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Abstract 

Data-Based Mechanistic (DBM) modelling is a Transfer Function (TF) modelling approach, whereby the data 

defines the model. The DBM approach, unlike physics-based distributed and conceptual models that fit existing 

laws to data-series, uses the data to identify the model structure in an objective statistical manner. The approach 

is parsimonious, in that it requires few spatially-distributed data and is, therefore, suitable for data limited 

regions like West Africa. Multiple Input Single Output (MISO) rainfall to riverflow modelling approach is the 

utilization of multiple rainfall time-series as separate input in parallel into a model to simulate a single riverflow 

time-series in a large scale. The approach is capable of simulating the effects of each rain gauge on a lumped 

riverflow response. 

 

Within this paper we present the application of DBM-MISO modelling approach to 20778 km
2
 humid tropical 

rain forest basin in Ghana. The approach makes use of the Bedford Ouse modelling technique to evaluate the 

non-linear behaviour of the catchment with the input of the model integrated in different ways including into 

new single-input time-series for subsequent Single Input Single Output (SISO) modelling. The identified MISO 

models were able to improve the efficiency and understanding of the rainfall-riverflow behaviour within the 

study catchment. The paper illustrates the potential benefits of the methodology in modelling large catchments 

with sparse network of rainfall stations.   

Keywords: Ghana, DBM model, Rainfall, MISO, Transfer function,    

 

1. Introduction 

Spatial variation in rainfall distribution and scale has been found to influence riverflow generation characteristics 

(Klemes, 1983; Sivapalan et al., 1987; Wood et al., 1988; Shah et al., 1996) and usually Thiessen Polygon 

method (Mutreja, 1984; Linsley et al., 1988; Ward and Robinson, 1990; Shaw, 1994) is used to evaluate 

catchment rainfall input into hydrological models. However, this method requires an adequate network of 

raingauges which is difficult to come by in developing countries. Generally the approach is unsuitable for 

mountainous catchments because of orographic effect which is not accounted for by the areal coefficients 

(Mutreja, 1984; Shaw, 1994).  

 

The use of spatial averaged rainfall input in hydrological models result in errors in the model output as pointed 

out by Shah et al. (1996). They recommended that to predict a good riverflow output of a model at least one 

raingauge should be located within an area of 10.55 km
2
. Again, it is very difficult to find this density of rainfall 

network in developing countries.      

 

In modelling of rainfall-riverflow, the areal average rainfall per time step is often used as the sole input into the 

model (Tabrizi et al., 1998; Chappell et al., 2004a; Vongtanaboon, 2004). In some applications of this so called 

‘Single Input Single Output’ (SISO) approach, rainfall from a single station is used as input into the model (e.g. 

see: Young et al., 1997; Mwakalila et al., 2001). The SISO approach usually results in models that are 

parsimonious requiring only a few well defined model parameters (e.g. see: Young et al., 1997; Young and 

Beven, 1994; Chappell et al, 1999; Chappell et al, 2004a).  

 

In the Multiple Input Single Output (MISO) rainfall to riverflow modelling methodology, rainfall occurring in 

each sub area of a catchment is used as a separate input in parallel to simulate a riverflow time-series observed at 

the large scale (Kothyari and Singh, 1999). Consequently, the approach is able to explicitly simulate the effects 
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of each rain gauge on a lumped riverflow response. In other MISO models the riverflows of sub-catchments are 

used as the inputs into the model of riverflow for a large river. This, MISO modelling is called ‘flow-flow 

modelling’ or ‘riverflow routing’ (see: Lees, 2000). Other MISO models incorporate both upstream riverflows 

and rainfall as inputs into the model (Tabrizi et al., 1998; Lekkas and Onof, 2006). Further discussion of the 

application of the MISO concept in the modelling of hydrological systems have been presented by Liang (1988), 

Liang and Nash (1988), Cluckie et al. (1990), Kachroo and Liang (1992), and Liang et al. (1994). The MISO 

concept has been applied successfully in riverflow forecasting within large catchments (Natale and Todini, 1976; 

Huthman and Wilke, 1982; Yazigil et al., 1982; Liang and Nash, 1988; Liang et al., 1992; Papamichail and 

Papazafiriou, 1992; Kothyari and Singh, 1999; Tabrizi et al., 1998; Lees, 2000; Yawson et al., 2005, 2006).  

 

The Data Based Mechanistic (DBM) modelling approach is a Transfer Function (TF) modelling technique which 

does not make prior assumptions about the complex hydrological processes operating within a catchment (Young 

and Beven, 1994; Young et al., 1997; Young, 1998, 2001, 2005; Chappell et al., 1999, 2001; Lees, 2000; 

Mwakalila et al., 2001; Romanowicz et al., 2006; Vigiak et al., 2006). The approach, unlike physics-based 

(Beven et al., 1987; Calver and Wood, 1995; Refsgaard and Storm, 1995; Refsgaard et al., 1999) and conceptual 

modelling techniques (Blackie, 1979; Refsgaard et al., 1995; Yawson et al., 2005), which fit data to 

preconceived hydrological ideas allows the data to speak for itself (i.e. the data defines the model). It identifies 

the nature and structure of the model directly from the observed (hydrological) data series in an objective manner, 

using powerful statistical identification and estimation methods. The technique identifies a range of models, 

often incorporating Transfer Functions (TF), Time-Variable Parameters (TVPs) and non-linear dynamics, which 

are capable of simulating the hydrologic response of the catchment efficiently and without over-parameterisation. 

The statistically acceptable model which has the most acceptable physical interpretation is then accepted (Young 

and Beven, 1994; Young et al., 1997; Chappell et al., 1999). 

