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Abstract

In this paper, three Implicit Runge — Kutta methods are derived using Hermite, Laguerre and Legendre
polynomials for the direct solution of general first order initial value problems of ordinary differential
equations with constant step size. The analysis of the properties of the developed methods were
investigated and found to be consistent, convergent and A — stable. The efficiency of the methods were
tested on some numerical examples and are found to give better approximations than the existing
methods.

Keywords: Implicit Runge — Kutta shemes, Collocation, Interpolation, canonical polynomial and A —
stable.

1. Introduction

Considering the initial value problem of the form
y' () = f(x,y),y(@) = y(0), a<x<b @

The general Implicit Runge — Kutta method with v slope for general first order initial value
problem in ordinary differential equation of the form (1) as defined by Jain (1987) is

K, = hf (tn +ch,y, +Zaijkj], i=123,....v
=
and

yn+l = yn +zwiki1

=

where

and
a;;, 1<) <V, Wy, Wy, Wy, ..., W, are arbitrary.

The general solution for the differential (1) is approximated by calculating the solution of a
related first order differential equation. The general single — step is defined
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yn+l = yn + h¢(xn , yn ' h)’ n= 01112l3!"" N-1 (2)

where ¢(X,y,h) is a function of the augmented x, y, h and it depends on right — hand side of
(1), and (X, y, h) is the increment function. If y,.; can be obtained simply by evaluating the
right — hand side of (2), then the single — step method is called explicit else it called implicit
(Jain, 1987). The true value y(xn) will satisfy

y(X,4) =Y, +ho(x,, y(x,))+7,, n=0123,...,n—1where 7, is the truncation error.
Assuming that (1) has unique solution.

yeR"™ feR"anda=X, <X, <X, <———<X, <X, <———<X, =b, where the

i+1

number of subintervals is specified by N = (b — a)/h

If we further assume a constant step size h = x;.; — X; and adopt the notation
Y(Xo) = Yo, Y(Xi+j) = Yj+1, Where j is a positive real constant (not necessarily an integer).
(Lambert, 1973).

The schemes are generated by collocation using transformed Hermite, Laguerre and Legendre
polynomials of degree one.

2. Derivation of the schemes
Suppose that equation (1) has a unique solution y(x) which can be approximated as accurately
as possible by (Scheld, 1989)

Vo (0= 2°2,Q, 00, x [x;,x,..] ©
j=0

where Q; (x), j =0()n, are certain canonical polynomials and a’s are constants to be

determined.

That is:

Y1 (xX) = 3,Qy () + a,Q, (X) (4)

By defining an operator

L= di +1 to derive the basis Q; (x) as

X

LQ; = Lx

Lx! = (& +2)x!
= x4+ x]

Assume that the inverse of L exist, that is LL™ = 1.

Then

LLﬁlXj = jLLile,l + LL?lQJ (X)
x) = jQ;, (%) +Q;(x)

This gives

Qo(x) =1

Qi(x) =x-1
Qu(X) = X2 — 2x + 2, etc.
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Considering yn(x) as an exact polynomial solution of the perturbed equation
yo=fxy)+H,(x) ()
Yo (%)= (6)

Collocating (5) at point X € [xi , xi+l]and interpolate (3).
Substituting the Q;(X)’s in (4), we get
yi(X) =a,(1) +a,(x-1)

=a, +a,x—a, (7)
yll (X) =, (8)
Substituting (7) in to (5) gives
y: () =a, = f(x,y)+H,(x) 9)
Collocating (9) at the points X =X, ,, X=X ., and x = X. s, We obtain by initial condition
v (xi%): a = fi% +d—|1(xi+%) 20)
Y4 (xi%): a = fi% +z|—|1(xi+%) Q1)
v (XH%): a = fi+% + 2'H1(Xi+%) @2

Evaluating H;(x) using Hermite polynomial of degree one. The Hermite polynomial is given

as (Pang, 1997)
N I
H,(x)=> (-1 — ™ (20", where N =1 if nis even and N = &2 if n is odd.
= r'(n—2r)!

