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Abstract 

In this study, the consumer prices, real gross domestic product (GDP) and unemployment for Germany and 

Turkey between 2006 and 2011 are geometrically interpreted by using Lagrange interpolation and OLS method. 

The coefficients of linear regression models are obtained by matrix display of OLS method. The Lagrange 

interpolation polynomial is considered in bivariate situation and we aim a different formulation. Thanks to the 

considered methods, it will be possible to have an idea about the unemployment rate status in Germany and 

Turkey. We use two different methods for the prediction of unemployment rates, which are developed by 

different equations in order to predict third variable by using two variables. Our main purpose is to determine 

whether an equation gives the correct guess rather than numerical expression. Besides, we have tried to state 

geometric display to data. 

Keywords: Lagrange interpolation, ordinary least square (OLS), regression, geometrical display, matrix display   

 

1. Introduction 

In the mathematical field of numerical analysis, interpolation is a method of constructing new data points within 

the range of a discrete set of known data points. We represent a set of points with a curve that passes exactly 

through all of the points. Interpolation can also be implemented to functions first by sampling the function at 

some points. In this way, we can obtain a suitable representation for the data or a function that may be 

sufficiently precise for practical purposes. It is often required to interpolate the value of that function for a 

current value of the independent variable. This may be achieved by curve fitting or regression analysis. In fact, 

the geometry of the set of interpolation points (called nodes) is crucial for determining the solvability of the 

interpolation problem. 

The basis type of interpolation is interpolation by means of univariate polynomials. Multiple solutions for 

polynomial interpolation have been given, particularly those of Newton and Lagrange. In numerical analysis, 

multivariate interpolation or spatial interpolation is interpolation on functions of more than one variable. The 

function to be interpolated is known at given points ...),,,( iii zyx  and the interpolation problem consists of 

yielding values at arbitrary points ...),,,( zyx . Interpolation is the process of defining a function that determines 

the given values at given points. Multivariate interpolation is concerned with interpolation of a function of more 

than one variable. 

The regression analysis and Ordinary Least Square (OLS) and their applications in the non-linear regression 

analysis is one of the major subjects for the researchers in the fields of economics and finance (Arhipova I. and 

Balina S., 2004).  OLS regression is based on determining the dependent variable ( )Y by producing unbiased 

minimum sum of error square in ( )Y  with regards to the independent variable ( )X . As Fernandes and Leblanc 

(2005) mentioned, to obtain unbiased observations, the prediction should be equal to the expected value of the 

dependent variable for a particular set of data. OLS is based on a set of assumptions such as normality, 

homogeneity and independence of residuals. As a result of violation of these assumptions, inefficient and biased 

estimators can be obtained which may lead to an inaccurate estimation of model parameters by OLS 

(Montgomery et al., 2001). 

Unemployment is not only a risk for individual countries but it is also a global problem for almost all of the 

nations. Current unemployment statistics reveal that unemployment is a very serious problem especially for 

young population in most developing countries. The most important reason of this situation is that young people 
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have better education levels as compared to old people, however, they do not have the opportunity to use their 

skills in the current economic situation.  

Our study is based on two different countries, in which policy makers respond to reduce high level of 

unemployment by establishing different policies, namely Germany and Turkey. Germany's economy and the 

labor market has performed quite well in recent years as compared to Turkey although further improvements for 

young population, long-term unemployed and women still needs to be provided. The German labor market has 

also responded very well to the global economic crisis of 2008 whereas the same thing cannot be said for the 

Turkish labor market. As it was stated in the Employment Plan of Germany (2014), once the economy has 

started to recover German companies were ready to react quickly increasing the German market share of the 

global market and thus employing more people. Hence, the major purpose of this paper is to compare a 

geometric approach that can serve to make further plain on multivariate interpolation and OLS method. This 

geometric approach is made possible by determining the standard OLS test statistic in terms of geometric 

display. In this study, we employed observations of Turkish and German unemployment rate covering the period 

of 2006-2011 on annual basis.  We obtained the whole data from the International Financial Statistics (IFS) data 

base. In this study, we used two different methods in order to compare the geometric perspectives of OLS and 

Lagrange interpolation. Our main aim of using these methods is to develop a new equation by predicting third 

variable by using two other variables  

This study contributes to the existing literature in two ways. First, it tries to predict the unemployment rates of 

two different countries with completely different dynamics. In this context, forecast of unemployment rate 

particularly in a developing country will enrich the existing literature in which few numbers of studies 

concentrate on the unemployment rates in developing countries. Secondly, it is one of the rare studies in which 

OLS and bivariate Lagrange interpolation has been used in a single study. In this regard, it will provide a new 

perspective to the researchers  who intend to use different statistical methods and approaches in their researches. 

