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Abstract 

In this study, a time stepping Taylor Galerkin Pressure Correction finite element scheme 

(TGPC) is investigated on the basis of incompressible Newtonian flows. Naiver-Stoke partial 

differential equations have been used to describe the motion of the fluid. The equations 

consist of a time-dependent continuity equation for conservation of mass and time-

dependent conservation of momentum equations. Examples considered include a start-up of 

Poiseuille flow in a rectangular channel for the Newtonian fluid. In that context, three 

different meshes 2×2, 5×5 and 10×10 are implemented to investigate the effect mesh 

refinements on the accuracy of the solution. In addition, the behaviour of velocity and 

pressure are reported in this study.      

Keywords: Finite element methods, Taylor expansion, Naiver-Stoke equations, Newtonian 

fluid, Galerkin method 

  

1. Introduction 
The solution of the system of differential equations governing the flow of Newtonian fluids, 

has attached some considerable attention in the field of computational fluid dynamics (CFD). 

For a simple shear flow, under constant pressure and temperature, Newtonian fluids exhibit a 

linear relationship between shear stress and shear rate through a constant viscosity. The 

behaviour of such fluids can be predicted on the basis of the Navier-Stokes differential 

equations. This system is presented by the momentum (Navier-Stokes) equations. 

Consequently mass conservation and momentum partial differential equations are exhibited 

for the Newtonian case (see for example Bird et al. 1987 for details). 

It is generally accepted that, throughout the history of computation, numerical simulation has 

advanced to address many different scientific problems. Numerical techniques have been 

developed to solve system of partial differential equations. However, before start solving any 

system of partial differential equations, we need to study and understand the physics and 

mathematics of such systems. Yet, the range of applications of a particular numerical 

technique may be problem and context dependent. For typical flow problems, it is not 

possible to solve such problems analytically. Throughout the history of computation, 

numerical investigation has advanced in addressing many different scientific problems. In this 

context several numerical techniques have been developed to solve systems of partial 

differential equations. Indeed, for such problems there are three main methods: finite 

difference method (FDM) (Smith 1985), finite element method (FEM) ( Zinenkiewicz  1977, 

1981, 1994, 2000) and finite volume method (FVM) (Versteeg & Malalasekera 2007).                                                                                                                        

Recently, the finite element method (FEM) has become the most widespread numerical 

scheme used to solve several scientific problems (see for example Chandrupatla & Belegundu 

2002). In fact, this method is widely used in numerical procedures to solve systems of 

differential or integral equations (change of type of the equations and mesh refinements can 

improve solution accuracy). Moreover, it has been applied to a large number of physical 

problems. The method essentially consists of assuming a piecewise continuous form for the 

solution and obtaining the weights of the functions in a manner that reduces the error in the 

solution. In this method of analysis, a complex region defining a continuum is discretised into 

simple geometric shapes called finite elements. The material properties and governing 
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relationships are considered over these elements and expressed in terms of unknown values at 

element corners. An assembly process, duly considering the loading and constraints, results in 

a set of equations. Solution of these equations gives us the approximate behaviour of the 

continuum. The most suitable numerical technique within the finite element framework for 

solution of the differential equations is a time stepping Taylor Galerkin Pressure Correction 

finite element scheme (TGPC) (Townsend & Webster 1987, Hawken et al. 1990). This 

approach involves two distinct aspects, a Taylor–Galerkin method and a pressure-correction 

method. The Taylor–Galerkin method is a two-step Lax-Wendroff time stepping procedure 

(predictor-corrector), extracted via a Taylor series expansion in time (Donea 1984, 

Zinenkiewicz et al. 1985). The pressure-correction method accommodates the 

incompressibility constraint to ensure second-order accuracy in time (see Hawken et al. 1990, 

Aboubacar et al. 2002).         