With recurrence relation as

H..(X)=2xH,(x)-2,H,,

where

Ho(X) =1 H,(X) =2, H,(X)=4x* -2, H,(x) =8x®-12x, eit.c

with

Hl(xi#): % Hl(XH;): 1and Hl(xi+§)
Substituting for Hy(x) in to (10), (11) , (12) and adding, we get
a, = fi+l + le + fi+§ @3)

By the initial condition (6)
yi=a, +a,(x -1
A =Y; -, (% -1 14)

Substituting equation (14) in to (7) we get
yl(x) =Y _al(xi _1) + al(X_l)
=Y +a,(x=X) (15)
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Substituting for al from (13) into (15) and interpolating at x = X; + 1, gives

Va0 =Y +(Fs + fu + s s =) (L6)

Since it was assumed that h = x,, —x; and y(x,,,) =,.,, therefore,

Yia =Yit+ h(fp,; + fi+1 + fng) (17)

where the following can define as

fi+% = f (XH%’ y(Xi‘F% ))

fi+% = f (XH—%' y(XH—% ))

fi+% = f (XH%' y(XH% ))

Let K, =f ., K,=1f ,and K, = f _,, then (17) can be writtenas

Yin =Y h(Kl +K, + Ks) 18)

Applying the same technique to Laguerre and Legendre polynomials with recurrence relations
respectively as. (Cheney and Kincaid, 1999).

L, (x)=¢e"- d

n

- (Xne—X)
L,(X) =1 L, (x) =1-x, L,(X) =x* —4x+2, Ly(x) =—x*+9x* -18x +6, e.t.c
And
1 d
P.(x)= . X ="
y (%) o dx”( )

P,() =1 P.(X)=x P,(x)=3(3x*-1), etc

Yia=Yi t h(_ Ki+ K, + Ks) 19)
Via = ¥ +5(K + K, +K;) (20)
Let

K, = kai%’ Yil): fa

K, = f(Xi%’yiz): fiz

Ks = kan%' Yia): fia

Considering the following modified trapezoidal schemes to obtain yis, yi; and yis
(R. Taparki and M. R. Odekunle, 2010)

Yo —Yi = (%X%Xfil + fi) (21)

Yio = VYi = (%)(%)( fi, + fi) (22)
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— i =GN F + fu) (23)
— Vi = (N Fis + f (24)

Adding equations (21) and (22) we get

Yo+ Yu—2Y; =g fu +5 f, + 3,

And multiplying by Vs we get

% f, :%Yiz +%yil_%yi 24 fll 12 f|2 (25)

Substituting (25) in to (21) we have
Va3V —3Yi=5 T35 T (26)

Multiplying (26) by 3 and adding to (23), we get
Yo=Y+ fu—3 fi (27)

Substituting (27) into (23) and simplifying we get
Yio =Y +5 s (28)

Substituting (28) into (24) gives
Yie=Yi+5 fu+§ i +5 1, (29)

Thus, for equations (18), (19) and (20)
K, = flx,..y +2K, —2K,)

K, = f(xi#,yi +%Kl)

K, = flx, w Yo HBK +EK, 1K)

1+

3. Error Analysis
Using the method of error estimate given in Scheld (1990), equations (18) and (19) are of

order two with error constant -, while (20) is of order three with error constant of

4. Consistency and Convergence
The three numerical schemes are consistence since the order p=1, and since that is the
necessary and sufficient condition for convergence, hence the schemes are convergent. (Jain,
1987).

5. Stability Analysis
A single step method is said to be A — Stable, when applied to the test equation y'= Ay, gives

rational Pade’s approximation to e*"and is of the form y = R’ (q)y, (Jain, 1987).
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Applying the test equation to the three schemes, gives a Pade’s approximation, as such the
methods are A — Stable.

