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ABSTRACT 
This paper is to investigate the properties of higher-order form of some asymmetric kernels and 

consider its relevance to human life. The higher – order forms of some asymmetric kernels 

were derived from their asymmetric counterpart based on the formula by Jones and Foster 

(1993). The performances of these asymmetric kernels and their higher – order counterpart 

were considered in terms of their mean integrated squared error, asymptotic mean integrated 

squared error (AMISE) and their optimal window width h. The results of these asymmetric 

kernels and that of their higher – order asymmetric counterparts are compared. An appreciable 

error reduction was achieved in the higher-order asymmetric kernel when compared to their 

asymmetric counterparts. The error propagation also drops considerably as h increases. This 

method can be used to forecast performances of stock exchange and insurance claim. 

Key words: asymmetric kernels, higher – order forms of asymmetric kernels, exponential and 

gamma kernels, asymptotic mean integrated squared error (AMISE) and the optimal window 

width.   

 

1.1 INTRODUCTION 

 The univariate kernel density estimator is generally given by 
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where the kernel function k (.) is a probability density function (pdf) which integrates to one, 

n is the sample size, h is the window width and 1 2 3, , , ..., nX X X X  is a univariate set of data 

drawn from a continuous distribution function f. Many existing literature suggest that the 

choice of the window width is crucial Silverman (1986) and Sheather (2004). 

The method behind the proposed higher -order form of asymmetric kernel lies in the use of 

the formula by Jones and Foster (1993). In their work, they highlighted that if ( )( )ik t
 denotes 

an 
th

i order kernel, then any higher –order kernel is given by  
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We shall use (1.2) to generate the higher – order asymmetric kernels. To investigate this, we 

took the exponential and the gamma kernels as our asymmetric kernels. 

The derivation of the schemes for AMISE lies mainly in the application of Taylor’s Series 

expansion of f(x) up to order 2m (where m is positive integer). These ideas are applied to the 
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proposed higher –order asymmetric kernels of choice which are the exponential and the 

gamma kernels.  

 

This work is necessitated by the presence of asymmetric densities in most disciplines of 

Engineering, Sciences and the Social Sciences. It has been observed in real life practice that 

some useful probability functions do not really exhibit the symmetric character.  The 

exponential, the gamma and the beta distributions are some examples of asymmetric 

distribution Rohatgi (1984). The families of the distribution above provide probability models 

that are very useful in Engineering and Science disciplines Devore (1991) and Mugdadi and 

Lahrech (2004). For instance, the memory-less property of most pieces of equipment, as well 

as the waiting time a customer spends in a restaurant servicing point before being served are 

some distinctive uses of the exponential distributions Rohatgi (1984).   

All asymmetric kernels share the property that the shape of the kernel changes according to 

the value of data (x). A good example of this asymmetric kernel according to Hagmann and 

Scaillet (2003) is the gamma kernel. 

 

2.1      ASYMMETRIC KERNEL OF ORDER ONE. 

 

As for the asymmetric kernel, suppose we define it with the following asymmetric conditions: 
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3.1      HIGHER ORDER ASYMMETRIC KERNELS. 

 

Improving the conditions of (1.3) and modify it to read 
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Then the optimal window width and the global error for (1.4) are respectively:  
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This is the generalized optimal window width corresponding to conditions in (1.4). 

Substituting (1.6) into (1.5) gives  
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where m is the order, 2 1mJ −  is as defined in (1.4) 

Equations (1.6) and (1.7) are the asymptotic expressions for the generalized optimal window 

width h and the MISE terms corresponding to (1.3) and (1.4) respectively. For details see 

Osemwenkhae and Izevbizua (2005).  

 

4.1       CONSTRUCTING HIGHER- ORDER KERNEL 

 

There are several rules for constructing higher-order kernels, some of which are: If kernels 

with several vanishing moments are considered, define ( ) ( )j

j k x k x dxµ = ∫  to be the 
th

j  

moment of the kernel K. Then we will say that K is a th
k - order kernel Jones and Foster 

(1993).  

 

4.1.1     THE EXPONENTIAL KERNEL. 

 

The exponential kernel is given by: 

    ( ) ,t
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−= −∞ < < ∞        1.8 

On differentiation, we have     

      
1( ) t

k t e
−= −          1.9 

Now substitute equation (1.8) and (1.9) into equation (1.2), we have                                
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  Thus, equation (2.0) is the higher -order version of the exponential kernel.  

 

 

4.1.2       THE GAMMA KERNEL  

 

The Gamma kernel is given by 
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On substituting equation (2.1) and (2.2) into equation (1.2) we have 
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 Thus, equation (2.3) is the higher -order version of the gamma kernel.  

