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Abstract 

 This study used Geographical Weighted Regression (GWR) technique to find spatial relationship between 

Elevation and climate (Rainfall, Temperature) in Northern Nigeria using climate (Rainfall, Temperature) data 

from weather stations from 1980 – 2010 obtained from Nigerian Meteorological Agency (Nimet). From the 

results of the analysis it was shown that there is significant relationship between the elevation and climate 

variables (Rainfall, Tmax and Tmin). The study also shows that GWR has smaller residual sum of square than 

OLS in analysing the relationship between Elevation and Climate data. This may be due to the consideration of 

the spatial variation of the relationship over the study region. When mapping the results of GWR model it was 

observed that the effect of Elevation on climate variables appears to vary geographically 

Keyword: Geographical Weighted Regression (GWR), Ordinary Least square (OLS),  

Introduction 

Climate is one of the most important factors affecting ecological, societal systems and vegetation condition. 

Therefore, evaluation of the quantitative relationship between vegetation patterns and climate is an important 

object of applications of Geostatistics at regional- and global scales. Relationship between vegetation and its 

spatial predictors appears to vary as a function of geographical region and a number of the underlying 

environmental factors such as vegetation type, soil type and land use (Wang et al., 2001; Yang et al., 1997; 

Pavel et al., 2007, Ji and Peters, 2004). Moreover, the NDVI-climate relationship is also not the same within one 

landcover type. There are many cases that show a non-stability of this relationship in space within the same land 

cover or vegetation type (Fotheringham et al., 1996; Foody, 2003; Foody, 2004; Wang et al., 2005; Propastin 

and Kappas, 2008). According to these studies, when modelling the spatial vegetation-climate relationship one 

should take into account that one has to deal with a phenomenon of non-stationarity of this relationship across 

space. Nonstationarity means that the relationship between variables under study varies from one location to 

another depending on physical factors of the environment which are spatially autocorrelated. Local regression 

techniques, such as geographically weighted regression (GWR) help to overcome the problem of nonstationarity 

and calculate the regression model parameters varying in space (Fotheringham et al., 2002). Because of spatial 

non-stationarity, the parameters of the model describing the relationship may actually vary greatly in space 

producing a mosaic that reflects distribution of interaction between the response variable and the predictor 

factor. This mosaic, however, might demonstrate different patterns at each scale, because different results may 

be obtained from an analysis by varying its spatial resolution (Openshaw, 1984). Obviously, that the scale-

dependent results may be expected with a change in the spatial resolution if a relationship is spatially non-

stationary. Spatial variation in the relationship between variables both at and between spatial scales is reported 

in the recent literature for studies with spatially distributed environmental data. The study by Foody (2003 and 

2004), Propastin and Kappas (2008) showed that the predictive power as well as the rank order of explanatory 

variables in spatial models between remotely sensed data and climatic parameters is a function of scale. 

 

Pavel et al., (2007), Study Application of Geographically Weighted Regression to Investigate the Impact of 

Scale on Prediction Uncertainty by Modelling Relationship between Vegetation and Climate. The analysis 

revealed the presence of spatial non-stationarity for the NDVI-precipitation relationship. The results support the 

assumption that dealing with spatial non-stationarity and scaling down from regional to local modelling 

significantly improves the model’s accuracy and prediction power. The local approach also provides a better 

solution to the problem of spatially autocorrelated errors in spatial modelling. 

 

Foody (2003) meant by the term “scale effect” the influence of scale on the outputs of a model (strength of the 

relationship, parameter values and direction, prediction accuracy, etc.) and suggested that the scale effect is a 

consequence of the relationship between the variables varying in space. Observations of scale dependent results 

can indicate that the explanatory processes and variables operate at different spatial scales. Concerning the 
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spatial distribution of vegetation, the scale effect may be used (1) to analyse variations of microclimate and their 

effect to vegetation, (2) to determine the minimal size of landscape units reacting to climate factors as a 

homogeny area, and (3) to find a model with the best prediction power.  