The paper is organised as follows: Section 2 provides the major literature on the comparison of forecasting 

performances of different linear and non-linear time series models to predict unemployment rates of different 

countries. Section 3 provides data and methodology. Section 4 presents empirical findings. Section 5 concludes 

our paper and summarises our findings. 

 

2. Literature Review 

Regression is one of the most widely used statistical methods for investigating and modelling the relationships 

between different macroeconomic variables (Montgomery et al., 2001) and has a wide application in almost 

every field of studies including economics and finance. Various regression approaches and a number of different 

research papers have been developed to forecast a variety of different macroeconomic variables and to establish 

the relationship between these variables. Prediction of unemployment rate constitutes the basis of many 

economic decisions. This is mainly because unemployment, which is an economic concept, is directly related 

with the economic situation in a country. As Kwok (2011) states, unemployment has a direct negative influence 

on the economic development. Different reasons and factors may be affective on the unemployment in different 

countries.  

Various different statistical methods from the OLS to GARCH models have been used to forecast 

unemployments rates of different countries. Rothman (1998) tries to measure the out-of-sample forecasting 

accuracy of six non-linear models. On the other hand, Parker and Rothman (1998) tries to develop a model to 

forecast quarterly adjusted unemployment rate with AR(2) model. Montgomery et al. (1998) conducted a study 

based on a comparison of forecasting performances of different linear and non-linear time series models by using 

the U.S. unemployment rate. They particularly emphasized the measuring of forecasting performances during 

economic expansions and contractions by analyzing the asymmetric cyclical behaviors of unemployment rate 

and by using additional monthly information to forecast the quarterly rate. The results indicate that significant 

improvements can be acquired in forecasting accuracy over existing methods. Koop and Potter (1999) are the 

ones, who used threshold autoregressive (TAR) in order to model and predict the US monthly unemployment 

rate. Proietti (2001) investigated the out-of-sample forecasting for the US monthy unemployment rate by 

employing seven linear and non-linear forecasting models. The study concludes that linear models perfom better 

with a higher persistence.  

Several other researches for modelling and predicting the unemployment rates include Johnes (1999), Peel and 

Speight (2000), Gil-Alana (2001), Brown and Moshiri (2004), Milas and Rothman (2008) and Barnichon and 

Nekarda (2012). Johnes (1999) compares AR(4), AR(4)-GARCH(1,1), SETAR(3,4,4,4) and neural network to 

forecast UK monthly unemployment rate by using the sample period of January 1960 and August (1996). He 
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found that SETAR model performs better for short-term forecasts. Peel and Speight (2000) examined whether 

non-linear time series models of SETAR can obtain superior out-of-sample forecasts of UK unemployment data 

for February 1971 and September 1991. The study indicates evidence that out-of-sample SETAR has a better 

forecasting performance as compared to relative AR models. Gil-Alana (2001) utilized a Bloomfield exponential 

spectral model for developing a model to predict the unemployment rate as an alternative to ARMA models. 

Brown and Moshiri (2004) developed two artificial neural network (ANN) models to predict unemployment 

rates in the US, Canada, UK, France and Japan. They compared the out-of-sample forecast results that they 

obtained by the ANN models with those of several linear and non-linear times series models. They found that 

ANN models have more accurate prediction perfomances than other time series models. Milas and Rothman 

(2008) developed multivariate non-linear models to evaluate the US unemployment rate. Barnichon and Nekarda  

(2012) combined theory of equilibrium unemployment with simple econometric techniques to provide an 

extremely explanatory analysis of unemployment fluctuations. 

  

3.Data and Methodology 

 

3.1.Polynomial Interpolation 

Our empirical analysis is based on the data for one developed and one developing country, namely Germany and 

Turkey in 2006 and 2011. We obtained the data required for Germany and Turkey from the IFS database.  

