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Abstract 

In this paper, we prove common fixed point theorem for R- weakly commuting mapping in fuzzy metric space, 

finally we established results  in fuzzy metric space by taking different inequality in order to reduce the 

minimum value. 

 

Introduction :The concept of a fuzzy set was first introduced by Zadeh L.A.
22

 and  fuzzy metric spaces have 

been introduced by Kramosil and Michalek
7
 and George and Veersamani

3
 modified the notion of fuzzy metric 

with help of continuous t-norms. Recently many have proved fixed point theorems involving fuzzy sets
1-6,8-12,14-16 

 

Balasubramaniam P., Muralishankar S.R. and Pant R.P.
1
 proved the open problem of Rhoades

17
 on the existence 

of a contractive definition which generals a fixed point but does not force the mapping to be continuous at the 

fixed point possesses an affirmative answer. Namdeo,Shrivastava and solanki
13

 proved common fixed point 

theorem for four mappings in fuzzy metric space, we generalized the result of Namdeo,Shrivastava and solanki
13

 

by using new condition in fuzzy metric space. 

Definition-1: The 3-tuple (X, S, *) is said to be a S-Fuzzy Metric Space if X is an arbitrary Set, * is a continuous 

t-norm and S is a Fuzzy set on X
2
 x (0,  ∞  ). satisfying the following conditions: i. S(x, y, t) > 0, ii. S(x, y, t) = 1 

if and only if x=y, iii. S(x, y, t) = S(y, x, t), iv. S(x, y, t) * S(y, z, s) ≤  S(x, z, t+s), 

 v. S(x, y, .); (0, ∞ ) → [0, 1] is continuous for all x, y, z ∈ X and t, s > 0. 

Definition-2: A sequence {xn} in a fuzzy metric Space (X, S, *) is a Cauchy Sequence if and only if for each ε > 

0 , t > 0 there 

exists n0 ∈N such that S(xn, xm, t) > 1- ε  for all n, m≥ n0. 

Definition-3: A sequence {xn} in a fuzzy metric Space (X, S, *) is converges to x if and only if for each  ε > 0 , t 

> 0 there exists 

n0 ∈ N such that S(xn, x, t) > 1- ε for all n≥ n0. 

Definition-4: Fuzzy metric Space (X, S, *) is said to be complete if every Cauchy Sequence in (X, S, *) is a 

convergent sequence. 

Definition-5: Two mappings f and g of a fuzzy metric space (X, S, *) in to itself are said to be weakly 

commuting if S(fgx, gfx,t) ≥ S(fx, gx, t) for each x in X. 

Definition-6: The mappings f and g of a fuzzy metric space (X, S, *) in to itself are said to be R-weakly 

commuting, provided there exists some positive real numbers R such that S(fgx, gfx, t) ≥ S(fx, gx, t/R) for each x 

in X. 

Definition-7: The mappings F and G of a fuzzy metric space (X, S, *) in to itself are said to be compatible iff 

S(FGxn, GFxn, t) →1 For all t > 0, whenever {xn} is a sequence in X such that Fxn, Gxn →y for some y in X. 

Definition-8: Let A and B be self mappings of a fuzzy metric space (X, S, *) ,we will call A and B to be 

reciprocally continuous If lim𝑛→∞ 𝐴𝐵𝑥𝑛  = Ap and lim𝑛→∞ 𝐵𝐴𝑥𝑛= Bp whenever {xn} is a sequence such that 

lim𝑛→∞ 𝐴𝑥𝑛= lim𝑛→∞ 𝐵𝑥𝑛 =p for some p in X. 

If A and B are continuous then they are obviously reciprocally continuous. But the converse need not be true. 

 

Theorem-1: Let A,  B,  M and N be self maps of a complete fuzzy metric space (X, S, *) with continuous t – 

norm * defined by a*b = min {a,b}, a,b∈[0,1] satisfying the following conditions: i. A(x) ⊂N(x), B(x) ⊂ M(x), 

ii. [A, M], [B, N] are pointwise R-weakly commuting pairs of maps. iii. [A, M] or [B, N] is compatible pair of 

reciprocally continuous maps. iv. For all x, y in X,         

k ∈ [0,1] t>0, S
2
(Ax, By, kt) ≥ max{ S

2
(Mx, Ny, t), S

2
(Ax, Mx, t), S

2
(By, Ny, t), S

2
(Bx, My, t), 

(S2(Ax,Nx,t)+S2(Bx,Nx,t)

2
 }, v. For all x, y in X, lim𝑡→∞ S(x, y, t)  → 1. 