Example
Consider the equation

y'=-2xy, x[01], y, =1, h=0.05
The exact solution is

y=e™

6. Discussions
Though the results performed well and approximate the exact solution better as the step size
goes very small, but the results of high step size (h = 0.05) is given for easy comparison to
those that would work on the improved versions.
Table 1 is the result obtained by applying the scheme (18) from Hermit polynomial and table
2 is the result obtained from applying the scheme (20) from Legendre polynomial.

7. Conclusion
The new numerical schemes derived follows the technigues of implicit form of Runge — Kutta
methods proposed by Oladele (1997). The second order differential equation of the form
y"'= (X, y) version using Legendre polynomial, was carried out by Taparki and Odekunle

(2010). Oladele derived the schemes with two K’s, (that is K; and K,) while the new schemes
are derived with three K’s, (that is Ky, K, and K3) and the results are better.

The new schemes are of accuracy for direct numerical solution of general first order ordinary
differential equations. The steps to the derivation of the new schemes are presented in the
methodology while the analysis of the schemes proved to be consistent, convergent and A —
Stable, the results prove to be good estimate of the exact equations.
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PRESENTATION OF THE RESULTS

The results below are the exact and the approximate solution to problem presented.

Table 1: Results of the example above at h = 0.05 for equation (18).

Exact Solution Approximate Solution Errors
X y(Xn) Yn
0.00 1.000000000 1.000622000 6.22E-04
0.05 0.997503122 0.996242800 1.260322E-03
0.10 0.990049834 0.986915100 3.134734E-03
0.15 0.977751237 0.972765600 4.985637E-03
0.20 0.960789439 0.953992200 6.9856637E-03
0.25 0.939413063 0.930859100 8.553963E-03
0.30 0.913931185 0.903690700 1.0240485E-02
0.35 0.884705905 0.872864100 1.1841805E-02
0.40 0.852143789 0.838800200 1.3343589E-02
0.45 0.816686483 0.801954100 1.4732383E-02
0.50 0.778800783 0.762805200 1.5995583E-02
0.55 0.738968488 0.721846500 1.7121988E-02
0.60 0.697676326 0.679574300 1.8102026E-02
0.65 0.655406254 0.636478600 1.8927654E-02
0.70 0.612626394 0.593033300 1.95593094E-02
0.75 0.569782825 0.549688300 2.0094525E-02
0.80 0.527292424 0.506861900 2.0430524E-02
0.85 0.485536895 0.464934900 2.0601992E-02
0.90 0.444858066 0.424245600 2.0612466E-02
0.95 0.405554505 0.385086800 2.0467705E-02
1.00 0.367879441 0.347703800 2.0175641E-02

Table 2: Result of the example above at h = 0.05 for equation (20)

Exact Solutions Approximate Solutions Errors
X y(Xn) Yn
0.00 1.000000000 0.997710200 2.2898E-03
0.05 0.997503122 0.990462800 7.04322E-03
0.10 0.990049834 0.978369800 1.1680034E-02
0.15 0.977751237 0.961614100 1.6137137E-02
0.20 0.960789439 0.940444600 2.0344839E-02
0.25 0.939413063 0.915170400 2.4242663E-02
0.30 0.913931185 0.886153100 2.777805E-02
0.35 0.884705905 0.853798400 3.09075505E-02
0.40 0.852143789 0.818546500 3.3597289E-02
0.45 0.816686483 0.780862200 3.5824283E-02
0.50 0.778800783 0.741225300 3.7575483E-02
0.55 0.738968488 0.700119900 3.8848588E-02
0.60 0.697676326 0.658025300 3.9651026E-02
0.65 0.655406254 0.615406800 3.9999454E-02
0.70 0.612626394 0.572707800 3.9918594E-02
0.75 0.569782825 0.530407700 3.9375125E-02
0.80 0.527292424 0.488750900 3.854152E-02
0.85 0.485536895 0.448147600 3.7389295E-02
0.90 0.444858066 0.408895100 3.5962966E-02
0.95 0.405554505 0.371245800 3.4308705E-02
1.00 0.367879441 0.335406500 3.2472941E-02
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