Characterization of δ-small submodule

R. S. Wadbude, M.R.Aloney & Shubhanka Tiwari

1 Mahatma Fule Arts, Commerce and Sitaramji Chaudhari Science Mahavidyalaya, Warud.
SGB Amaravati University Amravati [M.S.]
2 Technocrats Institute of Technology (excellence) Barkttulla University Bhopal. [M.P.]

Abstract
Pseudo Projectivity and M- Pseudo Projectivity is a generalization of Projveativity.
[2], [8] studied M-Pseudo Projective module and small M-Pseudo Projective module. In this paper we consider some generalization of small M-Pseudo Projective module, that is δ-small M-Pseudo Projective module with the help of δ-small and δ- cover.

Key words: Singular module, S.F. small M-Pseudo Projective module, δ-small and projective δ- cover.

Introduction:
Throughout this paper R is an associative ring with unity module and all modules are unitary left R-modules. A sub module K of a module M. K ≤ M. Let M be a module, K ≤ M is said to be small in M if for every L ≤ M, the equality K + L = M implies L = M, (denoted by $K \ll M$). The concept of δ-small sub modules was introduced by Zhon [10]. A sub module K of M is said to be δ-small sub module of M (denoted by $K \ll_\delta M$) if whenever M = K+ L, with M/K is singular, then M = L. The sum of all δ-small sub module of M is denoted by $\delta(M)$. $\delta(M)$ is the reject in M of class of all singular simple modules.

Throughout this paper R is an associative ring with unity module and all modules are unitary left R-modules. A sub module K of a module M. K ≤ M. Let M be a module, K ≤ M is said to be small in M if for every L ≤ M, the equality K + L = M implies L = M, (denoted by $K \ll M$). The concept of δ-small sub modules was introduced by Zhon [10]. A sub module K of M is said to be δ-small sub module of M (denoted by $K \ll_\delta M$) if whenever M = K+ L, with M/K is singular, then M = L. The sum of all δ-small sub module of M is denoted by $\delta(M)$. $\delta(M)$ is the reject in M of class of all singular simple modules.

1. δ-Small
Definition: 1.1. The sub module $Z(M) = \{ x \in M : r_k(x) is essential in R \}$ is called singular sub module of M. The module M is Called a singular module if $Z(M) = M$. The module M is Called a non- singular module if $Z(M) = 0$.
Definition: 1.2. An R-module N is called small M- pseudo projective module if for every sub module A of M, any epimorphism $f : N \rightarrow \frac{M}{A}$ with $Ker f \ll N$, Can be lifted to a homomorphism $h : N \rightarrow M$

\[\begin{array}{ccc}
N & \xrightarrow{f} & M/A \\
\downarrow h & & \downarrow 0 \\
M & \xrightarrow{g} & 0
\end{array} \]

i.e. $g \cdot h = f$.
Definition: 1.3 An R-module N is called δ-small M- pseudo projective module if for every submodule A of M, any small epimorphism $f : N \rightarrow \frac{M}{A}$ with $\text{Ker} f \ll \delta N$, Can be lifted to a homomorphism $h : N \rightarrow M$

\[h \downarrow f \text{ epic with } \text{Ker} f \ll \delta N \]

\[M \xrightarrow{g_{small epic}} \frac{M}{A} \rightarrow 0 \]

i.e. $g \cdot h = f$.

Examples:

i) Every small sub module of M is δ-small in M.
ii) Every non singular semisimple sub module of M is δ-small in M.
iii) Every simple module M is hollow.
iv) Z_α as Z-module is not δ-small.

Example: 2. Consider the Z-modules Z_α and Z_β. An epimorphism $f : Z_\alpha \rightarrow Z_\beta$ define by

\[f(1) = f(\bar{3}) = \bar{1} \text{ and } f(0) = f(\bar{2}) = \bar{0} \]
Then f is small epimorphism.

Every small sub module of M is δ-small in M.

Example: 3. Let $R = M = Z_\alpha$. Then two non-trivial sub modules of M,

$M_1 = \{0, \bar{3}\}$ and $M_2 = \{0, \bar{2}, \bar{4}\}$ are δ-small in M, but neither M_1 and M_2 is small in M.

Moreover $M \ll M$

Proposition: 1.1 Let M, L and N be R-Modules. If $\alpha : M \rightarrow N$ and $\beta : N \rightarrow L$ are two epimorphisms. Then $\beta \circ \alpha$ is small if and only if both α, β are small.

Proof: [8]

Lemma: 1.1. Let N be a submodule of M. The following are equivalent:

i) $N \ll \delta M$
ii) If $X + N = M$, then $M = X \oplus Y$ for a projective semi simple sub module Y with $Y \subseteq N$.
iii) If $X + N = M$, with M/X Goldie torsion, then $X = M$.