Let us start with 1n  (MathType) data points  ),( , . . .),,(),( 112211  nn yxyxyx  in 
2

. For 

1 , . . .,2,1  ni ,  consider the Lagrange Basis Polynomials )(xLi  given by the formula 
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The polynomial )(xLi  is the Lagrange polynomial for the interpolation points 

 

  )}0,( ),...,0,(),1,(,)0,( , . . .),0,(),0,( 11121  niii xxxxxx  

 

The Lagrange polynomial )(xL for the original interpolation points are now given by the following formula 

)(.)(
1

1

xLyxL i

n

i

i




  

It is clear that this polynomial has the property that ii yxL )(  as required. 

 

Note that the Lagrange polynomial, ),(xL  is unique. If there were two such polynomials, )(xL  and )(xP , then 

)()( xPxL   would be a polynomial of degree n  with 1n  zeros. Thus, it would have to be identically zero 

and we must have )()( xPxL  . 

The advantage of this form of the interpolation polynomial is that we can write down the interpolant 

immediately, without computing the coefficients in the function. 

Now we want to investigate bivariate form of the Lagrange interpolation polynomial. For this purpose, we will 

deal with multivariate case and then introduce its formula (Berrut, 2004; Gasca and Sauer, 2000). 

  

3.2. Multivariate Case 

 

Multivariate Lagrange interpolation is an important problem of computational mathematics and approximation 

theory. The research of the theory and method of multivariate interpolation is developing rapidly in the past few 

decades to find out some problems such as the calculation of multivariate function, the design of surface, the 

construction of finite element scheme, computer graphics, numerical quadrature, cubature, numerical solutions to 

differential equations (Gasca and Sauer, 2000).  
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Let ) ..., ,,( 21 kXXXff   be an k variable multinomial function of degree n. Since there are 
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 where )(XLi  is a multinomial function in the independent variables 
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We assume here that .0)det( A  Although we can solve for the coefficients i  in f  by inverting A , the 

utility of Lagrange interpolation can be solved by f without clearly obtaining for its coefficients (Carnicer and 

Gasca, 2005). 

Remark. If A  is singular, then the coefficients of f  are not adjusted, in which case f  is clearly not unique. 

Therefore, f is unique if and only if its sample matrix is nonsingular. On the other hand, by sembolising the 

geometric demonstration of the p  points, 0)det( A  occurs to be a complicated problem (Olver, 2006: 201-

240).  

 

Let )det(A . Now make the substitutions Xx j   in A ; this gives the following matrix )(xA j : 
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Note that the 
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3.3. OLS (Ordinary Least Squares) 

Regression analysis is one of the most important approaches in econometrics. For this analysis one can first 

specify a regression model that determines the relationship between economic variables. The most commonly 

used specification is the linear model. Regression analysis is a statistical tool for predicting the associations 

among variables and it involves several techniques for analyzing a number of different variables and modeling.  

In statistics, OLS is a technique for calculating the unknown parameters in a linear regression model. This 

method minimizes the sum of squared vertical distances between the observed responses in the dataset and the 

responses predicted by the linear approximation. The obtained estimator can be expressed by a simple formula, 

especially in the case of a single regressor on the right-hand side. The OLS estimator is consistent when the 

regressors are exogenous and when there is no perfect multicollinearity and the error terms of linear unbiased 

estimators are homoscedastic and serially uncorrelated. Under these conditions, OLS method provides minimum 
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variance and mean-unbiased estimation when the errors have finite variances. Under the assumption that the 

errors are normally distributed, OLS is the maximum likelihood estimator. It is used in economics, econometrics, 

finance, electrical engineering, and political science in addition to many other areas of applications. In statistics 

and mathematics, linear least squares is an approach which determines whether a mathematical or statistical 

model complies with the data in cases where the value obtained by the model for any data point is stated linearly 

with regard to the unknown parameters of the model. 

The OLS estimator is rational when the regressors are exogenous and when there is no multicollinearity, and 

optimal in the class of linear unbiased estimators when the errors are homoscedastic and serially uncorrelated 

(Amemiya, 1985). 

 

In a linear regression model, the response variable is a linear function of the regressors; 

 

 

 

where ),...,,( 10 p   is a vector of 1p  parameters which describes the relationship between some 

variables ),...,,,1( 21 pxxxx  and i  is unobserved random variables (Scott and Holt,1982). 