Then A, B, M and N have a unique common fixed point in X. 

Proof: Let x0∈ X be arbitrary. Construct a sequence {yn} such that 
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y2n-1 = Nx2n-1 = Ax2n-2 and y2n= Mx2n =Bx2n-1 n=1,2,3,………. 

Now using (iv) we have 

S
2
(y2n+1, y2n+2, kt) = S

2
(Ax2n, Bx2n+1, kt) 

                             ≥max{S
2
(Mx2n, Nx2n+1, t), S

2
(Ax2n, Mx2n, t), S

2
(Bx2n+1, Nx2n+1, t),  

                                                    

                                       S
2
(Bx2n+1,Mx2n+1,t),

(S2(Ax2n,Nx2n,t)+S2(Bx2n,Nx2n,t)

2
} 

                              ≥max{ S
2
(y2n, y2n+1, t), S

2
(y2n+1, y2n, t), S

2
(y2n+2, y2n+1, t)                     

                                           S
2
(y2n+2, y2n+1, t) ,

(S2(y2n+1,y2n,t)+S2(y2n+1,y2n,t)

2
} 

                               ≥max{ S
2
(y2n, y2n+1, t), S

2
(y2n+1, y2n+2, t) } 

                               ≥S
2
(y2n, y2n+1, t). 

So, 
S(y2n+1, y2n+2, kt) ≥ S(y2n, y2n+1, t) (1.1) 

Further using (iv) we have 

 S
2
(y2n, y2n+1, kt) = S

2
(Bx2n-1, Ax2n, kt) 

                             = S
2
(Ax2n, Bx2n-1, kt) 

                             ≥max{ S
2
(Mx2n, Nx2n-1, t), S

2
(Ax2n, Mx2n, t), S

2
(Bx2n-1, Nx2n-1, t),  

                                         

                                      S
2
(Bx2n-1,Mx2n-1, t), 

(S2(Ax2n,Nx2n,t)+S2(Bx2n,Nx2n,t)

2
} 

                              ≥ max{ S
2
(y2n, y2n-1, t), S

2
(y2n+1, y2n, t), S

2
(y2n, y2n-1, t)       

                                            S
2
(y2n, y2n-1, t) ,

(S2(y2n+1,y2n,t)+S2(y2n+1,y2n,t)

2
} 

                             ≥max{S
2
(y2n, y2n-1, t), S

2
(y2n+1, y2n, t),} 

  

⇒S(y2n, y2n+1, kt) ≥ S(y2n-1, y2n, t) (1.2) 

Using (1.1) and (1.2) we have 

S(yn, yn-1, (1-k)t/k)≥S(yn-1, yn-2, (1-k)t/k
2
) 

                               ≥S(yn-2, yn-3, (1-k)t/k
3
) 

                              ---------------------------- 

                              ---------------------------- 

                              ---------------------------- 

                              ---------------------------- 

                              ≥S(y0, y1, (1-k)t/k
n
) →1as n→∞ 

Hence for t > 0,   k, λ∈ (0, 1) we can choose n0∈N such that 

S(yn, yn-1, (1-k)t/k) ≥ 1- λ ,           n ≥ n0                                  (1.3) 

 

To prove that {yn}is a Cauchy sequence we claim (1.4) is true for all n≥ n0 and for every m∈ N 

S(yn, yn+m, t) ≥1- λ                                                                                      (1.4) 

From (1.1) (1.2) and (1.3) we have 

S(yn, yn+1, t) ≥ S(yn, yn-1, t/k) 

                    ≥S(yn, yn-1, (1-k)t/k) 

                    ≥ 1- λ     

Thus result (1.4) is true for m = 1. Further suppose (1.4) is true for m. 

Then we shall show that it is also true for m+1. 

Using (1.1) (1.2) and definition for t – norm we have 

S(yn, yn+m+1, t) ≥ S(yn-1, yn+m, t/k), 

                         ≥ min{S(yn, yn-1, (1-k)t/k), S(yn, yn+m, t)} 

                         ≥  1- λ     13 

Thus (1.4) is true for m+1 and so it is true for every m ∈ N therefore {yn} is a Cauchy Sequence. Since (X, S, *) 

is complete so {yn} converges to some point z in X. Thus {Ax2n} {Mx2n}{Bx2n-1} and {Nx2n-1} also converges to 

z. 