 

Generally, MISO approach is a ‘low cost’ technique for the modelling of rainfall to riverflow in catchments with 

sparse network of rainfall stations as highlighted by Kothyari and Singh (1999). Thus, it can make use of fewer 

rainfall stations available within a catchment as input into the model. Within Ghana and Africa as a whole the 

dearth of meteorological and hydrological data is very common as pointed out by Giles (2005), Weston and 

Steven (2005) and Yawson et al. (2005). This calls for the application of modelling approaches such as the DBM 

MISO approach (Young et al., 1997; Young, 1998) in rainfall to riverflow modelling of large catchments. The 

DBM MISO approach is parsimonious, in that it requires little or no internal catchment characterisation. It is, 

therefore, particularly suited to a data limited region like West Africa where dense and distributed rainfall 

monitoring is difficult and expensive to maintain. The DBM MISO approach has been applied successfully by 

Lees (2000) in flood routing along the River Trent (UK) and Lekkas and Onof (2006) to model flows from River 

Ali Efenti in Central Greece. 

 

The aim of this study is to use Data-Based Mechanistic modelling approach (DBM: Young and Beven, 1994; 

Young et al., 1997; Young, 2001; Lees, 2000; Ampadu et al., 2013a; 2013b) to evaluate different rainfall time 

series combinations derived from individual raingauges in simulating the flows of 20,778 km
2
 River Pra 

catchment gauged at Twifo Praso, Ghana in West Africa. The ability of a particular combinations of rainfall 

time-series to simulate the riverflow is a measure of the representativeness of those rainfall dynamics that are 

important at the whole basin scale (Eagleson, 1967). The study specifically has the objective of a) the 

examination of the applicability of the DBM-MISO methodology to a large catchment with tropical rainfall 

regime b) the identification of a parsimonious mathematical relationship between the catchment riverflow and 

the multiple rainfall inputs c) the identification of the effects of non-linearity on the riverflow generation process 

by converting the linear MISO transfer function models (b) into equivalent SISO models, based on the relative 

steady state gains of the rainfall inputs following Lees ( 2000) and d) the comparison of the performance of the 

non-linear DBM-MISO models (c) to various input scenarios of the DBM-SISO models 

 

2. Materials and Methods 

2.1 Study basin and time series data available. 

The 20,778 km
2
 River Pra catchment gauged at Twifo Praso (Fig. 1) lies within southern Ghana and has a humid 

tropical climate. A large part is under agricultural activities, especially oil palm plantation (Gyasi, 1996). This 

region of Ghana experiences two distinct wet seasons (one in March-July and one in September-November), as a 

result of north-south oscillations of the Inter Tropical Convergence Zone, ITCZ (Ojo, 1977; Acheampong, 1982; 

Opoku-Ankomah and Cordery, 1994; Nicholson, 2009).  
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The basin is underlain by Precambrian igneous and metamorphic rocks (i.e., gneiss, phyllite, schist, migmatite, 

granite-gneiss and quartzite) of the Birimian and Tarkwaian formations (Boakye and Tumbuto, 2006), and 

contains the uplands of the Kwahu Plateau in the East and the Akan lowlands in the Southwest. For the period 

1961-1990 the mean annual rainfall isohyets across the Pra Basin range from 1200 to 1800 mm yr
-1

 (Boakye and 

Tumbuto, 2006). The mean annual rainfall at the Kumasi raingauge in the north-western quadrant of the basin 

(Fig. 1) was 1564 mm yr
-1

 over the period 1950-70 and 1274 mm yr
-1

 over the period 1971-91 (Opoku-Ankomah 

and Amisigo, 1998).  

 

For this study we use daily rainfall in millimetres and Twifo Praso discharge in cumecs which were converted to 

millimetres per day for the 1978 water year (i.e., 1
st
 March, 1978 to 28

th
 February, 1979) which were obtained 

from the Meteorological Services Department (MSD) and Hydrological Services Department (HSD) of Ghana, 

respectively. Data from 11 raingauges located either within the Pra basin or within 20 km of its boundary were 

used (Fig. 1). Figs. 2 and 3 show the distribution of rainfall at the selected stations whilst Fig. 4 shows riverflows 

at Twifo Praso during the 1978 water year. The Figures show that there is a marked spatial variability in the 

occurrence of rainfall within the catchment and also the bimodal rainfall regime in the basin is evidenced in the 

riverflows as depicted by the discharge hydrograph (Fig 4).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. The River Pra basin showing the location of the Twifo Praso gauging station and rainfall stations in the 

Twifo Praso catchment for the DBM transfer function multiple input single output (MISO) rainfall-riverflow 

modelling.  
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Figure 2.  Rainfall distribution in the Twifo Praso catchment during the 1978 water year (i.e. from 1st March, 

1978 to 28th February, 1979) showing variation of rainfall with time at Koforidua, Asamankese, Nkawkaw, Akim 

Oda, Twifo Praso, Dunkwa, Obuase and Kumasi. 
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Figure 3 Rainfall distribution in the Twifo Praso catchment during the 1978 water year (i.e. from 1st March, 1978 

to 28th February, 1979) showing variation of rainfall with time at Nkawie, Nsuta and Ofinso.  

 

 
 

Figure 4.  Flows of River Pra at Twifo Praso during the 1978 water year (i.e. from 1st March, 1978 to 28th 

February, 1979) showing the variation of flow with time. 

 

2.2 DBM-MISO and SISO approaches  

The formulation and the procedures for the application of the DBM-MISO transfer function rainfall to riverflow 

modelling are similar to the DBM SISO approach (Young et al., 1997; Young and Beven, 1994; Chappell et al., 

1999; Mwakalila et al., 2001) but with some additional aspects (Young et al., 1997; Lees, 2000). 
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2.2.1  MISO and SISO linear transfer function models 

 

The general form of linear TF multiple-input-single-output (DBM-MISO) model for hydrological context is 

given in Young et al. (1997), Young (1998) and Lees (2000) as: 
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whilst the single- input-single-output (DBM-SISO) model is given as:  
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where the transfer function polynomials are defined as:  
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where Qm and Qs are the observed riverflows for MISO and SISO models respectively, iU  is the input rainfall 

at station i, R is the number of inputs in parallel (different rainfall time series within the catchment), U is the 

