
Mathematical Theory and Modeling                                                                                                                                                  www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.5, No.6, 2015 

 

111 

Transitivity Action of An on (n=4,5,6,7) on Unordered and 

Ordered Quadrupples 

Gachago j.kimani *
, 1

Kinyanjui J.N,
2
 Rimberia j,

3 
Patrick kimani

4
 and  

Jacob kiboi muchemi
5
 

1,3,4
Department of mathematics  Kenyatta university;p.o box 43844 Nairobi 

2
Chuka university;p.o box 109-60400,Kenya  

5
MT Kenya University p.o box 342-0100,Kenya  

*Email of the correspondent author gachagokim@yahoo.com 

ABSTRACT 

In this paper, we study some transitivity action properties of the alternating group 𝐴𝑛(𝑛=4,5,6,7 ,) acting on 

unordered and ordered pairs from the set 𝑋 = {1,2,…,𝑛} through determination of the number of disjoint 

equivalence classes called orbits.when n≤ 7 ,the alternating group acts transitively on both X(4)  and X[4]  . 

key words : Orbits ,alternating group 𝐴𝑛 , An on unordered and ordered quadruples from the set X. 

1.Preliminaries 

In 1964, Higman [2] introduced the rank of a group when he worked on finite permutation groups of rank 3. 

 In 1970, he calculated the rank and subdegrees of the symmetric group S𝑛 acting on 2−𝑒lements subsets from 

the set 𝑋 = {1,2,...,𝑛}. He showed that the rank is 3 and the subdegrees are 1,2(𝑛−2), (𝑛−2
2

).  

In 1972, Cameron [1] worked on suborbits of multiply transitive permutation groups and later in 1974, he 

studied suborbits of primitive groups.  

In 1999 Rosen [6] dealt with the properties arising from the action of a group on unordered and ordered pairs. 

Based on these results we investigate some properties of the action of A𝑛 on 𝑋(4)
, the set of all 

unordered quadrupples from the set 𝑋 = {1,2,…,𝑛} and on 𝑋[4],
 the set of all ordered quadruples  from 𝑋 

= {1,2,…,𝑛}. Let 𝐺 = A𝑛 act naturally on 𝑋, then 𝐺 acts on X 
(4)

 by the rule 

g{𝑎, 𝑏, 𝑐, 𝑑}={𝑔𝑎, 𝑔𝑏, 𝑔𝑐, 𝑔𝑑}∀𝑔𝜖𝐺 𝑎𝑛𝑑 {𝑎, 𝑏, 𝑐, 𝑑}𝜖X
(4)

 and on 𝑋[4] 

1.1 NOTATION AND TERMINOLOGIES 

 In this paper, we shall represent the following notations as: ∑ −𝑖 sum over i; (𝑚
𝑛

)−𝑚 combination 𝑛; 𝑆𝑛–

Symmetric group of degree 𝑛 and order 𝑛!; 𝐴𝑛−an alternating group of degree n and order 
𝑛!

2
; │𝐺│− The order of 

a group 𝐺;│𝐺:𝐻│− Index of 𝐻 in 𝐺; 𝑋(4)
− The set of an unordered quadruples from set 𝑋 = {1,2,…,𝑛}; 𝑋[4]

− The 

set of an ordered quadruples  from set 𝑋 = {1,2,…,𝑛}; {a,b,c,d} – Unordered quadruple; [a,b,c,d] – Ordered 

quadruple . We also define some basic terminologies on permutation group and give some results on group 

actions as:  

Definition 1.1.1: 

 Let 𝑋 be a non-empty set. A permutation of 𝑋 is a one-to-one mapping of 𝑋 onto itself. 

Definition 1.1.2:  

Let 𝑋 be the set {1,2,…,𝑛}, the symmetric group of degree 𝑛 is the group of all permutations of 𝑋 under the 

binary operation of composition of maps. It is denoted by 𝑆𝑛 and has order 𝑛!.  

Definition 1.1.3: 

 A permutation of finite set is even or odd according to whether it can be expressed as the product of an even or 

odd number of 2−𝑐ycles (transpositions).  

Definition 1.1.4: The subgroup of 𝑆𝑛 consisting of all even permutation in 𝑆n  is called the alternating group. It is 

denoted by 𝐴𝑛 and│𝐴𝑛│= 
𝑛!

