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Abstract: In this article, a generalization of the Kumaraswamy distribution so-called 

transmuted Kumaraswamy distribution is proposed and studied. We will use the quadratic 

rank transmutation map (QRTM) in order to generate a flexible family of probability 

distributions taking Kumaraswamy distribution as the base value distribution by introducing a 

new parameter that would offer more distributional flexibility. We provide a comprehensive 

description of the mathematical properties of the subject distribution along with its reliability 

behavior.  
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1. Introduction 

Kumaraswamy (1980) proposed a two-parameter Kumaraswamy distribution on (0, 1), and 

denoted by Kum (θ,α). Its cumulative distribution function is given by 

              )1,0(,)1(1),;(  xxxG                                                                  (1.1) 

and the probability density function (pdf) corresponding to (1.1) is 

        0,,)1,0(,)1(),;( 11     xxxxg                              (1.2)    

Here  and   are the shape parameters. Kumaraswamy (1980) and Ponnambalam, et al., 

(2001) have pointed out that depending on the choice of the parameter and . Kum                       

araswamy’s distribution can be used to approximate many distributions, such as uniform, 

triangular, or almost any single model distribution and can also reproduce results of beta 

distribution. Kumaraswamy’s distribution is applicable to many natural phenomena whose 

outcomes have lower and upper bounds, such as the height of individuals, scores obtained on 

a test, atmospheric temperatures, hydrological data such as daily rain fall, daily stream flow, 

etc. 

The purpose of this study is to present a new generalization of Kumaraswamy distribution 

called the transmuted Kumaraswamy distribution. We will derive the proposed distribution 

using the Quadratic rank transmutation map proposed by Shaw et al. (2009). 
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A random variable X is said to have transmuted distribution if its cumulative distribution 

function is given by 

         )3.1(1,)()()1()( 2   xGxGxF  

where )(xG  is the cdf of the base distribution. If we put 0 , we get the base distribution. 

Afaq et al. (2014) studied transmuted inverse Rayleigh distribution and discussed its 

properties. Aryal and Tsokos (2009,2011) studied the transmuted extreme distributions. The 

authors provided the mathematical characterization of transmuted Gumbel and transmuted 

Weibull distributions and their applications to analyze real data sets. Faton Merovci (2013) 

studied the transmuted Rayleigh distribution, Ashouret et al (2013). studied the transmuted 

exponentiated Lomax distribution and discussed some properties of this family. In the present 

study we will provide the mathematical formulation of the transmuted Kumaraswamy 

distribution and some of its structural properties. 

2. Transmuted Kumaraswamy Distribution 

In this section we studied the transmuted Kumaraswamy distribution and the sub-models of 

this distribution. Now using (1.1) in (1.3), we have the cdf of transmuted Kumaraswamy 

distribution given by 

            )1.2()1(1)1(1),,;(   xxxF   

Hence the pdf of TMIR distribution with parameters  and, is given as 

          )2.2()1(21)1(),,;( 11   xxxxf  
 

Particular cases 

1. If we take 0 in (2.2), we get 

     
11 )1(),;(    xxxf  

which is pdf of Kumaraswamy distribution. 

2 If we take 01,1   and in (2.2), we get 

1)( xf  

which is pdf of Uniform distribution on [0,1]. 

3. Reliability Analysis 

In this sub-section, we present the reliability function and the hazard function for the proposed 

transmuted Kumaraswamy distribution. The reliability function is otherwise known as the 

survival or survivor function. It is the probability that a system will survive beyond a 

specified time and it is obtained mathematically as the complement of the cumulative density 

function (cdf).  

http://www.iiste.org/


Mathematical Theory and Modeling                                                                                                                                                  www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.5, No.9, 2015  

 

170 

The survivor function is given by 

           )(1)( xFxR   

             )1(1)1()( xxxR   

The hazard function is also known as the hazard rate, failure rate, or force of mortality. The 

hazard rate function is given by 

            
)(1

)(
)(

xF

xf
xh


  