In this study, a time stepping Taylor Galerkin Pressure Correction finite element approach 

(TGPC) is employed to solve sets of differential equations. This method is described base on 

Taylor expansion. The scheme is applied on triangular FE meshes, with pressure nodes 

located at the vertices and velocity components at both vertices and mid-side nodes. Here, 

specific problem considered is a start-up channel flow for plane systems.                                                                                                              

2. Mathematical modelling  
Isothermal flow of an incompressible fluid can be modelled through a system of differential 

equations comprising those for the balance conservation of mass and momentum equations. In 

the absence of body forces, such a system can be written as:   

          .0 u                                                    (1) 

Where u  is the fluid velocity. 

The balance of momentum reduces to 

          uu
t

u





. ,                     (2) 

where   is the fluid density and   the total-stress tensor, which equals 

          dpI s 2 .          (3) 

Where p is the hydrodynamic pressure,   the unit tensor,  s  the solvent viscosity and the 

Euler rate-of-deformation tensor , with   the velocity gradient (for 

more details see Bird et al. 1987, Al-Muslimawi 2013). 

The governing equations are expressed in non-dimensional terms via length scale L  (unit 

length), velocity scaleU , time scale L U , and pressure and extra-stress scale of U L . Here, 

the dimensionless parameters are introduced in the form of Reynolds number Re , and solvent 

fraction β, which are given by  

s

UL



  ,Re .                                                  (4) 

For Newtonian flow, the system of governing equation can be expressed in non-dimensional 

form as:
 

     0 u ,                       (5) 
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3. Numerical scheme 
3.1 Time discretisation 

In this study, a time stepping Taylor Galerkin Pressure Correction scheme (TGPC) has been 

performed. This method is developed by Townsend and Webster (Townsend & Webster 1987, 

Hawken et al. 1990). To describe this method, Lax_Wendroff time stepping (Strikwerda 

1989) is implemented using Taylor expansion. Here, the momentum equation (6) is expressed 

as  

         pduL
t

u





),(

Re

1
,                    (7) 

where, 

          uudduL  .Re)2(),(  .                      (8) 

A second-order Taylor expansion of  around  results in the following expression 
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To obtain a )( 2tO  accurate method avoiding the explicit evaluation of the first derivative a 

two-step Lax_Wendroff scheme is applied. The first step calculates values for u(x, t) at half 

time steps, 2

1
n

t  and half grid points. In the second step values at 
1nt are calculated using the 

data for 
nt and 2

1
n

t . Thus, the velocity can be written as 
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The pressure 2

1
n

p in Eq. (10b) is approximated by  
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In order to solve Eq. (12) together with the incompressibility constraint (5), an intermediate 

velocity *u is introduced such that 
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From Eq.(12) and Eq.(13), 
1nu  is given as   

          )(
Re

1*1 nnn pp
t
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,                                        (14) 

Taking the divergence of Eq. (13), and using 01  nu , gives the pressure 

difference )( 1 nn pp 
as function of u  only: 
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Then, the fractional-staged formulations within each time-step may be given by   
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3.2 Finite element scheme 

 

In the finite element method, we introduce approximations ),( txu  and ),( txp to the velocity 

and pressure respectively over finite dimensional function spaces. Hence we have,  

  6.,1),()(),(  jxtutxu jj  ,         3,,1),()(),(  kxtptxp kk  .                (17) 

such that )(tu j and )(tpk represent the vector of nodal values of velocity and pressure 

and )(xj , )(xk  are their respective basis (shape or interpolation) functions. Similar forms 

apply for u and pressure difference. The domain   is partitioned into triangular elements 

with velocities computed at the vertex and midside nodes, and pressure only at vertex nodes. 