2
 .  
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Definition 1.1.5: Let 𝑋 be a non-empty set. The group 𝐺 acts on the left of 𝑋 if for each 𝑔 𝜖 𝐺 and each 𝑥 𝜖 𝑋 

there corresponds a unique element𝑔x𝜖 𝑋 such that;  

i) (𝑔1𝑔2)=𝑔1(𝑔2𝑥) ∀ 𝑔1,𝑔2 𝜖 𝑋 and 𝑥 𝜖 𝑋.  

ii) For any 𝑥𝜖𝑋, 𝐼𝑥= 𝑥, where 𝐼 is the identity in G    

The action of 𝐺 from the right on 𝑋 can be defined in a similar way. In fact it is merely a matter of taste whether 

one writes the group element on the left or on the right.  

Definition 1.1.6 

 Let G act on a set X and let x ∈ X. The stabilizer of x in G, denoted by stabG (x), is the set of all elements in G 

which fix x i.e. stabG (x)={g ∈ G|gx = x}.  

Note This set is also denoted by Gx. StabG (x) is a subgroup of G, that is; stabG (x)≤G.  

 Definition 1.1.7 

  let G act on a set X. The set of elements of X fixed by g ∈ G is called the fixed point set of G, denoted by 

Fix(g). Thus, Fix(g)={x ∈ X|gx = x}.  

Definition 1.1.8 

 If a finite group G acts on a set X with n elements, each g ∈ G corresponds to a permutation σ of X, which can 

be written uniquely as a product of disjoint cycles. If σ has α1 cycles of length1, α2 cycles of length 2,…,αn cycles 

of length n, we say that σ and hence g has cycle type (α1,α2,…,αn).  

Definition 1.1.9  

If the action of a group G on a set X has only one orbit, then G is said to act transitively on X. In other words, a 

group G acts transitively on X if for every pair of points x,y ∈ X, there exists g ∈ G such that gx=y.  

Definition1.1.10  

 Let G act on a set X. Then G is said to act doubly transitively on X if for every two ordered pairs (x1,x2) and 

(y1,y2) of distinct elements in X, there exists g ∈ G such that gx1=y1 and gx2=y2. 

 Theorem 1.1.13 [Krishnamurthy 1985, p.68]   

Two permutations in An are conjugate if and only if they have the same cycle type; and if g ∈ An has cycle type 

(α1, α2,…, αn), then the number of permutations in An conjugate to g is  
𝑛!

∏ 𝛼𝑖!𝑖𝛼𝑖𝑛
𝑖=1

  . 

Theorem 1.1.14 [Orbit- Stabilizer Theorem –Rose 1978, p.72]  

Let G be a group acting on a finite set X and x ∈ X. Then  |OrbG(x)| = [G:StabG(x)].  

Theorem 1.1.15 [ Cauchy- Frobenius Lemma-Rotman 1973, p.45]   

Let G be a group acting on finite set X. Then the number of G-orbits in X is  
1

|G|
∑ |Fix(g)|g∈G .  

This theorem is usually but erroneously attributed to Burnside (1911) cf. Neumann (1977). 

1.2 INTRODUCTION  

2.ACTION OF THE ALTERNATING GROUP An ON UNORDERED QUADRUPPLES  

2.1 some general results of permutation groups ascting on X
(4)
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We first give two  the proofs of two lemmas which will be useful in the investigation of transitivity of the action 

of An on X
(4)

   

Lemma 2.1.1  

Let the cycle type of g ∈ An be (α1, α2,…,αn). Then the number of elements in X(4) fixed by g is given by the 

formula |Fix(g)| =(𝛼1
4

)+(𝛼1
2

)(𝛼2
1

)+(𝛼2
2

)+α1α3+α4  . 

Proof  

Let {a,b,c,d} ∈ X(4) and g ∈ An. Then g fixes {a,b,c,d} if and only if g permutes the elements in the set {a,b,c,d} 

as in the following cases;  

Case 1:  

Each of the elements a, b, c and d comes from a single-cycle in g. In this case the number of unordered 

quadruples fixed by g is   (𝛼1
4

), for α1≥4. 

Case 2:  

Two of the elements a, b, c and d come from single-cycles and the other two elements come from a 2-cycle, say 

(ab)(c)(d)… In this case the number of unordered quadruples fixed by g is  (𝛼1
2

)(𝛼2
1

), for α1≥2, and α2≥1. 

Case 3: 

 Each of the elements a, b, c and d come from a 2-cycle in g, say (ab)(cd)… In this case the number of unordered 

quadruples fixed by g is   (𝛼2
2

), α2≥2. 

Case 4:  

Three of the elements a, b, c and d come from a 3-cycle and one element comes from a single-cycle say (abc) 

(d)…. In this case the number of unordered quadruples fixed by g is  α1α3. 

