm can be found on the homepage:  

http://www.iiste.org 

 

CALL FOR JOURNAL PAPERS 

There are more than 30 peer-reviewed academic journals hosted under the hosting platform.   

Prospective authors of journals can find the submission instruction on the following 

page: http://www.iiste.org/journals/  All the journals articles are available online to the 

readers all over the world without financial, legal, or technical barriers other than those 

inseparable from gaining access to the internet itself.  Paper version of the journals is also 

available upon request of readers and authors.  

 

MORE RESOURCES 

Book publication information: http://www.iiste.org/book/ 

Academic conference: http://www.iiste.org/conference/upcoming-conferences-call-for-paper/  

 

IISTE Knowledge Sharing Partners 

EBSCO, Index Copernicus, Ulrich's Periodicals Directory, JournalTOCS, PKP Open 

Archives Harvester, Bielefeld Academic Search Engine, Elektronische Zeitschriftenbibliothek 

EZB, Open J-Gate, OCLC WorldCat, Universe Digtial Library , NewJour, Google Scholar 

 

 

http://www.iiste.org/
http://www.iiste.org/journals/
http://www.iiste.org/book/
http://www.iiste.org/conference/upcoming-conferences-call-for-paper/

