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Abstract 

 Integration by parts is a well-known method of integrating product of two functions. 

If the integrand involves a polynomial  of degree n and another function  

that can be integrated at least (n+1) times, then the solution to     is 

guaranteed after n routine applications of integration by parts method. This paper 

presents a mathematical model for integrating product of two functions without going 

through the routine application of integration by parts at each stage of integration, thus 

saving a lot of computational time. Some examples were considered to illustrate the 

effectiveness of the model. The model is found to be appropriate as it gives the same 

result with the well-known integration by parts method. 

 Keywords: Integrand; Mathematical model; Integration by parts; Differentiable 

functions 

 

1. Introduction 

Integration by parts is a method used for integrating product of two functions particularly 

when either function is not a derivative of the other (Stroud & Dexter 2007). 

 If  and  are two differentiable functions of x, then 

            

(1) is the formula for the derivative of product of two functions as we can see in 

Bhattacharyya (2009), Matthew & Alabi (2008), Dass (2009), Bajpai et al. (1981), 

Richmond (1972) and Oke (2003) , where . 

Rearranging equation (1) we have: 

                        

Integrating equation (2) with respect to x, we have: 
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(3) is the formula for integration by parts as we can see in Kreyszig (1987), Thomas JR. & 

Finney (1984), Daniel (2000), Gupta (2009), Grossman (1985), and Goldstein et al. (2007). 

   Let us assume that  is a polynomial of degree n and let  be a function of x that can 

be integrated at least (n+1) times. To evaluate  using the integration by parts 

method, we will need n applications of the formula in (3) above before we can get a solution. 

In this paper, we derived a mathematical model for integrating product of two functions. In 

applying the model, we don’t need to go through the routine application of integration by 

parts each time we are integrating product of two functions. We only need to substitute the 

derivatives of  and the integrals of  in the newly derived model.  

  

2. Materials and Methods 

Let   and  be two functions of , where   is a polynomial of degree n and  

is a function of  that can be integrated at least (n+1) times. Then: 

  

        

       

            

 

 

Since    is a polynomial of degree n and   can be integrated at least (n + 1) times, 

the procedure above will continue until the last stage where we now have: 

       

   

 

  

           

   

 

   

Putting all these in a more compact form, we have: 
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where is the j
th
 derivative of  and   represents the (j + 1)

th
 

integral of  with respect to .  

(10) above is the mathematical model for integrating product of two functions when the 

integrand involves a polynomial  of degree n and another function which can be 

integrated at least (n+1) times.  

In order to apply the model to , we will find the derivatives of  up to 

the n
th
 derivative and the integrals of  up to the (n + 1)

 th
 integral and substitute all 

these into the formula in (10) above to get our final result directly. 

 

3. Computational Examples 

Example 1:  

Let us consider   

  and   

      ,   

      , 

        

      and . 

 From our notation:  

  

  

Similarly 

          

   

   

Substituting all these into the formula in (10) above we have our final result directly as: 
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where C is the constant of integration. 

Using the well-known integration by parts method to solve the problem, we have: 

.    

        

  

      

 . 

     

  

 where C is the constant of integration. 

This is the same with the result we got before. 

 

 Example 2: 

Let us evaluate .     

   and .              

   

  ,        

 ,    

  

and .             

From our notation: 
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Substituting all these into formula (10) above, we have our final result directly as: 

 

 

where C is the constant of integration. 

The integration by parts method, for this problem in example 2, gave us the same result 

after five routine applications.  

 

Example 3: 

Let us consider         

 and                                  

 and                                   

From our notation: 

.      

   

                      

 Putting all these in (10) above, we have our final result directly as: 

.                 

   .           

where C is the constant of integration. 

We also got the same result after two applications when we used the integration by parts 

method for the problem in example 3. 

Example 4: 
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Let us consider         

  and           

,  

  

, 

   

and .                 

From our notation: 

     

             

           

             

                      

                                

Putting all these in (10) above, we have our final result directly as: 

               

C is the constant of integration.  

We got the same result for this example when we used the integration by parts method after 

five routine applications. 

 

Conclusion 

In this paper, a mathematical model for integrating product of two functions was presented for 

an integrand involving a polynomial of degree n. The advantage of the model is in the 

computational time that is saved. We don’t need to go through the routine applications of 

integration by parts method each time we are integrating product of two functions. We only 

need to substitute the derivatives of  up to the n
th
 derivative and the integrals of  up 

to the (n+1)
th
 integral in the model. The mathematical model is found to be appropriate as it 

gives the same result with the integration by parts method. 
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