Case 5: 

 The elements a,b,c and d come from a 4-cycle in g say (abcd)…. In this case the number of unordered 

quadruples fixed by g is α4. Thus the total number of unordered quadruples fixed by g is     

(𝛼1
4

)+(𝛼1
2

)(𝛼2
1

)+(𝛼2
2

)+α1α3+α4.                                          ∎ 

Lemma 2.1.2 

 Let g ∈ An have cycle type (α1, α2, …,αn). Then the number of permutations in An that fix {a,b,c,d}∈ X(4) and 

having the same cycle type as g is given by 
(n−4)!

1α1−4(α1−4)! ∏ αi!n
i=2  iαi

+
6(n−4)!

1α1−2(α1−2)!2α2−1(α2−1)! ∏ αi!n
i=3  iαi

+
3(n−4)!

α1!1α12α2−2(α2−2)! ∏ αi!n
i=3  iαi

+

8(n−4)!

1α1−1(α1−1)!α2!2α23α3−1(α3−1)! ∏ αi!n
i=4  iαi

+
6(n−4)!

α1!1α1α2!2α2α3!3α34α4−1(α4−1)! ∏ αi!n
i=5  iαi

 . 

Proof  

Let {a, b, c, d}  ∈ X(4) and g ∈ An. Then g fixes {a, b, c, d} if and only if it permutes the elements in the set 

{a,b,c, d} as in the following cases; 

Case 1:  

Each of the elements a, b, c and d comes from a single cycle in g. In this case the number of permutations in An 

fixing {a, b, c, d} and with the same cycle type as g is equal to the number of permutations of An−4 with cycle 

type (α1-4, α2,…αn). By Theorem 1.1.13, this number is       
(n−4)!

(α1−4)! ∏ αi!n
i=2  iαi

     ,            for α1≥4. 

Case 2:  

Two of the elements a, b, c, and d come from single- cycles and the other two elements come from a 2-cycle, 

say, (ab)(c)(d)…. In this case the number of permutations in An fixing {a,b,c,d} and with the same cycle type as 

g is equal to the number of permutations of An−4 with cycle type (α1-2, α2-1,α3 , … , αn). By Theorem 1.1.13 this 

number is 

                                      
(n−4)!

1α1−2(α1−2)!2α2−1(α2−1)! ∏ αi!n
i=3  iαi

  , for α1≥2 and α2≥1. 

But the number of ways of filling the blanks (- -) (-) (-) with a, b, c, and d is 6 giving a permutation of the same 

cycle type as g and fixing {a, b, c, d}. Therefore the number of permutations in An fixing {a, b, c, d} and with 

the same cycle type with g is 

              
6(n−4)!

1α1−2(α1−2)!2α2−1(α2−1)! ∏ αi!n
i=3  iαi

 . 
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Case 3:  

Each of the elements a, b, c, and d come from a 2-cycle in g say (ab)(cd)…. In this case the number of 

permutations in An fixing {a, b, c, d} and with the same cycle type as g is equal to the number of permutations of 

An−4 with cycle type (α1, α2-2,α3,… ,αn). By Theorem 1.1.13 this number is    
(n−4)!

α1!1α12α2−2(α2−2)! ∏ αi!n
i=3  iαi

    ,   for 

α2≥2. 

But the number of ways of filing the blanks (- -) (- -) with a, b, c and d is 3, giving a permutation of the same 

cycle type as g and fixing {a, b, c, d}. Therefore the number of permutations in An fixing {a, b, c, d} and with 

the same cycle type as g is   
3(n−4)!

α1!1α12α2−2(α2−2)! ∏ αi!n
i=3  iαi

 . 

Case 4:  

Three of the elements a, b, c and d come from a 3-cycle and one element comes from a single-cycle say 

(abc)(d)…. In this case the number of permutations in An fixing {a, b, c, d} and with the same cycle type as g is 

equal to the number of permutations of An−4 with cycle type (α1-1, α2, α3-1, α4,…, αn). By Theorem 1.1.13 this 

number is 
(n−4)!

1α1−1(α1−1)!α2!2α23α3−1(α3−1)! ∏ αi!n
i=4  iαi

 ,  for α1 ≥ 1, α3 ≥1. 

However the number of ways of filling the blanks (- - -)(-) with a, b, c,and d is 8, giving a permutation of the 

same cycle type as g and fixing {a, b, c, d}. Therefore the number of permutations in An fixing {a, b, c, d} and 

having the same cycle type as g is 
8(n−4)!