‘effective rainfall’ (for the SISO model), z is the backward shift operator (i.e. )()( ktutuz k 
),   is the 

pure time delay between rainfall and initial river response. Term Bi is the system gain (polynomial) or water 

balance parameter at each input (rainfall station) and for the SISO model, B is the gain (polynomial) parameter 

which scales the difference in total volumes of input and output, and A is the recession (polynomial) parameter 

related to the residence time of water. Term N represents the number of denominator polynomial A parameters 

(order of A (
1z )) and Mi is the number of numerator polynomial Bi parameters at each input i and for a SISO 

model M is the number of numerator polynomial B parameters. The residual noise term, m  and s  for 

MISO and SISO models, respectively are defined as:  
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where Xm and Xs are the model output for the MISO and SISO models, respectively defined as: 
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where  1zA


,  1zBi


 and  1zB


are polynomial in 

1z  with respective coefficients being the estimates of 

the parameters in Eqs. (2), (3a) and (3b), respectively. The residual or noise term accounts for all the riverflow 

not explained by Xm and Xs and includes factors such as modelling error, noise in rainfall and riverflow data as a 
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result of measuring errors e.g. faulty recording instruments, approximations made in the calibration of rating 

curves and the effects of unobserved inputs (Young, 2003).  

 

2.2.2 SISO non-linear transfer function model 

The riverflow generation process is inherently non-linear process due to the effects of varying subsurface 

moisture (FAO, 1981; Young and Beven, 1994; Chappell et al., 1999). Within the SISO DBM methodology the 

Bedford Ouse Sub-Model (BOSM) (Young, 2001; Chappell et al., 2004b, 2006) was used to model the 

non-linear component of the rainfall-riverflow generation process. The general form of the model is given in 

Chappell et al. (2004b, 2006) as: 

 

   
)()()( ttRtU u           (6)        
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where U(t) is the effective rainfall (mm); R (t) is the average (gross) rainfall (mm); )1( tu is the storage 

variable (probably shallow unsaturated zone) at the previous time step (mm); u  is the dimensionless 

non-linearity term for the whole catchment response. The non-linearity term ( u ) is obtained by an iterative 

process applied to the BOSM and the transfer function expressions with the objective function set at a higher 

coefficient of determination (Rt
2
) (Young, 2001; Lees, 2000) and a minimum Young Information Criterion (YIC) 

(Young and Beven, 1994; Lees, 2000; Young, 1998, 2001, 2003) with u initially set as zero. The IHACRES 

model (Jakeman et al., 1990; Jakeman and Hornberger, 1993) has also been used in the modelling of non-linear 

behaviour in the rainfall-riverflow process (e.g. see: Post and Jakeman, 1996; Sefton and Howarth, 1998; Young, 

2001). This model is an extension of the BOSM approach, which includes temperature effects. 

 

2.2.3 MISO non-linear transfer function model 

 

The identification of the effects of non-linearity on the riverflow generation within the DBM MISO model was 

investigated by converting the MISO transfer function model (Eq. (1)) into an equivalent SISO model based on 

the relative steady-state gains of each of the rainfall inputs. Lees (2000) and Lekkas and Onof (2006) have 

applied this approach successfully using State Dependent Parameter (SDP) analysis (Young and Beven, 1994; 

Young, 2001, 2003, 2006) to investigate the non-linear behaviour of the River Trent and River Ali Efenti 

catchments in UK and Greece, respectively. In this study, the Bedford Ouse Sub-Model (BOSM) (Chappell et al., 

2004b, 2006) was used to investigate the effects of non-linearity on the riverflow generation process in the Twifo 

Praso catchment.  

 

For rainfall inputs (UR) into the model (i.e. Eq. (1)), the resultant linear model relating the rainfall inputs to the 

riverflow Q (t) is given as: 
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when all Bi and A are first order, then B1, B2, . . ., and BR are the gain parameters due to the rainfall inputs U1, 

U2, . . . . , and UR respectively, A is the recession parameters, 1 , 2 , ….., and R  are the delays on the 

respective inputs. The steady state gain (SSG) due to each rainfall input is calculated by setting 
1z  =1 (Lees, 

2000) in the transfer function model (Eq. (8)). The SSG due to each input are defined as:      
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The relative steady state gains (RSSGs) are obtained by dividing each of the SSGs by the minimum of the  SSGs 

(minSSG) (see: Lees, 2000)   
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Therefore, the new equivalent single input rainfall (UEQR) based on the RSSGs from which the effects of the 

presence of non-linearities could be investigated is given by: 

     RRREQR RSSGtURSSGtURSSGtUtU )(......)()()( 222111  
       

(11) 

The model is now converted to an equivalent SISO model incorporating variation in the rainfall inputs into the 

model through their relative steady state gains (RSSGs). This technique contrasts with the Thiessen Polygon 

approach which weights raingauge totals by the surrounding representative areas. As pointed out by Cluckie et al. 

(1990), Kothyari and Singh (1999) and Lees (2000), the characteristics of riverflow response can be influenced 

by the spatial variation of the rainfall input into the model. The non-linear behaviour in the rainfall and riverflow 

process was modelled by the application of the Bedford Ouse Sub-Model (BOSM) as in the SISO approach. 

Recalling Eqs. (6) and (7) the model is given as (Chappell et al., 2004b, 2006): 
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where UEFF(t) is the effective rainfall (mm); UEQR is the equivalent rainfall (mm) from Eq. (13); )1( tu  is 

the unsaturated zone storage variable at the previous time step (mm) with the first value of u set as zero; u  

is the dimensionless non-linearity term for the whole catchment response.  

 

2.2.4 Normalisation of ‘effective rainfall’ produced by non-linear sub-models  

In order to maintain mass balance following the non-linear transform, the effective rainfall from the BOSM 

non-linear rainfall filter is normalised by the observed catchment average rainfall R. For the SISO model the 

normalised effective rainfall Ue is given in Chappell et al. (1999) as:  
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and similarly for a MISO model the normalised effective rainfall UNE is given as:   
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The normalised effective rainfall is then used as input into the DBM MISO and SISO models and utilising the 

Simplified Recursive Instrumental Variable (SRIV) algorithm, which is so fundamental to the DBM toolbox 

(Young, 1985, 1991; Taylor et al., 2007), a range of transfer function models were identified. Using the Young 

Information Criteria (YIC; Young and Beven, 1994; Young et al., 1997; Young, 2001) and coefficient of 

determination (Rt
2
), (Lees, 2000; Young, 2001) the DBM model that explained the data well and had an 

acceptable physical interpretation was selected.  