 

In particular, Dye and Tucker (2003) studied the seasonality and trends of snow-cover, vegetation index, and 

temperature in northern Eurasia. Nicholson and Farrar (1994) examined the variability of NDVI over semiarid 

Botswana during the period 1982-1987. Their study demonstrated a linear relationship between precipitation 

and NDVI when precipitation was less than approximately 500 mm/yr or 50-100 mm/month. Similar results 

were also found by Wang et al. (2003), who examined the temporal responses of NDVI to precipitation and 

temperature in the central Great Plains, USA in Kansas and concluded relationship between precipitation and 

NDVI is strong and predictable when viewed at the appropriate spatial scale. There are also a number of 

different studies that have analyzed the influence of precipitation, temperature, atmospheric circulation on 

vegetation dynamics and biomass at high latitudes. 

 

Nicholson et al. (1990) compared the vegetation response to precipitation in Sahel and East Africa during 1982 

to 1985 and found out that the spatial patterns of annually-integrated NDVI closely reflected mean annual 

precipitation.  

 

Rodríguez-Lado et al. (2007) Carried out a study on spatial modelling of air temperature (maximum, mean and 

minimum) of the State of São Paulo (Brazil) using multiple regression analysis and ordinary kriging. Climatic 

data (mean values of five or more years) were obtained from 256 meteorological stations distributed uniformly 

over the State. It was found that the correlation between the climatic dependent variables, with latitude and 

altitude as independent variables was significant and could explain most of the spatial variability. The 

coefficients of determination (P < 0.05) varied in the range of 0.924 and 0.953, showing that multiple regression 

analysis gave an accurate method for the modelling of air temperature for the State of São Paulo. Finally, these 

regression equations were used together with the kriged maps of the residual errors to build 15 digital maps of 

air temperature using a 0.5 km
2
 Digital Elevation Model in a Geographic Information System. Pavel  et al., 

(2006),  assessed a human-induced dryland degradation in the cachment basin of the Balkhash Lake in the 

Middle Kazakhstan based on time series of  rainfall data and normalized difference vegetation index (NDVI) for 

the period 1985-2000. They developed a method to remove the climatic signal from the change in vegetation 

activity over the study period. By applying a local regression technique known as geographically weighted 

regression (GWR), relationship between spatial patterns of the growing season NDVI and the growing season 

rainfall were estimated for every pixel and every year. The relationship between NDVI and the explanatory 

variable was found to vary spatially and temporally. At local scales, the regression models indicated that over 

90% of spatial variations in NDVI are accounted for by the climatic predictor. Deviations in NDVI from this 

relationship, expressed in regression residuals, were calculated for each year of the study period 1985-2000. 

Residuals, laying out of the “Standard Error of the Estimate” are regarded as outliers and interpreted as human-

induced. The results of the modelling were validated by comparison of the remote sensing data of high spatial 

resolution (Landsat TM and ETM) and the data from field trips to degrading areas. 

 

Materials and Methods 

The meteorological observation stations in the Federal Republic of Nigeria are administrated by the Nigerian 

Meteorological Agency (Nimet). For this study, climate stations in the study area and the nearest to that were 

used. Climate data contain monthly records of 12 climate stations placed in the study area for growing seasons 

(June- September) during the period of 1981-2010. Rainfall, minimum Temperature, Maximum Temperature 

variables were used for the analysis. 

 

Model Specification 

Geographically weighted regression was first explored by Fotheringham (1997), Brunsdon et al., (1998), 

Fotheringham and Brunsdon (1999), and Fotheringham (2000).  Fotheringham et al., (2002) discussed in detail 

of geographically weighted regression. 

 

For the value 0( )z s  at a given location 0s  , it can be estimated using its neighbors with the set of values 

1 2( ( ), ( ),..., ( )).nz z z s z s z s  Considering k predictors of q, The GWR model can be written as Eq. (3.7). 

 

http://www.iiste.org/


Mathematical Theory and Modeling                                                                                                                                                 www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.5, No.8, 2015 

 

 

64 

    0 0

0

ˆˆ( ) . ( )
k

p

k

k

z s q s 


                    (2) 

 

 Where ε is the residuals, and other notes as above. The objective of GWR is to obtain non-parametric estimates 

for each predictor qi and at the location 
0s  . This can be processed using neighboring data of the location 

0s . 