 

This model can also be written in matrix notation as, 

  

  Xy  

 

where y and   are 1nx vectors, X  is an nxp  matrix of regressors (Hayashi, 2000). 

 

This statistical model can be obtained similar to the following; 
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This is not the only method for estimating these regression models. However, we can state three good reasons for 

using OLS; 

 

 The model fit derives from an orthogonal projection onto the model space, which has geometric 

properties, 

 The Gauss-Markov theorem states that ̂  is the best linear unbiased estimator (BLUE), 

 If the errors are independent and normally distributed, the least squares estimate is the maximum 

likelihood estimate (Plackett, 1950). 

 

OLS is an approximate solution to an overdetermined model of linear equations Xβ ≈ y, where β is the unknown. 

If the system cannot be solved precisely (the number of equations n is much larger than the number of unknowns 

p), we need to look for a solution that could derive the smallest discrepancy between the right-and-left-hand 

sides (Hayashi, 2000). In other words, we look for the solution,  

  Xy  minargˆ  

iii xy  
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where ||·|| is the standard 
2L  norm in the n -dimensional Euclidean space 

nR . The euclidean space 
nR   is the 

vector space composed by all vectors in 
nR . The Euclidean norm is also called the Euclidean length, 

2L  

distance, 
2 distance, 

2L  norm, or 
2  norm. The problem: 

2
minmin   XyXy  . 

,ˆˆ TXY   

YYe ˆ  

 

where e  is orthogonal to any point in )(XS  to X  or ̂X . 

YXXX TT 1)(ˆ   

 

where from the orthogonality position 0)ˆ(  YX T
 (Sosa-Escudero, 2009; Bourbaki, 1987). 

 

The predicted X is a certain linear combination of the vectors of regressors. Thus, the residual vector Xy   

will have the smallest length when y  is projected orthogonally onto the linear subspace spanned by the columns 

of X . The OLS estimator in this case can be obtained as the coefficients of vector decomposition of Pyy ˆ  

along the basis of X  (Hayashi, 2000). 

We can show the regression equation geometrically like the diagram in Figure 1. This diagram has been depicted 

by the error vector û  which is not orthogonal to the ̂X  vector (Davidson et al., 2004). 

 

 
                      Figure1. Geometry of OLS 

 

 

4. Empirical Findings 

 

In the section of this study, we try to estimate unemployment rates of Germany and Turkey by using consumer 

price and real gross domestic product (GDP) data and their geometric displays. We have done the whole 

calculations by using the MATLAB programme. 
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Example:  

Country Year Real GDP Consumer Price Unemployement 

GERMANY 2006 2.9 1.8 8.1 

GERMANY 2007 2.4 2.1 6.5 

GERMANY 2008 2 1.8 6.3 

GERMANY 2009 -4.7 0.2 7.5 

GERMANY 2010 3.3 1.3 7.1 

GERMANY 2011 2.0 1.4 7.1 

     

TURKEY 2006 6.1 9.6 10.2 

TURKEY 2007 5.0 8.2 10.3 

TURKEY 2008 5.3 4.6 11.0 

TURKEY 2009 -4.7 6.3 14.0 

TURKEY 2010 7.8 8.7 11.0 

TURKEY 2011 3.6 5.7 10.7 

 

How can we show the geometric interpretation of the data about Turkey and Germany? What can we say for the 

values between variables? 

 

Solution: 

 

1)  Firstly, we will solve the problem with Ordinary Least Squares.  

For Germany, we derive 

0 1 1 2 2Y X X      

1( ) ( )T TX X X Y   

 

8.1 1 2.9 1.8

6.5 1 2.4 2.1
1 1 1 1 1 1

6.3 1 2 1.8
,    ,   2.9 2.4 2 4.7 3.3 2

7.5 1 4.7 0.2
1.8 2.1 1.8 0.2 1.3 1.4

7.1 1 3.3 1.3

7.1 1 2 1.4

TY X X
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   
   

 

 

1

6 7.9 8.6 2.6515 0.373758 2.07694

7.9 55.15 20.01 ,  ( ) = 0.373758 0.0888022 0.342335   

8.6 20.01 14.58 2.07694 0.342335 1.7635

T TX X X X 
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Figure 2. Graphics of Germany for OLS 
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Figure 3. Graphics of Turkey for OLS 
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Figure 4. Graphics of Germany for Polynomial Interpolation 
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so that we find 
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and we derive from that  
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Figure 5. Graphics of Turkey for Polynomial Interpolation 