 

A flow chart of the DBM-MISO approach with three rainfall stations U1, U2 and U3 as inputs in parallel as an 

illustration of the approach is shown in Fig. 5.   
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Figure 5. A flow chart showing the modelling procedure of the DBM-MISO approach using three rainfall 

stations, U1, U2 and U3 as inputs in parallel into the model. TF1, TF2 and TF3 are linear TF models of 

inputs U1, U2 and U3 respectively and Xm is the model output (Flows). 

 

2.3 Rainfall integration methods evaluated  

 

The aim of the methodology adopted in this study is to identify models using multiple rainfall inputs 

(DBM-MISO models) integrated in different ways including into several new single-input time-series for 

subsequent SISO modelling. This should improve our understanding of the relationship between spatially 

distributed rainfall and the lumped output, and the best method of identifying the optimal riverflow 

simulation efficiency with the fewest parameters. Six separate methodologies were used to derive the 

optimal input time-series, which were all transformed using the BOSM non-linear filters (i.e. Eqs. (6) and 

(7) for DBM-SISO modelling and Eqs. (12) and (13) for DBM-MISO modelling).       

 

The methods tested were: 

1. SISO model using data from all the eleven rain gauges, in the 20,778 km
2
 River Pra catchment 

gauged at Twifo Praso averaged arithmetically (see: Mutreja, 1984; Linsley et al., 1988; Shaw, 

1994). The arithmetic averaging is usually good for moderately flat catchments with uniformly 

distributed network of rain gauges where there is less spatial variability in rainfall depths (Mutreja, 
1984; Linsley et al., 1988; Shaw 1994). However, this approach is applied to test its suitability for 

the catchment. The method is called 1-ARTH. 
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2. SISO model using data from all eleven rain gauges averaged by the Thiessen polygon method 

(Mutreja, 1984; Linsley et al., 1988; Shaw, 1994). The Thiessen polygon approach like the 

‘Arithmetic average method’ also normally requires an adequate network of rain gauges and it is 

generally unsuitable for mountainous catchments because of orographic effects, which is not 

accounted for by the areal coefficients (Mutreja, 1984; Shaw, 1994). Usually, the technique copes 

well with uneven distribution of rain gauges (Ward and Robinson, 1990). It is applied here to 

access its suitability in the efficient modelling of riverflow generation within the catchment. The 

method is called 2-THIESSEN. 

3. SISO modelling of each rainfall time series individually to find the rain gauge time-series 

producing the highest simulation efficiencies. This method is applied to find out the possibility of 

using a single rainfall station to model the riverflow of a large 20,778 km
2
 tropical catchment and 

also determine which of the rainfall stations best links with the riverflow generation process within 

the catchment. The method is called 3-SINGLE.    

4. DBM-MISO model with all eleven rain gauges to identify a MISO model comprising only rain 

gauges producing positive SSGs with the riverflow, and to use the positive SSGs to weight the 

relative contributions of each selected raingauge within a lumped rainfall estimate for use in a 

SISO model. This methodology is adopted to produce an efficient model for a catchment with 

sparsely network of rainfall stations by using all rainfall stations as input. The rain gauges 

producing negative steady state gains are neglected because they are deemed to be unrealistic in 

hydrological sense since adding them will reduce flow. The method is called 4-SSG POSITIVE .   

5. Derive a DBM-MISO model based on those rain gauges producing a SISO linear rainfall-riverflow 

model with an Rt
2
   0.6, and to use the SSGs of the higher efficiency models to weight the 

relative contribution of each selected gauge within a lumped rainfall estimate for a SISO model. 

This approach is used to select rainfall stations, which are closely linked to the riverflow 

generation process in the catchment and also limit the number of inputs to the model in order to 

avoid over- parameterisation of the resulting model. The method is called 5-RT60. 

6. Take rain gauge time-series producing positive SSGs in a DBM-MISO model and combine in pairs 

and threes, to find which combination produces the highest efficiency MISO model, and the 

highest efficiency SISO model (when weighted by the RSSGs). The method is called 6-SSG 

POSITIVE AND PAIRS. This approach is to find which of the rainfall station combinations are 

well connected to the riverflow dynamics. 

 

 

3.   Results and Discussion 

3.1 Value of DBM-MISO technique rainfall-riverflow modelling 

The application of the SISO modelling methods and the MISO approach to the daily rainfall and riverflow data 

of the 20,778 km
2
 Twifo Praso catchment for the 1978 water year within the six separate methodologies resulted 

in efficient models for the simulating of riverflow from the rainfall data.   

 

3.1.1 DBM-SISO model of arithmetically averaged rainfall  

For every daily time-step the rainfall data for the eleven stations in and around the Twifo Praso basin (Fig. 1) 

were integrated with an arithmetic average (Mutreja, 1984; Linsley et al., 1988; Shaw 1994). The SISO model 

with the BOSM non-linear filter gave efficiency (Rt
2
) of 0.8487 and a YIC of -7.676 (Table 1; Fig. 6).  

 

 

3.1.2 DBM-SISO model of rainfall averaged using Thiessen Polygon method 

For every daily time-step, the rainfall data for the eleven rain gauges in and around the Twifo Praso basin (Fig. 1) 

were integrated into a single value by weighting each gauge according to its representative area of the catchment, 

following the Thiessen Polygon method (Mutreja, 1984; Linsley et al., 1988; Shaw 1994). The SISO model, 

again with a BOSM non-linear filter gives efficiency (Rt
2
) of 0.7794 and a YIC of -6.918 (Table 1; Fig. 6). 