Suppose [A, M] is a compatible pair of reciprocally continuous maps. Then by the definition of reciprocally 

continuous maps, 

AMx2n →Az and MAx2n→ Mz And then the compatibility of A and M yields, 

  lim𝑛→∞ S(AMx2n, MAx2n, t)  = 1 i.e. S(Az, Mz, t) = 1. Hence Az = Mz, Since A(x) ⊂ N(x), There exists a point 

w in X such that Az = Nw 

Using (iv) we have, 

    S
2
(Az, Bw, kt)   ≥  max {S

2
(Mz, Nw, t), S

2
(Az, Mz, t), S

2
(Bw, Nw, t),     

                                                  S
2
(Bw, Mw,    t),

S2(Az,Nz,t)+S2(Bz,Nz,t) 

2
} 
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                               ≥ max { S
2
(Az, Az, t), 1, S

2
(Bw, Az, t),   

                                                 S
2
(Bw, Mz, t),

S2(Az,Nz,t)+S2(Bz,Nz,t) 

2
} 

Or 

S
2
 (Az, Bw, kt) ≥1 

Which implies that Az=Bw, thus Mz = Az = Nw = Bw. 

Point-wise R-weakly commutativity of A and M implies that there exists R > 0 such that S(AMz, MAz, t) 

≥S(Az, Mz, t/R) = 1 

i.e. AMz = MAz and AAz = AMz = MAz = MMz 

Similarly pointwise R-weakly commutativity of B and N implies that 

BBw = BNw = NBw = NNw 

Now by (iv) we have 

 S
2
(AAz, Az, kt) = S

2
( AAz, Bw, kt) 

                             ≥ max { S
2
(MAz, Nw, t),S

2
(AAz, MAz, t), S

2
(Bw, Nw, t),   

                                          S
2
(Bw, Mw, t), 

S2(AAz,NAz,t)+S2(BAz,NAz,t) 

2
} 

                              ≥max {S
2
(MAz,Nw, t),1, S

2
(Az, Az, t),  

                                           S
2
(Bw, Mw, t), 

S2(AAz,NAz,t)+S2(BAz,NAz,t) 

2
} 

Or 

S
2
(AAz, Az, kt) ≥ 1 

⇒AAz = Az thus Az = AAz = MAz 

Thus Az is a common fixed point of A and M. Again by (iv) we have 

S
2
(Az, BBw, kt)     ≥max { S

2
(Mz, NBw, t), S

2
(Az, Mz, t), S

2
(BBw, NBw, t),  

                                       S
2
(BBw, MBw, t), 

S2(Az,Nz,t)+S2(Bz,Nz,t) 

2
} 

                                ≥ max { S
2
(Mz, NBw, t), 1, S

2
(BBw, NBw, t),  

                                       S
2
(BBw, MBw, t), 

S2(Az,Nz,t)+S2(Bz,Nz,t) 

2
} 

Or  S
2
(Az, BBw, kt) ≥ 1 

⇒Az = BBw thus Az = BBw = Bw. 

Thus Bw(=Az) is a common fixed point of B and N and hence Az is a common fixed point of A, B, M and N. 

To prove Uniqueness, let Az1 be another common fixed point of A, B, M and N. Then we have 

  S
2
(Az, Az1, kt) = S

2
(AAz, BAz1, kt) 

                             ≥max { S
2
(MAz, NAz1, t), S

2
(AAz, MAz, t), S

2
(BAz1, NAz1, t),  

                                        S
2
(BAz1, MAz1, t), 

S2(AAz,NAz,t)+S2(BAz,NAz,t) 

2
} 

                             ≥ max { S
2
(Az, Az1, t), S

2
(Az, Az, t), S

2
(Az1, Az1, t),  

                                             S
2
(Az1, Az1, t), 

S2(Az,Az,t)+S2(Az,Az,t) 

2
} 

                             ≥ max { S
2
(Az, Az1, t), 1, 1,1,1} 

or S
2
(Az, Az1, kt) ≥1 

Thus Az =Az1 

Thus Az is a unique common fixed point of A, B, M and N. 

Conclusion 

Theorem 1 extends the generalize results Balasubramaniam and Muralishankar S., Pant R.P.
1
 on the existence of 

a contractive. 
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