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Abstract  

In this paper, three Implicit Runge – Kutta methods are derived using Hermite, Laguerre and Legendre 

polynomials for the direct solution of general first order initial value problems of ordinary differential 

equations with constant step size. The analysis of the properties of the developed methods were 

investigated and found to be consistent, convergent and A – stable. The efficiency of the methods were 

tested on some numerical examples and are found to give better approximations than the existing 

methods. 
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1. Introduction  

Considering the initial value problem of the form 

)1(),0()(),,()(' bxayayyxfxy   

The general Implicit Runge – Kutta method with v slope for general first order initial value 

problem in ordinary differential equation of the form (1) as defined by Jain (1987) is 
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The general solution for the differential (1) is approximated by calculating the solution of a 

related first order differential equation. The general single – step is defined  
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)2(1.,..,3,2,1,0),,,(1  Nnhyxhyy nnnn 

where ϕ(x,y,h) is a function of the augmented x, y, h and it depends on right – hand side of 

(1), and ϕ(x, y, h) is the increment function. If yn+1 can be obtained simply by evaluating the 

right – hand side of (2), then the single – step method is called explicit else it called implicit 

(Jain, 1987). The true value y(xn) will satisfy 

nnnnnn nnxyxhyxy  where1,...,3,2,1,0,))(,()( 1  is the truncation error. 

Assuming that (1) has unique solution. 

bxxxxxxaRfRy nii

mm  1210and, , where the 

number of subintervals is specified by N = (b – a)/h 

If we further assume a constant step size h = xi+1 – xi and adopt the notation                                  

y(x0) = y0, y(xi+j) = yj+1, where j is a positive real constant (not necessarily an integer). 

(Lambert, 1973).  

The schemes are generated by collocation using transformed Hermite, Laguerre and Legendre 

polynomials of degree one. 

2. Derivation of the schemes 

Suppose that equation (1) has a unique solution y(x) which can be approximated as accurately 

as possible by (Scheld, 1989) 
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where ,)1(0),( njxQ j  are certain canonical polynomials and a’s are constants to be 

determined. 

That is:  
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Assume that the inverse of L exist, that is LL
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 = 1.  

Then 
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This gives 

Q0(x) = 1 

Q1(x) = x – 1  

Q2(x) = x
2
 – 2x + 2, etc. 
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Considering yn(x) as an exact polynomial solution of the perturbed equation 

)5()(),(' xHyxfy nn   

)6()( iin yxy   

Collocating (5) at point  1,  ii xxx and interpolate (3). 

Substituting the Qj(x)’s in (4), we get 
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Substituting (7) in to (5) gives 

)9()(),()(' 11 xHyxfaxy n  

Collocating (9) at the points 
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Evaluating H1(x) using Hermite polynomial of degree one. The Hermite polynomial is given 

as (Pang, 1997) 
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With recurrence relation as 
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Substituting for H1(x) in to (10), (11) , (12) and adding, we get 
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By the initial condition (6)  
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Substituting equation (14) in to (7) we get 
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Substituting for a1 from (13) into (15) and interpolating at x = xi + 1, gives 
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Applying the same technique to Laguerre and Legendre polynomials with recurrence relations  

respectively as. (Cheney and Kincaid, 1999). 
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Considering the following modified trapezoidal schemes to obtain yi1, yi2 and yi3                                   

(R. Taparki and M. R. Odekunle, 2010) 
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Adding equations (21) and (22) we get 
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Substituting (25) in to (21), we have 
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Multiplying (26) by 3 and adding to (23), we get 
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Substituting (27) into (23) and simplifying we get 
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Substituting (28) into (24) gives 
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Thus, for equations (18), (19) and (20) 
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3. Error Analysis 

Using the method of error estimate given in Scheld (1990), equations (18) and (19) are of 

order two with error constant -
2
1 , while (20) is of order three with error constant of .

48
1

 
 

4. Consistency and Convergence 

The three numerical schemes are consistence since the order p≥1, and since that is the 

necessary and sufficient condition for convergence, hence the schemes are convergent. (Jain, 

1987). 

 

5. Stability Analysis 

A single step method is said to be A – Stable, when applied to the test equation nyy '  gives 

rational Pade’s approximation to 
he
and is of the form n

s yqRy )(1 (Jain, 1987). 
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Applying the test equation to the three schemes, gives a Pade’s approximation, as such the 

methods are A – Stable. 