Normally, the Thiessen Polygon method copes better with an uneven rain gauge distribution to give a more 

representative catchment-mean rainfall (Mutreja, 1984; Linsley et al., 1988; Ward and Robinson, 1990; Shaw 

1994), and expected to give a more efficient model. However, the model efficiency (Rt
2
) and parameter 

efficiency (YIC) is worse at 0.7794 and -6.918 respectively, (Table 1; Fig. 6). It may be that in the case of the 

Twifo Praso catchment the area weighting gives less emphasise to those rain gauge records which are more 

strongly linked with the Twifo Praso riverflow compared to the simple arithmetic averaging technique.    
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3.1.3 DBM-SISO model of each rain gauge time-series separately  

To examine whether some rain gauge time-series are indeed more closely linked with the riverflow dynamics 

than others, the relationship between rainfall for individual stations to the riverflow generated at the 20,778 km
2
 

scale was modelled. Of the eleven rain gauge time-series examined, the Dunkwa records from 30 km North west 

of the Twifo Praso riverflow station gave the highest efficiency of 0.8465, with a YIC of -8.433 (Table 1). This 

single rainfall time series in this humid tropical catchment, despite the localised convective nature of the rainfall 

(Acheampong, 1982; van de Geissen et al., 2001), was able to predict the riverflow almost as well as the 

arithmetic average of the rainfall from 11 rain gauges distributed throughout the catchment.   

 

3.1.4  Modelling using rain gauges having DBM-MISO positive SSGs with riverflow 

A MISO model using all the eleven rain gauges records as input was used to predict Twifo Praso riverflow. 

Several of the rainfall records produced negative steady state gains (i.e. adding the record decreased the 

simulated riverflow), which is considered as less physically/hydrologically realistic. Six of the rain gauges (i.e. 

those at Asamankese, Oda, Nkawkaw, Dunkwa, Kumasi and Ofinso) produced positive SSGs (Table 2). A further 

non-linear model with input based on the relative SSGs (i.e. RSSGs; see Eq. (11)) of these six rainfall records 

was run with a BOSM non-linear filter and produced an efficiency (Rt
2
) of 0.9006 and a YIC of -0.9047 (Table 1; 

Fig. 6). This model has a much higher efficiency than the SISO models based on single rain gauge records, 

arithmetically averaged records and Thiessen Polygon integrated records. The YIC was also better (i.e. more 

negative) indicating that the model was not over-parameterised, despite the increase in number to 14 parameters 

(i.e. 6 RSSGs, 3 δs: 2 from two of the six inputs and 1 from the final model, 1 u , 1 , 1 P, 1 TC and 1 SSG: 

Table 1). In an attempt to reduce the parameter numbers, a SISO model, where the six rainfall records are 

lumped, was identified. This model gave a slightly worse model (Rt
2
 0.8841) with a poorer YIC of -8.533 (Table 

1; Fig. 6) despite the smaller number of parameters (i.e. 6 from 1 u , 1 δ, 1 , 1 P, 1 TC and 1 SSG: Table 1).   

 

Table 1. Non-linear DBM model parameters identified for the Twifo Praso catchment 
(20778.0 km

2
) using BOSM as a non-linear filter with MISO model compared with six rainfall 

stations lumped (SISO), all the rainfall stations (11) lumped, Thiessen rainfall input (11 rain 
gauges: SISO) and the rain station with the highest SSG used as the only input (SISO) models. 
The rainfall stations are Asamankese, Nkawkaw, Oda, Dunkwa, Kumasi and Ofinso which 
were selected based on the Positive SSG Criteria. 
 

 
Parameter 

and 
Statistics 

Type of input into the model 
Positive SSGs 

based on six 

rain gauges 

(MISO) 

Six rain 
gauges with 

positive SSGs 
lumped 
(SISO) 

Eleven rain 

gauges 

lumped 

(SISO) 

Thiessen 
input; 11 

Rain gauges 
(SISO) 

Rain gauge 
with the 

highest SSG as 

input i.e. 

Dunkwa (SISO) 

eff.L 0.8262 0.7060 0.6322 0.5841 0.7125 
eff.NL 0.9006 0.8841 0.8487 0.7794 0.8465 

Model order [1 1 2]* [1 1 2] [1 1 2] [1 1 1] [1 1 0] 
YIC -9.047 -8.533 -7.676 -6.918 -8.433 

τu 30 30 30 30 30 
  -0.9066 -0.9045 -0.8901 -0.9051 -0.9297 

σ( ) 0.0035 0.0042 0.0063 0.0066 0.0029 
P 0.00056 0.0118 0.0143 0.0114 0.0101 

σ(P) 0.00002 0.0005 0.0008 0.0008 0.0004 
TC (days) 10.197 9.9632 8.5923 10.0316 13.7241 

SSG 0.006 0.1240 0.1301 0.1201 0.1434 
No. of 

parameters 

14 6 6 6 5 

  
NB: eff.L and eff.NL: Nash and Sutcliffe (1970) efficiency Rt

2
 for linear and non-linear model; Model 

order: [No. of denominators, numerators, pure time delays]; YIC: Young Information Criterion; : 
recession parameter; σ ( ); standard deviation of recession parameter; P: production parameter; σ(P): 
standard deviation of production parameter; TC: time constant; SSG: steady state gain of the transfer 
function; τu: BOSM non-linearity term. * Model order for the normalised effective rainfall input from 
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the equivalent rainfall with additional parameters (see: Eq. (13)). 
 