 

5.1            THE OPTIMAL WINDOW WIDTH 
opth  AND THE ASYMPTOTIC MEAN 

INTREGRATER SQUARED ERROR (AMISE). 

 

The optimal window width formulae for the asymmetric kernels as in Osemwenkhae and 

Izevbizua (2005) is given as   
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The asymptotic mean integrated squared error (AMISE) formulae as in Osemwenkhae and 

Izevbizua (2005) is given as   
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From equations (2.4) and (2.5) we shall obtain the optimal window width formula for the 

higher order exponential and the gamma kernels. We also obtain the asymptotic mean 

integrated squared error (AMISE) formula for the higher order exponential and the gamma 

kernels. 

To get the optimal window width formula for the exponential kernel, we substitute equation 

(2.0) into equation (2.4) which gives 

 

 

 

 

 

 

 

As for the optimal window width formula for the gamma kernel, we substitute equation (2.3)  

into equation (2.4) which gives 
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0 0 .is the shape parameter and is the rate parameterα β> >  

 

 

For the asymptotic mean integrated squared error (AMISE) formula for the exponential 

kernel, we substitute equation (2.0) into equation (2.5) which gives  

 

 

 

 

 

 

 

 

 

 

 

 

 

Also for the asymptotic mean integrated squared error (AMISE) formula for gamma kernel, 

we substitute equation (2.3) into equation (2.5) which gives 

 

 

 

 

         

  

 

2

2

1 2 1

(x) dx

1
1  

( ) 2 2

t m
t t t e dt f

α
α α ββ α

β
α

− − −   
+ −   Γ    

∫ ∫  

        

 

 

 

 

 

 

 
2

1 1
1

( ) 2 2

t
t t e dt

α
α α ββ α

β
α

− −   
+ −   Γ    

∫                                                                    2.9 

 

6.1       CALCULATIONS OF OPTIMAL WINDOW WIDTH 
opth  AND THE 

ASYMPTOTIC MEAN INTREGRATER SQUARED ERROR (AMISE). 

 

To demonstrate this, the data obtained from Osemwenkhae and Orhionkpaiyo (2006) will be 

used. This data describes some standard test on two hundred (200) fairly used car reams 
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before they failed some specific gauge test. In their work they obtained   200,5 == nσ  , 

1 2 3( )
4

f x dx
π

π σ=∫  

Using the data on equations (2.6), (2.7), (2.8) and (2.9) we obtain tables 1, 2 and figures 1, 2 . 

 

 

7.1       DISCUSSION OF RESULTS 

In this work, we compared the h-optimal of the asymmetry kernels, as well as the higher -

order version of the asymmetry kernels. We also examined the AMISE of the asymmetry 

kernel and their higher -order counterpart.  

 

From Table 1, we observed that the h- optimal (
opth ) values for asymmetry kernel, as well as 

the higher -order counterpart increase as the values of the order (m) increases. It was also 

noticed that the h- optimal (
opth ) values of the asymmetry kernels are higher when compared 

to that of the higher-order asymmetry kernels. 

  

The graphs of the exponential as well as that of the higher-order exponential kernels were 

drawn (see figure 1) to show their performance. We noticed a decrease in the value of the 

AMISE term in the higher-order form of the exponential kernel than that of the exponential 

kernel examined from order one to four (1 to 4), between four and beyond, there was known 

noticeable difference between the higher-order form of the exponential kernel and the 

exponential kernel examined.  

 

In the same way, when the graph of the gamma kernel was drawn against the higher-order 

gamma kernel (see figure 2) we observed that the higher-order gamma kernel performed 

better than the gamma kernel between order 1 and 4. Beyond this, the difference is not 

pronounced in the graph.  

 

8.1            CONCLUSION 
From Tables 1 and 2 an appreciable error reduction was achieved when we compare higher -

order version results of asymmetric kernels with its asymmetric counterpart. The error 

propagation drops considerably as h increases. When the asymmetry kernel results are 

compared with that of the higher -order asymmetric kernels in terms of their AMISE, the 

results showed an improvement in the higher -order asymmetric kernel. 
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APPENDIX  

Table1. Values of h AMISE  for the asymmetry kernels: the exponential and the gamma as well 

as their higher –order versions.  
 

m AMISEh  
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β
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1 1.6425 1.5456 1.6425 1.2065 