Proof: [10].

Lemma: 1.2. Let M be a module, then

i) For submodule N, K, L with $K \leq N$, We have
 a) $N \ll \delta M$ if and only if $K \ll \delta M$ and $N/K \ll \delta M/K$
 b) $N + L \ll \delta M$ if and only if $N \ll \delta M$ and $L \ll \delta M$.
ii) If $K \ll \delta M$ and $f : M \rightarrow N$ is an homomorphism, then $f(K) \ll \delta N$.

In particular, if $K \ll \delta M \leq N$ and $K \ll \delta N$.

iii) Let $K_1 \leq M_1$, $K_2 \leq M_2 \leq M$ and $M = M_1 \oplus M_2$,

then $K_1 \oplus K_2 \ll \delta M_1 \oplus M_1$ if and only if $K_1 \ll \delta M_1$ and $K_2 \ll \delta M_2$.

Proof: [4].

Lemma: 1.3. Let M be a module. Then

i) $\delta(M) = \sum \{L \leq M : L \ll \delta M\} = \cap \{K \leq M : M/K \text{ is singular module}\}$.
ii) If $f : M \rightarrow N$ is an R-homomorphism, then $f(\delta(M)) \leq \delta(N)$. Therefore $\delta(M)$ is fully invariant sub module of M. In particular if $K \leq M$, then $\delta(K) \leq \delta(M)$.

iii) If $M = \bigoplus_{\ell \in I} M_\ell$, then $\delta(M) \leq \bigoplus_{\ell \in I} \delta(M_\ell)$.
iv) If every proper sub module of M is contained in a maximal sub module of m, then $\delta(M)$ is the unique largest δ-small sub module of M. In particular if M is finitely generated, then $\delta(M)$ is δ- small in M.

Proof: [4]

Lemma: 1.4. If $K \leq N \leq M$, $K \ll \delta M$ and N is a direct summand of M, Then $K \ll \delta N$.

Proof: [10]

Proposition: Given a module M, each of the following sets is equal $\delta(M)$.

i) $\delta(M) = \sum \{A : A \ll \delta M\}$.
ii) $\delta(M) = \cap \{B : B \leq M \text{ with } M/B \text{ is singular}\}$.
iii) $\delta(M) = \cap \{\text{ker} \Phi : \Phi \in \text{Hom}(M, N) \text{ such that } N \text{ is singular simple}\}$
iv) $\delta(M) = \cap \{\ker \Phi : \Phi \in \text{Hom}(M,N) \text{ such that } N \text{ is singular semi singular}\}$

Proposition 1.2. If $f : M \rightarrow N$ is an epimorphism with $\ker f \leq \delta(M)$, then $\delta(N) = f(\delta(M))$.

Proof:

Lemma 1.5. Let P be a small projective module, then $\delta(M) \ll_{\delta} P$.

Proof:

Let P be a small-projective module and $P = \delta(P) + Y$, where P/Y is singular, by hypothesis $P = A \oplus B$ such that $A \leq Y$ and $B \cap Y \leq \delta(P)$, Then $P = A \oplus (B \cap Y)$ and so $P = \delta(P) \oplus A$. Since A is summand of P, there exists a sub module $X \leq \delta(P)$ such that $P = X \oplus A$. Since $\delta(X) = X \cap \delta(P) = X$,

X is semi projective and P/Y is epimorphic image of $P/A \cong X =>$ P/Y is projective and singular, we have $P = Y$. Hence $\delta(P) \ll_{\delta} P$.

Proposition 1.3. Let M and N be any R-modules. Then Following are equivalent:

i) $N \ll_{\delta} M$.

ii) If $X \oplus N = M$, then $M = X \oplus Y$ for projective semi simple sub module Y, with $Y \leq N$.

Proof:

Proposition 1.4. For Hollow module N the following conditions are equivalent:

i) N is δ-small M-pseudo projective module.

ii) N is M-pseudo projective module.

Proof:

(i) \Rightarrow (ii) obvious.

(ii) \Rightarrow (i) Let R-module N be a M- pseudo projective module. $A \leq M$, any small epimorphism $f : N \rightarrow \frac{M}{A}$ and natural epimorphism $\pi : M \rightarrow \frac{M}{A}$. For a sub module A of M, $A \ll_{\delta} M$, then A is direct summand of M, there exists a decomposition $M = A \oplus B$ such that $A \leq N + F$ and $B \cap N \cap F \ll_{\delta} M$, there exists a homomorphism $h : N \rightarrow M$ such that the diagram

\[
\begin{array}{c}
N \\
\downarrow f \\
M \xrightarrow{\pi} \frac{M}{A} \\
\downarrow \\
0
\end{array}
\]

i.e. $gh = f$. Hence N is M-pseudo projective module.//

Proposition 1.5. Let M be a δ-small M-Pseudo projective module, then following conditions are equivalent:

i) M is S.F. If M/A is isomorphic to direct summand of M, $A \leq M$.

ii) M is direct sum of sub modules of A, B with $A \leq A \cap F$ and $B \cap N \cap F \ll_{\delta} M$.