Table 2. Model order and steady state gains of the respective rainfall inputs from the DBM TF 
MISO linear modelling of flows of River Pra at Twifo Praso 
 

Input Rainfall Station Model order SSG Remark 

u1 Koforidua [ 1 1 1 ] -0.0225 Exclude from the model 

u2 Asamankese [ 1 1 0 ] 0.0221 Include in the model 

u3 Nkawkaw [ 1 1 1 ] 0.0313 Include in the model 

u4 Oda [ 1 1 0 ] 0.0196 Include in the model 

u5 Twifo Praso [ 1 1 0 ] -0.0240 Exclude from the model 

u6 Dunkwa [ 1 1 0 ] 0.1622 Include in the model 

u7 Obuasi [ 1 1 1 ] -0.0753 Exclude from the model 

u8 Kumasi [ 1 1 0 ] 0.1254 Include in the model 

u9 Nkawie [ 1 1 1 ] -0.0528 Exclude from the model 

u10 Nsuta [ 1 1 0 ] -0.0437 Exclude from the model 

u11 Ofinso [ 1 1 1 ] 0.0177 Include in the model 

 

Table 3. Results of linear transfer function rainfall and riverflow modelling of flows of River 
Pra at Twifo Praso in the River Pra basin using individual rainfall stations in the catchment as 
input into the model (i.e. SISO approach) 

 

Inputs Rainfall Station Model Rt
2
 YIC 

1 Koforidua [ 1 1 0 ] 0.3696 -4.921 

2 Asamankese [ 3 1 0 ] 0.6969 -6.681 

3 Nkawkaw [ 2 1 1 ]  0.3969 -6.749 

4 Oda [ 1 1 1 ] 0.4163 -5.005 

5 Twifo Praso [ 1 1 2 ] 0.1627 -4.666 

6 Dunkwa [ 1 1 3 ] 0.7086 -7.047 

7 Obuase [ 1 1 3 ] 0.2973 -5.094 

8 Kumasi [ 1 1 3 ] 0.7348 -7.423 

9 Nkawie [ 3 1 0 ] 0.5151 -6.653 

10 Nsuta [ 1 1 2 ] 0.5731 -5.637 

11 Ofinso [ 1 1 3 ] 0.5856 -6.161 
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Table 4. Non-linear DBM model parameters identified for the Twifo Praso catchment (20778.0 
km

2
) using BOSM as a non-linear filter with MISO model compared with three selected rainfall 

stations lumped (SISO), all the rainfall stations (11) lumped (SISO), Thiessen rainfall input (11 
rain gauges: SISO) and rain gauge with the highest linear efficiency as input models. The 
rainfall stations are Asamankese, Kumasi and Dunkwa which were selected based on the 
Efficiency Criteria. 
 

Parameters and 

statistics 

 

Type of input into the model 

Three rain 

gauges as 

inputs 

(MISO) 

Three rain 

gauges 

Lumped 

(SISO) 

Eleven rain 

gauges 

lumped 

(SISO) 

Thiessen 
input; 11 

Rain gauges 
(SISO) 

Rain station with the 

highest linear 

efficiency as input 

(SISO) i.e. Kumasi 

eff.L 0.7985 0.8012 0.6322 0.5841 0.6801 

eff.NL 0.9131 0.9167 0.8487 0.7794 0.8369 

Model order [1 1 1]* [1 1 2] [1 1 2] [1 1 1] [1 1 2] 

YIC -9.328 -9.529 -7.676 -6.918 -8.292 

τu 30 30 30 30 30 

  -0.9083 -0.9173 -0.8901 -0.9051 -0.9252 

σ( ) 0.0032 0.0027 0.0063 0.0066 0.0033 

P 0.0032 0.0102 0.0143 0.0114 0.0087 

σ(P) 0.0001 0.0003 0.0008 0.0008 0.0003 

TC (days) 10.3974 11.5856 8.5923 10.0316 12.8636 

SSG 0.0347 0.1231 0.1301 0.1201 0.1166 

No. of 

parameters 11 

6 6 6 6 

 

NB: eff.L and eff.NL:Nash and Sutcliffe (1970) efficiency Rt
2
 for linear and non-linear model; Model 

order: [No. of denominators, numerators, pure time delays]; YIC: Young Information Criterion;  : 
recession parameter; σ( ); standard deviation of recession parameter; P: production parameter; σ(P): 
standard deviation of production parameter; TC: time constant; SSG: steady state gain of the transfer 
function; τu: BOSM non-linearity term. * Model order for the normalised effective rainfall input from 
the equivalent rainfall with additional parameters (see: Eq. (13)). 
 
Table 5. The best six combinations of two and three rainfall stations from the six selected 
stations with positive SSGs. 

 

Inputs Rainfall stations YIC Rt
2
 

uu1,uu5 Asamankese, Kumasi -5.4019 0.7397 

uu2,uu4 Nkawkaw, Dunkwa -4.9023 0.7322 

uu2, uu3 Nkawkaw, Akim Oda -4.8693 0.6841 

uu1, uu4 Asamankese, Dunkwa -4.7305 0.7499 

uu1, uu3, uu5 Asamankese, Akim Oda, Kumasi -4.7121 0.7488 

uu1, uu3, uu4 Asamankese, Akim Oda, Dunkwa -4.6267 0.7611 
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Table 6. First order non-linear DBM model parameters identified for the Twifo Praso 
catchment (20778.0 km

2
) using BOSM as a non-linear filter with MISO model compared with 

two selected rainfalls stations lumped (SISO), all the rainfall stations (11) lumped (SISO), 
Thiessen rainfall input (11 rain gauges: SISO) and rain gauge with the highest linear efficiency 
as input models. The rainfall stations are Asamankese and Kumasi which were selected based 
on the Pairing Criteria 
 

Parameters and 

statistics 

 

Type of input into the model 

Two rain 

gauges as 

inputs 

(MISO) 

Two rain 

gauges 

lumped 

(SISO) 

Eleven rain 

gauges 

lumped 

(SISO) 

Thiessen 
input; 11 

rain gauges 
(SISO) 

Rain station with the 

highest linear 

efficiency as input 

(SISO) i.e. Kumasi 

eff.L 0.8106 0.8009 0.6322 0.5841 0.6801 

eff.NL 0.9200 0.8990 0.8487 0.7794 0.8369 

Model order [1 1 0]* [1 1 2] [1 1 2] [1 1 1] [1 1 2] 

