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Abstract: 

In this paper, we are proving a common fixed point theorem for mappings satisfying common E.A. like 

property in fuzzy 2-metric spaces, which improves and generalize result of Yadav and Thakur [5]. 
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1. Introduction: 

Zadeh [6] introduced the concept of fuzzy set in 1965. Fuzzy set theory has applications in applied sciences 

such as neural network theory, stability theory, mathematical programming, engineering sciences, medical 

sciences (medical genetics nervous system), image processing control theory, communication etc. Kramosil and 

Michalek [1] introduced the concept of fuzzy metric space in 1975, which opened an avenue for further 

development of analysis in such spaces. Pant [2] introduced the notation of R-weakly commutativity of 

mappings in metric spaces and proved some common fixed point theorem. Vasuki [3] proved the fuzzy version 

of Pant’s Theorem. Recently, Yadav and Thakur [5] generalized the result of Vasuki [3] for Fuzzy 2-Metric 

Spaces. On the other hand, Wadhwa et al. [4] introduced the notion of common E.A. like property and proved 

some common fixed point theorems in fuzzy metric spaces. 

In this paper we prove a common fixed point theorem for mappings satisfying common E.A. like property in 

fuzzy 2-metric spaces, which improves and generalize the result of [5]. 

2. Preliminaries: 

Definition 2.1 [5]: An operation *: [0.1]
3
→ [0, 1] is called a t-norm of {[0.1], *} is an abelian topological 

monoid with unit 1 such that a1* b1*c1 ≤ a2*b2*c2 whenever a1≤ a2, b1≤ b2, c1≤ c2,  a1, b1, c1, a2, b2, c2∈ [0, 1]. 

Definition 2.2 [5]: A 3-taple (X, M, *) is said to be a fuzzy 2- metric space if X is an arbitrary set, * is a 

continuous t-norm and M is a fuzzy set on X
3
 × [0, ∞) satisfying the following conditions;  x, y, z X, s, t > 0 

1) M(x, y, z, 0) = 0, 

2) M (x, y, z, t) = 1 for all t > 0 if and only if at least two of three points are equal, 

3) M (x, y, z, t) = M (y, x, z, t) = M (z, x, y, t) symmetry about three variables, 

4) M(x, y, u, t1) * M(x, u, z, t2) * M (u, y, z, t3) ≤ M(x, y, z, t1+t2+t3) ∀  x, y, z, uX and t1, t2, t3>0, 

5) M(x, y, z, ·): [0, ∞) → [0, 1] is left continuous,  

6) lim t → ∞ M(x, y, z, t) = 1. 

The function value M(x, y, z, t) may be interpreted as the probability that the area of triangle is less than t. 

 

Definition 2.3: A pair of self mapping {f, g} of a fuzzy 2-metric space (X, M, *) is said to be weakly compatible 

if they commute at the coincidence point i.e., If fu = gu for some u ∈X, then fgu=gfu.  

Definition 2.4: Let f and g be two self-maps of a fuzzy metric space (X, M, *) then they are said to satisfy E.A 

property if there exists a sequence {xn} in X such that  

limn→∞fxn = limn→∞gxn = z for some z X. 

Now E.A. property in fuzzy 2-metric spaces defined as follow: 

Definition 2.5: A pair of self-mapping {f, g} of a fuzzy 2-metric spaces (X, M, *) is said to satisfy E.A property, 

if there exists a sequence {xn} in X such that  
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limn→∞ M(fxn, gxn, a, t) = t for some tX  

Definition 2.6 [4]: Let A, B, S and T be self maps of a fuzzy metric space (X, M, ∗), then the pairs (A, S) and (B, 

T) said to satisfy common E. A. Like property if there exists two sequences {xn} and {yn} in X such that 

lim n→Axn = lim n→Sxn = lim n→Tyn = lim n→Byn = z,  

where z ∈ S(X) ∩ T(X) or z ∈ A(X) ∩ B(X). 

Lemma 2.7: Let (X, M, *) be a fuzzy 2-metric space. If there exists k(0, 1) such that  

M(x, y, z, kt) ≥ M(x, y, z, t) for all x, y, zX with z≠x, z≠y and t>0, then x=y.  

D.S. Yadav and S.S Thakur [5] proved following result: 

Theorem 2.8 [5]: Let (X, M, *) be a complete fuzzy 2- metric space and let f and g be R- weakly commuting 

self mappings of X satisfying the conditions: 

  M( fx, fy, w, t) ≥ r(M( gx, gy, w, t)),  

Where r: [0, 1]  [0, 1] is a continuous function such that r (t) > t for each 0 <  t  < 1. The sequence {xn} and 

{yn} in X are such that xnx, yny, t > 0 implies 

    M( xn, yn, w, t)M( x, y, w, t),  

If the range of g contains the range of f and if either f or g is continuous, then f and g have unique common fixed 

point.  