 

 

5. Conclusion 

Macroeconomic modelling and forecasting the unemployment rate is one of the most widely researched areas in 

the applied economic literature. Prediction of unemployment rate is one of the most crucial applications for 

economists and policymakers as it may function as an important tool in development of various different 

macroeconomic policies. It is one of the most serious economic problems that face different nations. The 

increase in unemployment rates reduce personal income and increase in the inequality and poverty. Prediction of 

unemployment rate may undoubtedly help policy makers to take preventive measures on time as well as set the 

necessary policies to avoid high unemployment rates before it becomes a rigid problem for the nation.   

In this study,  the consumer prices for Germany and Turkey between 2006 and 2011, real GDP and 

unemployment data were geometrically interpreted by using Lagrange interpolation and OLS method. These two 

different methods were used to estimate equations for each country and we obtained four different equations and 

geometric displays. While estimations from OLS method indicate planar graph, the predictions derived from 

lagrange interpolation are stated as quadratic equation. When our study is evaluated generally, it can be said that 

OLS results have linear features.  

In our study, which compares OLS and lagrange interpolation methods, we found that both methods have 

obtained similar results to each other in some ways. The equation obtained by the OLS method for Germany has 

been calculated as follows; 

1 28.0481 0.101334 0.754552GermanyY X X    

 

where the coefficient of GDP is positive (0.101334), and the coefficient of consumer price is negative (-

0.754552). This result can be evaluated as a proper result in the economic literature. That is, the more GDP 

increases, the more unemployment rate will increase in proportion of 0.101334. The more consumer price 

increases, the more unemployment will decrease at the rate of 0.754552.  

In the same way, the results of OLS methods for Turkey have been calculated as follows; 
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1 212.3112 0.289869 0.000666398TurkeyY X X    

 

where the coefficient of GDP is negative (-0.289869) and the coefficient of consumer price is positive 

(0.000666398). This result is exactly opposite to the results that we obtained for Germany. In other words, the 

more GDP increases, the more unemployment rate will decrease at the rate of 0.29 on average. The economic 

literature points out that for developing countries like Turkey, the rise of consumer price may increase the 

growth of unemployment rate. On the other hand, the rise of GDP can result in a decrease in the rate of 

unemployment. 

The equation obtained by Lagrange interpolation method for Germany has been calculated as follows; 

 

1537.102216.144495.257869.273684.3-0.465586xz 22

Germany  yxyxy  

 

where the coefficient of GDP is negative (-2.44495) and the coefficient of consumer price is negative (-1.2216). 

The found equation Germany( )z  gives the unemployment rate of Germany when the variables are replaced in this 

equation. 

 

The equation obtained by Lagrange interpolation method for Turkey has been calculated as follows; 

 

.147.120738538.0400765.00112508.000700056.00.0492774xz 22

Turkey  yxyxy
 

 

Where the coefficient of GDP is negative (-0.400765) and the coefficient of consumer price is negative (-

0.0738538). The found equation Turkey( )z  gives the unemployment rate of Turkey when the variables are 

replaced in the equation.  

While the geometric display of Turkey indicates a convex view, the geometric display of Germany shows a 

concave view. The results of Lagrange interpolation method are notably remarkable. The geometric 

demonstrations can be interpreted differently. The graphs can be seen as the planary sight in three-dimensional 

space for Turkey and Germany. The geometric demonstration, which is obtained by the German data, tends to 

curve top-down. That is, the unemployment rate of Germany from 2006 to 2011 can be interpreted as in a drop 

tendency, but the situation is exactly opposite for Turkey.  

As a suggestion for further research, this study may be extended by using a larger data set on unemployment 

rates in Turkey and in Germany and the results may be compared with the current findings. However, more 

countries from the European Union (EU) or from other emerging countries may also be included into our study. 

Finally, the method of OLS or bivariate lagrange interpolation can be compared with alternative methods. In this 

regard, for example the method of ANN can be used as a newly developing method to be compared with these 

two methods or any other linear or non-linear methods.  In other words, the obtained results from ANN can be 

compared with the obtained results from Lagrange interpolation and OLS in terms of evaluating the 

performances of these methods. 
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