YIC -9.680 -9.238 -7.676 -6.918 -8.292 

τu 30 30 30 30 30 

  -0.9194 -0.9264 -0.8901 -0.9051 -0.9252 

σ( ) 0.0025 0.0025 0.0063 0.0066 0.0033 

P 0.0039 0.0085 0.0143 0.0114 0.0087 

σ(P) 0.0001 0.0003 0.0008 0.0008 0.0003 

TC (days) 11.8973 13.0772 8.5923 10.0316 12.8636 

SSG 0.0485 0.1154 0.1301 0.1201 0.1166 

No. of 

parameters 9 

6 6 6 6 

 
NB: eff.L and eff.NL: Nash and Sutcliffe efficiency Rt

2
 for linear and non-linear model; Model order: 

[No. of denominators, numerators, pure time delays]; YIC: Young Information Criterion;  : 
recession parameter; σ( ); standard deviation of recession parameter; P: production parameter; σ(P): 
standard deviation of production parameter; TC: time constant; SSG: steady state gain of the transfer 
function; τu: BOSM non-linearity term. * Model order for the normalised effective rainfall input from 
the equivalent rainfall with additional parameters (see: Eq. (13)). 
 

3.1.5 Modelling using rain gauges with a linear DBM-SISO model efficiency  

     (Rt
2
) of 60 per cent 

Purely linear transfer functions between individual rain gauge records and the Twifo Praso riverflow were 

estimated (Table 3). Those models considered to be ‘behavioural’ by having an Rt
2
 of 60 per cent and above 

(Beven and Freer, 2001) were identified for subsequent incorporation into a MISO model. Only rainfall stations 

Asamankese (Rt
2
 of 0.6969 or 70%), Dunkwa (0.7086) and Kumasi (0.7348) met this criterion. A non-linear 

DBM-MISO model using these 3 stations as inputs produced an efficiency of 0.9131 and YIC of -9.328 (Table 4; 

Fig. 7). Thus, this model had a better efficiency (Rt
2
) and better YIC compared to the six rain gauges selected on 

the basis of DBM-MISO model positive SSGs (Table 1). By lumping the three rainfall records, a DBM-SISO 

non-linear model produced an even higher Rt
2
 of 0.9167 and even better YIC of -9.529 (Table 4; Fig. 7). Here 

parsimony helped to improve the model efficiency. 

 

3.1.6  Pairs and threes of rain gauges having DBM-MISO positive SSGs with riverflow 

One further MISO-based methodology was attempted to help improve interpretation and simulation efficiency. 

The MISO model with eleven rain gauge produced positive SSGs for only six rain gauges (Table 2). Pairs and 

threes of rain gauge records sampled from the six records with positive SSGs produced a range of simulation 

with linear efficiency, the best six being shown in Table 5.  Non-linear MISO modelling using the Asamankese 

and Kumasi rainfall records (i.e. pairs with higher YIC and Rt
2
) gave an efficiency of 0.9200 and YIC of -9.680 

(Table 6; Fig. 8).   

 

This is the highest efficiency achieved by any of the models attempted, and clearly matches the peak flow and 

recession characteristics of the Twifo Praso riverflow hydrograph (Fig. 8a) better than any of the other models 

(Figs. 6-8). Interestingly, the highest non-linear model using a single rainfall time-series, used the Dunkwa 
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records (Table 1: Rt
2
 0.8465; YIC -8.433) rather than those of Asamankese or Kumasi. Thus, the two raingauges 

located in the East and North of the Twifo Praso basin best characterised the riverflow dynamics.  

 

The non-linear MISO model using Asamankese and Kumasi rainfall records is expressed as:  

 
 
 

 tU
z

tX NEm 10025.09194.01

0001.00039.0


     (16) 

where UNE is the normalised effective rainfall (from Eq. (15)), with no pure initial time delay and the standard 

errors on the parameters shown in the parenthesis.  

 

Lumping the two rain gauges records into a SISO non-linear model, did, however reduce the efficiency to 0.8990 

and YIC to -9.238 (Table 6), suggesting that the two separate rainfall inputs (Asamankese and Kumasi with 9 

model parameters) were the most parsimonious DBM-MISO model for the simulation of the Twifo Praso 

riverflow. The time constant (TC) and the steady state gain (SSG) of the non-linear DBM-MISO model using the 

Asamankese and Kumasi records were 12 days and 0.05, respectively (Table 6). The TCs estimated for all the 

models are similar except the SSGs which that of the MISO model is low (Table 6). This is possible because the 

modelled amount of the effective rainfall entering the system is very high because of the RSSGs (see: Eq. (11)) 

which were used to transform the MISO model to SISO type.   

 

3.2 Optimal model performance 

The DBM-MISO approach based on the selection of inputs using the ‘Pairs’ and ‘Threes’ criterion  performed 

better than the ‘Efficiency’ criteria and the ‘Positive SSG’ criteria and all the scenario inputs of the SISO 

approach in terms of both Rt
2
 and YIC (i.e. 0.9200 and -9.680; Table 6). The model (i.e. the ‘Pair’ criterion 

model) predicted the peak and recession flows of the observed riverflows of Twifo Praso better than any of the 

other models by using only two rain gauges located at Kumasi and Asamankese (Fig. 8a).  

 

The nine parameters estimated for the technique (i.e. ‘Pairs’ criterion) is comparable to the six parameters 

estimated for the scenario inputs of the SISO approaches. This demonstrates the potential of DBM-MISO 

technique to model large catchments in the tropics without over-parameterisation (i.e. using few parameters). 