We use following in our results: 

(2.9.1) Let Φ be the set of all real continuous functions F: [0, 1]
5 

→ [0, 1] non decreasing in each coordinate 

variable and such that 

F (t, 1, 1, 1, 1) ≥ t, F (1, t, 1, 1, 1) ≥ t, F (t, t, t, t, 1) ≥ t;   t[0, 1].  

Now we give our main result: 

3. Main Results: 

Theorem 3.1: Let A, B, S and T be self maps of a fuzzy 2-metric spaces (X, M, *) satisfying the following 

condition: 

(3.1.1) For some FΦ there exists a constant k(0, 1) such that 

x, y, zX and t > 0,  ≥ 0,  

M( Ax, By, z, kt) ≥ F {

M( Ax, Ty, z, t), M( Sx, By, z, t), M( Ty, Sx, z, t),

M(Ty, Ax, z, t) + M(Ty, Sx, z, t)

1 + M(Ax, Sx, z, t)
,
M(By, Sx, z, t) + M(Ax, Sx, z, t)

1 + M(Ax, By, z, t)

} ; 

(3.1.2) Pairs (A, S) and (B, T) satisfy common E.A. like property. 

(3.1.3) Pairs (A, S) and (B, T) are weakly compatible. 

Then A, B, S and T have a unique common fixed point in X. 

Proof:  Since (A, S) and (B, T) satisfy common E. A. Like property therefore there exist two sequences {xn} and 

{yn} in X such that 

limn→∞Axn = limn→∞Sxn = limn→∞Tyn = limn→∞Byn =  z1 

where z1 ∈S(X)T(X) or z1 ∈A(X)B(X). 

Suppose z1 ∈S(X)T(X), now we have limn→∞Axn = z1 ∈ S(X) then z1 = Su for some u ∈ X. 

No we claim that Au = Su, from (3.1.1) we have, 
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 M( Au, Byn, z, kt) ≥ F {
M( Au, Tyn, z, t), M( Su, Byn, z, t), M( Tyn, Su, z, t),
M(Tyn ,Au,z,t)+M(Tyn,Su,z,t)

1+M(Au,Su,z,t)
,

M(Byn,Su,z,t)+M(Au,Su,z,t)

1+M(Au,Byn,z,t)

} ;  

Taking limit n → ∞, we get 

 M( Au, z1, z, kt) ≥ F {
M( Au, z1, z, t), M(z1, z1, z, t), M( z1, z1, z, t),
M(z1,Au,z,t)+M(z1,z1,z,t)

1+M(Au,z1,z,t)
,

M(z1,z1,z,t)+M(Au,z1,z,t)

1+M(Au,z1,z,t)

} ;  

 M( Au, z1, z, kt) ≥ F {
M( Au, z1, z, t), 1,1,

M(z1,Au,z,t)+1

1+M(Au,z1,z,t)
,

1+M(Au,z1,z,t)

1+M(Au,z1,z,t)

} = F{M( Au, z1, z, t), 1,1,1,1};  

Using (2.9.1) we have, 

 M( Au, z1, z, kt) ≥ M( Au, z1, z, t);  

Lemma 2.7 implies that Au = z1 =  Su.  

Since the pair (A, S) is weak compatible, therefore Az1 = ASu = SAu = Sz1. 

Again, limn→∞Byn =  z1 ∈ T(X) then z1 = Tv for some v∈ X. 

No we claim that Tv = Bv, from (3.1.1) we have, 

 M( Axn, Bv, z, kt) ≥ F {
M( Axn, Tv, z, t), M( Sxn, Bv, z, t), M( Tv, Sxn, z, t),
M(Tv,Axn,z,t)+M(Tv,Sxn,z,t)

1+M(Axn,Sxn,z,t)
,

M(Bv,Sxn,z,t)+M(Axn,Sxn,z,t)

1+M(Axn,Bv,z,t)

} ; 

Taking limit n → ∞, we get,  

M( z1, Bv, z, kt) ≥ F {

M( z1, z1, z, t), M( z1, Bv, z, t), M( z1, z1, z, t),

M(z1, z1, z, t) + M(z1, z1, z, t)

1 + M(z1, z1, z, t)
,
M(Bv, z1, z, t) + M(z1, z1, z, t)

1 + M(z1, Bv, z, t)

} =  F {
1, M( z1, Bv, z, t),

1,1,1
} ; 

Using (2.9.1) we have,  M( z1, Bv, z, kt) ≥ M( z1, Bv, z, t); 

Lemma 2.7 implies that Bv = z1 =  Tv.  