Proof:

(i) \Rightarrow (ii) by S1

(ii) \Rightarrow (i) Since $M = A \oplus B$, i.e. $M = A + B$ and $A \cap B = 0$. Now $M = A + B$, for some $B \leq M$ and $\frac{M}{B}$ is singular, then $S = A + (S \cap B)$. Suppose that $A \cap B \neq A$, then $\frac{\delta(M)}{A} = \frac{S}{A}$ is f.g. this is contradiction. Thus $A = A \cap B \leq B$. We have $M = A + B = B$. So $A \ll_{\delta} M$../

2. δ-Cover

Definition 2.1. Let P and M be modules. δ-small f: $P \rightarrow M$ is called a δ-cover of M in case kerf $\ll_{\delta} P$.

Definition 2.2. A δ-cover f: $P \rightarrow M$ is called a projective δ-cover in case P is a projective module.
Some module may not have projective \(\delta \)-cover and some module have projective \(\delta \)-cover but not projective cover.

Definition: 2.3. A module \(M \) is called a semi perfect module if any homomorphic image of \(M \) has a projective \(\delta \)-cover.

Lemma: 2.1. If \(f : P \to M \) and \(g : M \to N \) are \(\delta \)-covers then \(g \circ f : P \to N \) is a \(\delta \)-cover.

Lemma: 2.2. If \(f_1 : P_1 \to M_1 \) is a \(\delta \)-cover for \(i = 1, 2, 3, \ldots, n \), then \(\bigoplus_{i=1}^{n} f_i : \bigoplus_{i=1}^{n} P_i \to M_i \) is a \(\delta \)-cover.

Lemma: 2.3. If \(N \) is a direct summand of \(M \) and \(A \ll_{\delta} M \), then \(A \cap N \ll_{\delta} N \).

Lemma: 2.4. Let \(K \) be a sub module of a projective module \(M \). if \(M/K \) has a \(\delta \)-cover, then, it has a \(\delta \)-cover of the form \(f : M \to M/K \), with \(\ker f = K/L \), where \(L \leq K \).

Proof: Let small epimorphism \(f : P \to M \) be a \(\delta \)-cover of \(M/K \) and \(\pi : M \to M/K \) is a natural epimorphism. Since \(M \) is projective module, there exists \(h : M \to P \) such that the following diagram commute.

\[
\begin{array}{ccc}
M & \xrightarrow{\pi} & M/K \\
\downarrow h & & \\
P & \xrightarrow{f} & M & \to 0
\end{array}
\]

i.e. \(f \cdot h = \pi \). Then \(P = \ker f + \text{Im} h \) by lemma 1. \(P = Y + \text{Im} h \) for a semi simple \(Y \) with \(Y \subseteq \ker f \) also by lemma 2. \(\ker(f \mid_\text{Im}h) \ll_{\delta} \text{Im} h \). So \(f \mid_\text{Im}h \) is also \(\delta \)-cover of \(M/K \). But \(\frac{M}{\ker h} \cong \text{Im} h \) (by Isomorphic the.) and \(f \cdot h = \pi, \; \ker h \subseteq K \). If we consider the isomorphism \(h' : \frac{M}{\ker h} \to \text{Im} h \), then we obtain \(\ker(f \mid_\text{Im}h) \ll_{\delta} M/\text{Im} h \) by lemma 2. //

References

[7]. Takhman K. A generalization of semiperfect modules, preprint.

The IISTE is a pioneer in the Open-Access hosting service and academic event management. The aim of the firm is Accelerating Global Knowledge Sharing.

More information about the firm can be found on the homepage: http://www.iiste.org

CALL FOR JOURNAL PAPERS

There are more than 30 peer-reviewed academic journals hosted under the hosting platform. Prospective authors of journals can find the submission instruction on the following page: http://www.iiste.org/journals/ All the journals articles are available online to the readers all over the world without financial, legal, or technical barriers other than those inseparable from gaining access to the internet itself. Paper version of the journals is also available upon request of readers and authors.

MORE RESOURCES

Book publication information: http://www.iiste.org/book/

Academic conference: http://www.iiste.org/conference/upcoming-conferences-call-for-paper/

IISTE Knowledge Sharing Partners

EBSCO, Index Copernicus, Ulrich's Periodicals Directory, JournalTOCS, PKP Open Archives Harvester, Bielefeld Academic Search Engine, Elektronische Zeitschriftenbibliothek EZB, Open J-Gate, OCLC WorldCat, Universe Digital Library, NewJour, Google Scholar