For the shape functions, )(xj  are selected as piecewise quadratic basis functions and )(xk  

as piecewise linear basis functions. The corresponding semi-implicit Taylor-

Galerkin/Pressure-Correction (TGPC) form of equations ((16a), (16b), (16c) and (16d)) may 

then be expressed in matrix-form as (see Baloch et al. 1995, Al-Muslimawi et al. 2013):  
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Where, M  is the mass matrix, S  is the momentum diffusion matrix, K  is the pressure                       

stiffness matrix, )(UN  is the convection matrix and L  is the divergence/ pressure gradient 

matrix. In the matrix notation 
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4.  Problem specification 

In this study, Poiseuille flow along a 2d planar straight channel, under isothermal condition is 

studied. Here, the comparative study of analytic solution of Naiver-Stokes equations under 

special cases with the numerical results is conducted. Additionally, in the present study a 

finite small value of the Reynolds number is assumed, Re= 10
-4

 and the time-stepping 

procedure is monitored for convergence to a steady state via relative norms subject to 

satisfaction of a suitable tolerance criteria taken here as 10
-10

 with typical ∆t is O(10
-3

 ). 

4.1 Exact solutions of Naiver-Stokes equations for parallel flow  

Finding exact solution of Naiver-Stokes equations, displays mathematical difficulties because 

of the nonlinear terms of equations (Cuvelier et al. 1986). However, it is possible to find 

analytical solutions in certain particular cases, generally when the nonlinear convective terms 

vanish naturally. Parallel flows, in which only one velocity component is different from zero, 

of a two dimensional, incompressible fluid have this characteristic. In order to illustrate this 

concept, consider two dimensional steady incompressible flows in channel with straight 

parallel sides (see Figure 1).  

Under these assumptions, the continuity and momentum equations in the absence of body 

force can be expressed as:  

Continuity 

            0









y

v

x

u
.                    (19) 

 Momentum  

         )()(
2

2

2

2

y

u

x

u

x

P

y

u
v

x

u
u
























         (x-direction)               (20) 

        )()(
2

2

2

2

y

v

x

v

y

P

y

v
v

x

v
u
























           (y-direction)                         (21) 

Since the flow is constrained by the flat parallel walls of the channel, no components of 

velocity in y-direction is possible (v=0). Consequently, 0
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Thus, from continuity equation we obtain, 
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which leads to get, 
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Also, the momentum equation can be reduced to  

      
2

2

y

u

x

P









 ,                     (24) 

      0




x

P
.                      (25) 

The differential equation (24) can be solved by integration with respect to y to get  
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By applying no-slip boundary conditions at the walls, we have 
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By using these boundary conditions, the integration constants 1C  and 2C can be evaluated to 

have  
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Therefore, the general solution of equation (24) is enforced as 
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The maximum velocity, which occurs at the centre of the channel (at
2

h
y  ), is expressed as 
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Introducing the non-dimensional variables, 
maxu

u
u  and 

h

y
y  gives the general solution of 

equation (24) in the non-dimensional form 

         )1(4 yyu  .                    (31) 

4.2 Numerical discretisation 

A time fractional-staged Taylor-Galerkin incremental pressure-correction (TGPC) framework 

is considered. In that context, a structured, uniform, quadrilateral-based, triangular finite 

element mesh has been used, for the 2×2 mesh as displayed in Figure 2a. To test for accuracy, 

a similar meshes consisting of 5×5 and 10×10 have been used (see Figure 2(b,c)). Typical 

finite element mesh characteristics are included in Table 1. 

Boundary conditions: The boundary conditions for the study are illustrated in Figure 3. 

Poiseuille flow is specified at the inlet, and no-slip boundary condition is imposed on the 

channel wall. Along the outflow boundary, zero radial velocity applies.   

5. Numerical results 
5.1 Rate of convergence 

History plots of the relative error increment norms in velocity and pressure are provided in 

Figure 4 for the three different structure meshes 2×2, 5×5 and 10×10. These results reflect a 

superior rate of convergence for all solution components under the 10×10 mesh compared to 

http://www.iiste.org/


Mathematical Theory and Modeling                                                                                                                                                  www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.5, No.8, 2015 

 

265 

2×2 and 5×5 meshes. As a consequence, large time-steps are required under the 10×10 mesh 

to reach an equitable level of tolerance, as opposed to with the alternative meshes. Note, the 

same rate of convergence in velocity and pressure components is shown with all meshes. In 

summary, one can conclude that the 10×10 mesh provides better convergence in contrast to 

others meshes due to the number of elements.     