Since the pair (B, T) is weak compatible, therefore Tz1 = TBv = BTv = Bz1. 

Now we show that Az1 = z1, from (3.1.1) we have, 

 M( Az1, Byn, z, kt) ≥ F {
M( Az1, Tyn, z, t), M( Sz1, Byn, z, t), M( Tyn, Sz1, z, t),
M(Tyn,Az1,z,t)+M(Tyn,Sz1,z,t)

1+M(Az1,Sz1,z,t)
,

M(Byn,Su,z,t)+M(Az1,Sz1,z,t)

1+M(Az1,Byn,z,t)

} ;  

Taking limit n → ∞, we get 

 M( Az1, z1, z, kt) ≥ F {
M( Az1, z1, z, t), M(z1, z1, z, t), M( z1, z1, z, t),
M(z1,Az1,z,t)+M(z1,z1,z,t)

1+M(Az1,z1,z,t)
,

M(z1,z1,z,t)+M(Az1,z1,z,t)

1+M(Az1,z1,z,t)

} ;  

M( Az1, z1, z, kt) ≥ F {
M( Az1, z1, z, t), 1,1,

M(z1,Az1,z,t)+1

1+M(Az1,z1,z,t)
,

1+M(Az1,z1,z,t)

1+M(Az1,z1,z,t)

} = F{M( Az1, z1, z, t), 1,1,1,1};  

Using (2.9.1) we have, 

  M( Az1, z1, z, kt) ≥ M( Az1, z1, z, t);  

Lemma 2.7 implies that Az1 = z1.  

Now we show that Bz1 = z1, from (3.1.1) we have, 

 M( Axn, Bz1, z, kt) ≥ F {
M( Axn, Tz1, z, t), M( Sxn, Bz1, z, t), M( Tz1, Sxn, z, t),
M(Tz1,Axn,z,t)+M(Tz1,Sxn,z,t)

1+M(Axn,Sxn,z,t)
,

M(Bz1,Sxn,z,t)+M(Axn,Sxn,z,t)

1+M(Axn,Bz1,z,t)

} ; 

Taking limit n → ∞, we get, 
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  M( z1, Bz1, z, kt) ≥ F {
M( z1, z1, z, t), M( z1, Bz1, z, t), M( z1, z1, z, t),
M(z1,z1,z,t)+M(z1,z1,z,t)

1+M(z1,z1,z,t)
,

M(Bz1,z1,z,t)+M(z1,z1,z,t)

1+M(z1,Bz1,z,t)

} ; 

  M( z1, Bz1, z, kt) ≥  F{1, M( z1, Bz1, z, t), 1,1,1}; 

Using (2.9.1) we have, 

  M( z1, Bz1, z, kt) ≥ M( z1, Bz1, z, t); 

Lemma 2.7 implies that Bz1 = z1.  

Hence, Az1 = Sz1 = Bz1 =  Tz1 = z1.  

Thus z1 is common fixed point of A, B, S and T. 

To prove uniqueness we suppose that p and q are two common fixed point of A, B, S and T such that p ≠ q, then 

from (3.1.1) we have, 

  M( Ap, Bq, z, kt) ≥ F {
M( Ap, Tq, z, t), M( Sp, Bq, z, t), M( Tq, Sp, z, t),
M(Tq,Ap,z,t)+M(Tq,Sp,z,t)

1+M(Ap,Sp,z,t)
,

M(Bq,Sp,z,t)+M(Ap,Sp,z,t)

1+M(Ap,Bq,z,t)

} ; 

  M( p, q, z, kt) ≥ F {
M( p, q, z, t), M( p, q, z, t), M( q, p, z, t),
M(q,p,z,t)+M(q,p,z,t)

1+M(p,p,z,t)
,

M(q,p,z,t)+M(p,p,z,t)

1+M(p,q,z,t)

} ; 

  M( p, q, z, kt) ≥ F {
M( p, q, z, t), M( p, q, z, t), M( q, p, z, t),

M(q, p, z, t), 1
} ; 

Using (2.9.1) we have, 

  M( p, q, z, kt) ≥ M( p, q, z, t); 

Lemma 2.7 implies that p = q. This completes the proof of the theorem. 

Remark 3.2: Theorem 3.1 never requires the containments of ranges, completeness of the space and not 

involves continuity of the mappings.  
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