The basic process using GWR for spatial prediction can be summarized below: (1) determine the samples, (2) 

determine the unsampled location 𝑠0, (3)  design and compute a weight matrix (W) based on this location (i.e., 

Eq. 8), (4) compute the  model coefficients using weighted least-squares regression using Eq. 9, and (5) estimate 

the values of an interesting property at the given locations using the fitted GWR model. 
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A number of weighting functions can be used. Gaussian function is given as an example  as follows, and the 

weight at the location 𝑠0 is calculated as: 

 

 
0

2exp( 0.5( / ) )sw d                                                        (5) 

  

 Where d is the Euclidean distance between the location 
0s  and its neighbors, τ is the bandwidth of the kernel. 

Detailed discussion of bandwidth and weight matrix can be found in the software of GWR (Fotheringham et al, 

2002). Once the w for each unsampled location has been calculated, the coefficient matrix can be computed by 

repeated application of Eq. (4). Therefore, without specifying a function of the spatial variation a set of 

estimates of spatially varying parameters can be obtained at the unsampled locations. In the process of 

interpolation, each regression coefficient is predicted to characterize each predictor at a given location, and the 

GWR “lets the data speak for themselves” (Brunsdon et al., 1998). 

 

 Using GWR, the parameters are estimated using Eq. (6). For a given unsampled location 0s , the estimated value 

is calculated using Eq. (7), where 
0

T

sq   are the 
0s   row of the Q, and 

0

ˆ
s are the estimated parameter vector at 

the location 0s . 
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  Results and Discussion 

Geographical Weighted Regression Estimates 

The advantage of the GWR is its local approach to analysing relationship between spatial variables. This enables 

the use of the non-stationarity in the relationship for better prediction. Also GWR approach disaggregates spatial 

patterns in the model residuals and reduces the spatial autocorrelation of the residuals. 

 

Table 1: Summary of GWR Coefficient Estimates for Climate Data: 

 Min. 1st Qu. Median 3rd Qu. Max. Global 

X.Intercept -2276.0 3199.000   3503.000   3935.000   5792.000 4686.9281 

Rainfall -11.880     -1.853     -1.432     -1.276     -0.681    -2.9972 

Tmax 26.260    144.100    265.300    344.200    619.100   148.2521 

Temp -835.100   -498.500   -337.400   -263.200   -132.700 -310.0528 

R
2
: 0.9899725, F = 3.5562, df1 = 8.000, df2 = 5.448, p-value = 0.07963 
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Table 2: Analysis of Variance Table (OLS and GWR) 

 Df Sum Sq Mean Sq F value 

OLS Residuals    4.0000 129796   

GWR Improvement  3.6077   93297 25860.4         3.112 

GWR Residuals    4.3923   36499   8309.8     

 

 

Regression analysis based on applying conventional global OLS regression in Table 1 shows that there is 

significant relationship between the elevation and climate variables (Rainfall, Tmax and Tmin). The estimated 

R
2
 of the regression equations was found to be 0.99. The GWR model allows the regression parameters to vary 

in space and from (Table 2) shows that GWR has smaller residual sum of square than OLS.  

Applying the GWR method for dealing with spatial relationship significantly reduces both the degree of 

autocorrelation and absolute values of the regression residuals. The results suggest that GWR provides a better 

solution to the problem of spatially autocorrelated error terms in spatial modelling compared with the global 

regression modeling. 

 

Conclusion 

The degree to which GWR shows higher accuracy is a function of the relationship between climate variables 

and elevation locally at a given time. From the results of the analysis it shows that there is significant 

relationship between the elevation and climate variables (Rainfall, Tmax and Tmin). Our study shows that GWR 

has smaller residual sum of square than OLS in analysing the relationship between Elevation and Climate data, 

that means GWR is better than OLS in analysing climate date. This may be due to the consideration of the 

spatial variation of the relationship over the study region. Global regression techniques like OLS may ignore 

local information and, therefore, indicate incorrectly that a large part of the variance in Climate data was 

unexplained Pavel et al., (2006). The non-stationary modelling based on the GWR approach has the potential for 

a more reliable prediction because the model is more aligned to local circumstances, although definitely a 

greater number of data is required to allow for a reliable local fitting. 
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