Kothyari and Singh (1999) report of the successful modelling of rainfall to riverflows of the 17,157 km
2
 

Narmada catchment in India by using MISO approach. Yawson et al.  
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a) MISO: Based on positive SSGs criteria          b) SISO: Six selected stations lumped                         
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c) SISO: Eleven stations lumped                        d) SISO: Thiessen input (11 stations)                          
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d) SISO: Station with highest SSG i.e. Dunkwa  
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Figure 6 Flows predicted by non-linear transfer function model (green) against observed flows (blue). a) MISO 

approach based on positive steady state gains criteria, b) SISO; six inputs lumped (i.e. Asamankese, Nkawkaw, 

Akim Oda, Dunkwa, Kumasi and Ofinso), c) SISO; all stations lumped, d) SISO; Thiessen average input (11 

stations) and e) SISO; station with the highest SSG as input (i.e. Dunkwa) showing the models ability to capture 

the dynamics of the rainfall riverflow generating mechanism in the Twifo Praso catchment, during the 1978 

water year (i.e. 1st March, 1978-28th February, 1978). 
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a) MISO: Based on efficiency criteria                 b) SISO: Three inputs lumped  
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c) SISO: Eleven inputs lumped                         d) SISO: Thiessen inputs (11 stations)                          
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e) SISO: Station with highest linear efficiency (i.e. Kumasi) 

0 100 200 300 400
0

0.5

1

1.5

2

2.5

3

3.5

Day

F
lo

w
 (

m
m

)

Blue-gauged

Green-model

        

Figure 7. Flows predicted by non-linear transfer function model (green) against observed flows (blue). a) MISO 

approach based on efficiency criteria, b) SISO; three inputs lumped (i.e. Kumasi, Asamankese and Dunkwa), c) 

SISO; all stations lumped, d) SISO; Thiessen average input (11 stations) and e) SISO; station with the highest 

linear efficiency as input (i.e. Kumasi) showing the models ability to capture the dynamics of the rainfall 

riverflow generating mechanism in the Twifo Praso catchment, during the 1978 water year (i.e. 1st March, 

1978-28th February, 1978). 
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a) MISO: Based on pairing criteria                    b) SISO: Two stations lumped 
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c) 

SISO: Eleven inputs lumped                           d) SISO: Thiessen inputs (11 stations)                          
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e) SISO: Station with highest linear efficiency (i.e. Kumasi) 
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Figure 8. Flows predicted by non-linear transfer function model (green) against observed flows (blue). a) MISO 

approach based on pairing criteria, b) SISO; two inputs lumped (i.e. Asamankese and Kumasi), c) SISO; all 

stations lumped, d) SISO; Thiessen average input (11 stations) and e) SISO; station with the highest efficiency as 

input (i.e. Kumasi) showing the models ability to capture the dynamics of the rainfall riverflow generating 

mechanism in the Twifo Praso catchment, during the 1978 water year (i.e. 1st March, 1978 - 28th February, 1978)     

 

(2005) have used MISO approach to model the flows of 33,066 km
2
 Kilombero basin in Tanzania. This study 

and these applications of MISO approach suggest that the technique should be considered for the modelling of 

rainfall to riverflows in large catchments in the tropics, particularly, in catchments with sparse network of rainfall 

stations, using the DBM-MISO approach. The DBM-MISO technique presented here provides a parsimonious 

approach with degree of freedom in the choice of input data in addition to the objective and statistical manner the 

models are identified. Generally, the MISO approach is a ‘low cost’ technique for the modelling of rainfall to 

riverflow in catchments with sparse network of rainfall stations as highlighted by Kothyari and Singh (1999).     

http://www.iiste.org/


Mathematical Theory and Modeling                                                                                           www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.5, No.8, 2015 

 

47 

 

However, the excellent performance of individual stations used alone as input into the model need consideration. 

For instance, the performance of Dunkwa (Table 1) which was also the station with the highest SSG when all the 

rainfall stations were used as inputs (Table 2) has revealed that, in a large catchment with sparse network of 

rainfall stations like the Twifo Praso catchment, it is possible one of the rainfall stations may be capable of 

modelling the flows, despite the convective nature of the rainfall distribution in the area (Acheampong, 1982; 

van de Geissen et al., 2001). The input scenarios of the SISO approach also indicate that in SISO 

rainfall-riverflow modelling which involves the lumping of rainfall stations, it may be possible to improve the 

performance of the model if some of the stations are excluded  

from the lumping process.  

 

4. Conclusions 

 

The application of the DBM-MISO technique (Young et al., 1997; Young, 1998), including the conversion of the 

inputs into SISO type using the relative SSGs of the inputs in order to facilitate ease of the investigation of 

non-linear behaviour (Lees, 2000; Lekkas and Onof, 2006) in Ghana, is probably the first of its kind in the 

tropics. The approach was able to model the riverflows of the Twifo Praso catchment effectively. The MISO 

approach uses separate rainfall in parallel as input into the model and integrates spatial variation in the rainfall 

into the model (Kothyari and Singh, 1999). The application of the DBM TF MISO approach to the 20778 km
2
 

Twifo Praso catchment and the analysis of the results yielded the following four conclusions:  

1. The DBM-MISO approach based on the pairing criteria using Kumasi and Asamankese raingauge data as 

inputs required only 9 parameters and captured most of the dynamics of the rainfall-riverflow generating 

mechanism in the Twifo Praso catchment more efficiently, as compared to the other modelling approaches. This 

shows the potential of the DBM-MISO technique to model flows of large catchments in the tropics with only a 

few parameters. 

2. The performance of the DBM approach using some of the rainfall stations alone as input (SISO) was 

excellent. Notably the rainfall station at Dunkwa alone gave an Rt
2
 of 0.8465 and YIC of -8.433. This 

demonstrates that large catchments like the 20,778 km
2
 Twifo Praso catchment with a sparse network of rainfall 

stations could be modelled by using only one of the rainfall stations as input into the model.  

3. The scenario modelling based on the SISO approach has revealed that the performance of rainfall-riverflow 

modelling based on the lumping (i.e. averaging) of rainfall stations could be enhanced by excluding some of the 

stations from the lumping process. This approach may be suitable for catchments with sparse network of rainfall 

stations where lumping in a SISO approach may not give a representative value.  

4. The DBM-MISO rainfall-river flow modelling technique and the scenario inputs of SISO methodology, 

which have evolved out of this study, are innovative approaches for the advancement of the DBM technique and 

hydrological studies in Ghana and the tropics as a whole. The approach is recommended for application in other 

catchments in the country and the tropics to ascertain its versatility.      
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