          
 
 
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
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)1(1)1(

)1(21
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1
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4. Statistical Properties 

In this section we shall discuss structural properties of transmuted Kumaraswamy (TK) 

distribution. Specially moments, order statistics, maximum likelihood estimation, moment 

generating function,  

4.1 Moments: The following theorem gives the rth moment of the transmuted Kumaraswamy 

distribution   

Theorem 4.1: If X has the TK   ,,  distribution with ,1 then the rth non-central 

moments are given by  
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Put r =1 in above equation we get mean of transmuted Kumaraswamy distribution 
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If we put 0 in equation (4.1) we get r
th

 moment of Kumaraswamy distribution which is 

given below   
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and its mean is 
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4.2 Moment generating function 

In this sub section we derived the moment generating function of TK   ,, distribution. 

Theorem 4.2: If X has the TK   ,,  distribution with ,1 then the moment generating 

function )(tM X has the following form 

       




































 2,12,1)1(
!

)(
0

jj

j

t
tM

j

j

X  

Proof: We begin with the well known definition of the moment generating function given by 
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5. Maximum Likelihood Estimation 

We estimate the parameters of the TK distribution using the method of maximum likelihood 

estimation (MLE) as follows; 

Let nXXX ,...,, 21 be a random sample of size n from TK distribution. Then the likelihood 

function is given by 

      

   )1.5()1(21)1(),,|(
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By taking logarithm of (5.1), we find the log likelihood function 
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To obtain the MLE’s of  and, , we differentiating loglikelihood with respect to 

 and,  
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The MLE of  and,  and is obtained by solving this nonlinear system of equations. Setting 

these expressions to zero and solving them simultaneously yields the maximum likelihood 

estimates of these three parameters. 

6. Order Statistics  
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Order statistics make their appearance in many statistical theory and practice. We know that if 

)()2()1( .,..,, nXXX denotes the order statistics of a random sample nXXX ,...,, 21 from a 

continuous population with cdf )(xFX and pdf )(xf X , then the pdf of rth order statistics X(r) 

is given by 

    rn

X

r

XXrX xFxFxf
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!
)(
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)(  

For r = 1, 2, . . . ,n.  

we have from (1.1) and (1.2) the pdf of the rth order inverse Rayleigh random variable X(r) is 

given by 

111
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Therefore, the pdf of the nth order inverse Rayleigh statistic X(n) is given by 

)1.6())1(1()1()( 111
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and the pdf of the first order inverse Rayleigh statistic X(1) is given by 

)2.6()1()( 11
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Note that in particular case of n=2, (6.1) yields 
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and (6.2) yields 
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Observe that (6.3) and (6.4) are special cases of (2.1) for 11   and respectively. It has 

been observed that a transmuted Kumaraswamy distribution with 1 is the distribution of 

),min( 21 XX and a transmuted Kumaraswamy distribution with 1 is the ),max( 21 XX  

where X1 and X2 are independent and identically distributed Kumaraswamy random variables. 

Now we provide the distribution of the order statistics for a transmuted Kumaraswamy 

random variable. The pdf of the rth order statistic for a transmuted Kumaraswamy distribution 

is given by 
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Therefore, the pdf of the largest order statistic X(n) is given by 
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and the pdf of the smallest order statistic X(1) is given by 

    111
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Note that 0 yields the order statistics of the inverse Rayleigh distribution. 

7. Conclusion  

 

We defined a three-parameter Transmuted Kumaraswamy distribution as a generalization of 

the two-parameter Kumaraswamy distribution. The subject distribution is generated by using 

the quadratic rank transmutation map and taking the Kumaraswamy distribution as the base 

distribution. Some mathematical properties along with estimation issues are addressed. The 

hazard rate function and reliability behavior of the transmuted Kumaraswamy distribution 

shows that the subject distribution can be used to model reliability data. We expect that this 

study will serve as a reference and help to advance future research in the subject area. 
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