2 1.7641 1.7187 1.7641 1.5457 

3 2.3619 2.3231 2.3619 2.1713 

4 3.0229 2.9863 3.0229 2.8420 

5 3.7072 3.6717 3.7072 3.5309 

6 4.4035 4.3687 4.4035 4.2299 

7 5.1073 5.0729 5.1073 5.3773 

8 5.8160 5.7819 5.8160 5.6450 

9 6.5284 6.4945 6.5284 6.3580 

10 7.2435 7..2097 7.2435 7.0736 
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Table2. Values of AMISE for the asymmetry kernels: the exponential and the gamma as well 

as their higher –order versions
 

m 
AMISE

 

 
Exponential 
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Higher–order  exponential 
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−
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t
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etK
t

0
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1 αα

β
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βα
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1 1.3252  E – 04 1.3931 E – 03 1.3252 E – 04 1.3734 E – O3 

2 1.1132 E – 04 2.8020 E – 04 2.8320 E – 04 4.5556 E – 04 

3 1.0640 E – 04 1.0112 E – 04 1.0604 E – 04 2.0782 E – 04 

4 1.0471 E – 04 5.6065 E – 05 1.0471 E – 04  1.1946 E – 04 

5 1.9280 E – 05 3.5466 E – 05 1.9280 E – 05 7.7258 E – 05 

6 1.9006 E – 05 2.4388 E – 05 1.9006 E – 05 5.3877 E – 05 

7 1.8827 E – 05 1.7772 E – 05 1.8827 E – 05 3.9675 E – 05 

8 1.4328 E – 05 1.5513 E – 05 1.4328 E – 05 3.0396 E – 05 

9 1.1174 E – 05 1.0615 E – 05 1.1174 E – 05 2.4017 E – 05 

10 9.0826 E – 06 8.5557 E – 06 9.0826 E – 06 1.9446 E – 05 

 

Table 3. DURATION OF 200 FAIRLY USED CAR REAMS ON THE ROAD 

The duration (in months) of 200 fairly used car reams on the road before they failed some 

specific gauge test is displayed below. The data was obtained from a mechanic workshop and 

spare part station in an urban city in Nigeria. 
18.5     18.4     

 

12.3 23.5 31.0 17.4 25.2 20.9 26.8 21.3 

13.6      18.1 15.8 21.5 27.2 24.2 20.7 22.7 28.4 27.4 

21.2       26.7 12.4 15.3 26.5 22.6 25.7 18.8 21.2 20.4 

26.4 19.6 18.2 18.8 20.6 17.0 19.3 13.9 20.7 14.4 

26.0 19.1 19.8 20.7 20.0 26.5 16.1 26.3 29.3 13.1 

28.7 17.4 20.1 22.8 22.3 11.2 25.4 18.6 19.8 21.0 

9.1 19.9 18.4 20.7 19.9 22.8 17.1 13.5 16.7 24.8 

18.8 24.3 31.0 15.4 14.7 19.4 22.7 23.8 24.5 12.5 

25.5 31.9 11.3 29.4 11.1 20.2 22.7 23.9 20.0 17.0 

14.6 16.7 16.3 22.4 24.1 16.7 18.4 22.1 25.2 22.6 

16.5 28.3 7.1 20.4 22.2 17.3 17.8 22.0 22.2 18.9 

11.5 11.9 27.2 24.1 23.1 24.2 13.2 16.8 27.3 18.3 

10.8 22.7 13.6 24.3 21.1 24.0 30.0 23.6 19.4 19.2 

15.1 24.5 16.7 16.8 14.9 22.3 17.2 22.6 15.2 17.8 

16.1 29.6 23.8 15.4 26.2 23.5 20.4 25.4 12.3 16.0 

9.4 19.6 22.3 25.6 18.4 28.2 18.8 6.2 7.2 23.2 

17.2 17.4 24.4 14.0 15.8 21.5 34.2 22.3 20.5 20.3 

18.0 23.4 23.0 12.2 15.9 22.9 26.3 27.3 21.5 26.3 

20.7 18.1 13.1 23.6 17.9 29.3 24.4 .11.4 19.9 21.3 

18.2 23.8 14.4 23.2 17.7 18.3 26.7 20.2 21.0 20.3 

 

Source: Global Journal of Mathematical Sciences Vol.6.No.2. 2006. 



Mathematical Theory and Modeling                                                                                                                                                  www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.5, No.9, 2015  

 

77 

 

Figure1: The graph of order (m) and AMISE of the exponential and higher order exponential 

kernel 

 

 

 

 
Figure 2: The graph of order (m) and AMISE of the gamma and higher order gamma kernels. 

 

 

 

 

 

 

 

 