5.2 Velocity fields and profiles 

Figure 5 demonstrates axial velocity fields vx and vector for Newtonian flow based on three 

difference meshes 2×2, 5×5 and 10×10. Comparative graphical data on velocity changes for 

these meshes are shown in Figure 5.  The results reveal that, the maximum in vx field plot is 

located at the middle of the channel, while minimum level of the velocity occurred near the 

walls. Here, one can see clearly the effect of the element number of the mesh on the accuracy 

of the results, where 5×5 and 10×10 meshes comparatively more accurate than the 2×2 mesh 

(see Table 2). The corresponding profile with zoomed representation for axial velocity in fully 

developed flow is provided in Figure 6. The comparison in velocity between the numerical 

solution and exact solution for 2d planar straight channel is displayed for three structured 

meshes. For all cases, the cross-channel axial velocity profile shows parabolic flow structure. 

Findings reveal that, the results for 5×5 and 10×10 meshes are closed to the exact solution 

compared to 2×2 mesh due to the increasing in the number of mesh elements.      

5.3 Pressure fields 

In Figure 7 fields plot are presented for pressure P for 2×2 and 10×10 meshes. As to be 

anticipated, a distinct level of pressure rise along the inlet of channel decreasing whenever 

closer from the outlet of the channel. From these fields, one can observe the maximum levels 

of P for 2×2, 5×5 and 10×10 meshes are 12 units, 16 units and 16.0002 units, respectively, 

(see Table 2). In addition, more accuracy in the pressure results is appeared for 10×10 mesh 

compared to 2×2 mesh due to mesh refinement. 

6. conclusion 

In this study, we have employed a time stepping Taylor Galerkin Pressure Correction scheme 

(TGPC) to investigate a 2d planar straight channel (Parallel flows), under isothermal 

condition is studied. Accuracy and performance of the incompressible Newtonian algorithm 

based on mesh refinement are considered. To investigate numerical stability and accuracy 

properties through time-stepping (TGPC), a comparison against analytical solution is 

achieved under certain particular cases using three different structure meshes. We note the 

accuracy for the solution and time-steps increase with increasing mesh refinement. 

In contrast, high level of pressure is located in the inlet of the channel, while large value of 

velocity is observed in the middle of channel.   
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Mesh Total Element Total Nodes Boundary Nodes Pressure Nodes 

2×2 8 25 16 9 

5×5 50 121 40 36 

10×10 200 441 80 121 
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 Figure 2: (a) Structured 2×2 finite element mesh, (b) Structured 5×5 finite element mesh, (c) 

Structured 10×10 finite element mesh 
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Figure 3: Schema for flow problem, boundary conditions 

Figure 4: History of the relative error increment norms in velocity and pressure  
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Figure 5: Axial velocity fields: (a) 2×2 mesh, (b) 5×5 mesh, (c) 10×10 mesh 
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Figure 6: Cross-channel axial velocity profiles: 2×2 mesh, 5×5 mesh, 10×10 mesh and 

analytic solution 

 

 

v
x

Y

0 0.2 0.4 0.6 0.8 1
0

0.25

0.5

0.75

1
v

x
_mesh2x2

v
x
_mesh5x5

v
x
_mesh10x10

Exact solution

umax 

P: 0.0 1.7 3.3 5.0 6.7 8.3 10.0 11.7 13.3 15.0

P: 0.0 1.3 2.7 4.0 5.3 6.7 8.0 9.3 10.7 12.0

P: 0.0 1.3 2.7 4.0 5.3 6.7 8.0 9.3 10.7 12.0

P: 0.0 1.7 3.3 5.0 6.7 8.3 10.0 11.7 13.3 15.0

b) 10×10 mesh a) 2×2 mesh 

Figure 7: Pressure fields: (a) 2×2 mesh, (b) 10×10 mesh 
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