 

Example  

Consider the equation  

05.0,1],1,0[,2' 0  hyxxyy  

The exact solution is 
2xey 

 
 

6. Discussions  

Though the results performed well and approximate the exact solution better as the step size 

goes very small, but the results of high step size (h = 0.05) is given for easy comparison to 

those that would work on the improved versions.  

Table 1 is the result obtained by applying the scheme (18) from Hermit polynomial and  table 

2 is the result obtained from applying the scheme (20) from Legendre polynomial. 

 

7. Conclusion  

The new numerical schemes derived follows the techniques of implicit form of Runge – Kutta 

methods proposed by Oladele (1997). The second order differential equation of the form 

),('' yxy   version using Legendre polynomial, was carried out by Taparki and Odekunle 

(2010). Oladele derived the schemes with two K’s, (that is  K1 and K2) while the new schemes 

are derived with three K’s, (that is K1, K2 and K3) and the results are better.  

The new schemes are of accuracy for direct numerical solution of general first order ordinary 

differential equations. The steps to the derivation of the new schemes are presented in the 

methodology while the analysis of the schemes proved to be consistent, convergent and A – 

Stable, the results prove to be good estimate of the exact equations. 
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PRESENTATION OF THE RESULTS 

The results below are the exact and the approximate solution to problem presented. 

Table 1: Results of the example above at h = 0.05 for equation (18). 

 Exact Solution Approximate Solution Errors 

X y(xn) yn  

0.00 1.000000000 1.000622000 6.22E-04 

0.05 0.997503122 0.996242800 1.260322E-03 

0.10 0.990049834 0.986915100 3.134734E-03 

0.15 0.977751237 0.972765600 4.985637E-03 

0.20 0.960789439 0.953992200 6.9856637E-03 

0.25 0.939413063 0.930859100 8.553963E-03 

0.30 0.913931185 0.903690700 1.0240485E-02 

0.35 0.884705905 0.872864100 1.1841805E-02 

0.40 0.852143789 0.838800200 1.3343589E-02 

0.45 0.816686483 0.801954100 1.4732383E-02 

0.50 0.778800783 0.762805200 1.5995583E-02 

0.55 0.738968488 0.721846500 1.7121988E-02 

0.60 0.697676326 0.679574300 1.8102026E-02 

0.65 0.655406254 0.636478600 1.8927654E-02 

0.70 0.612626394 0.593033300 1.95593094E-02 

0.75 0.569782825 0.549688300 2.0094525E-02 

0.80 0.527292424 0.506861900 2.0430524E-02 

0.85 0.485536895 0.464934900 2.0601992E-02 

0.90 0.444858066 0.424245600 2.0612466E-02 

0.95 0.405554505 0.385086800 2.0467705E-02 

1.00 0.367879441 0.347703800 2.0175641E-02 

Table 2: Result of the example above at h = 0.05 for equation (20) 

 Exact Solutions Approximate Solutions Errors 

X y(xn) yn  

0.00 1.000000000 0.997710200 2.2898E-03 

0.05 0.997503122 0.990462800 7.04322E-03 

0.10 0.990049834 0.978369800 1.1680034E-02 

0.15 0.977751237 0.961614100 1.6137137E-02 

0.20 0.960789439 0.940444600 2.0344839E-02 

0.25 0.939413063 0.915170400 2.4242663E-02 

0.30 0.913931185 0.886153100 2.777805E-02 

0.35 0.884705905 0.853798400 3.09075505E-02 

0.40 0.852143789 0.818546500 3.3597289E-02 

0.45 0.816686483 0.780862200 3.5824283E-02 

0.50 0.778800783 0.741225300 3.7575483E-02 

0.55 0.738968488 0.700119900 3.8848588E-02 

0.60 0.697676326 0.658025300 3.9651026E-02 

0.65 0.655406254 0.615406800 3.9999454E-02 

0.70 0.612626394 0.572707800 3.9918594E-02 

0.75 0.569782825 0.530407700 3.9375125E-02 

0.80 0.527292424 0.488750900 3.854152E-02 

0.85 0.485536895 0.448147600 3.7389295E-02 

0.90 0.444858066 0.408895100 3.5962966E-02 

0.95 0.405554505 0.371245800 3.4308705E-02 

1.00 0.367879441 0.335406500 3.2472941E-02 
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