1α1−1(α1−1)!α2!2α23α3−1(α3−1)! ∏ αi!n
i=4  iαi

  . 

Case 5: 

 The elements a, b, c and d come from a 4-cycle of g, say (abcd)…. In this case the number of permutations in An 

fixing {a, b, c, d} and with the same cycle type as g is equal to the number of permutations of An−4 with cycle 

type (α1,α2,α3,α4-1,α5,…,αn). By Theorem 1.1.13 this number is   
(n−4)!

α1!1α1α2!2α2α3!3α34α4−1(α4−1)! ∏ αi!n
i=5  iαi

    , for 

α4≥1. 

But the number of ways of filling the blanks (- - - -) with a,b,c and d is 6, giving a permutation of the same cycle 

type as g and fixing {a, b, c, d}. Therefore the number of permutations in An fixing {a,b,c,d} and having the 

same cycle type as g is 
6(n−4)!

α1!1α1α2!2α2α3!3α34α4−1(α4−1)! ∏ αi!n
i=5  iαi

  . 

Therefore the total number of permutations in An that fix {a, b, c, d} ∈ X(4) and with the same cycle type as g is 

the sum of the formulas in the five cases which yield the given formula.         ∎ 

 

2.2 Some properties of the alternating group An(n≤7) acting on unordered quadruples  

Theorem 2.2.1  

G=A4 acts transitively on X(4) . 

 

Proof 

We can prove this by using the Cauchy-Frobenius Lemma (Theorem 1.1.15). Let g ∈ A4 have cycle type (α1, α2, 

α3, α4),  then the number of permutations in A 4  having the same cycle type as g is given by Theorem 1.1.13 and 

the number of elements in X(4) fixed by each g ∈ A 4   is given by Lemma 2.1.1. We now  have the following 

Table 
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                                                  Table 2.2.1: Permutations in A 4   and number of fixed points 

Permutations in A 4   Cycle type Number of permutations |𝐅𝐢𝐱(𝐠)| in 𝐗(𝟒) 

1 (4,0,0,0) 1 1 

(abc) (1,0,1,0) 8 1 

(ab)(cd) (0,2,0,0) 3 1 

 

By Cauchy-Frobenius Lemma, we get the number of the orbits of A 4   acting on X(4),  
1

|A4|
∑ |Fix(g)|g∈ A4

 =
1

12
 [(1 × 1) + (8 × 1) + (3 × 1)] =

12

12
=1 

This implies that A 4   acts transitively on X(4).        

Alternatively we can use the Orbit-Stabilizer Theorem (Theorem 1.1.14). In this case we have to show that the 

length of the orbit of a point say {1,2,3,4} in X(4) is 1, the same as the number of points in X(4). Now let g ∈ A4 

have cycle type (α1, α2, α3, α4), then the number of permutations in A4   fixing {1,2,3,4} and having the same 

cycle type as g is given by     Lemma 2.1.2.  

We now have the following Table; 

                                 Table 2.2.2: Number of permutations in G=A 4 fixing {1,2,3,4} 

Permutation in A4 Cycle type Number fixing {1,2,3,4} 

1 (4,0,0,0) 1 

(abc) (1,0,1,0) 8 

(ab)(cd) (0,2,0,0) 3 

Total  12 

 

From the table |𝐺{1,2,3,4}|=12. 

Therefore by Orbit-Stabilizer Theorem, 

 |OrbG {1, 2, 3, 4}|=|G: StabG {1, 2, 3, 4}| 

=
|G|

|StabG {1,2,3,4}|
 

=
12

12
=1=|X(4)| . 

Hence the orbit of {1,2,3,4} is the whole of  X(4) and therefore A 4 acts transitively on 𝑋(4).      ∎ 

Theorem 2.2.2 

G=A5 acts transitively on X(4). 

 Proof 

We can prove this by Cauchy-Frobenius Lemma (Theorem 1.1.15). Let g ∈ A5 have cycle type          

 (α1, α2, α3, α4, α5),  then the number of permutations in A5 having the same cycle type as g is given by Theorem 

1.1.13 and the number of elements in X(4) fixed by each g ∈ A5   is given by Lemma 2.1.1. We now have the 

following Table; 
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                                 Table 2.2.3: Permutations in A 5   and number of fixed points 

Permutations in A 5   Cycle type Number of 

permutations 
|𝐅𝐢𝐱(𝐠)| in 𝐗(𝟒) 

1 (5,0,0,0,0) 1 5 

(abc) (2,0,1,0,0) 20 2 

(ab)(cd) (1,2,0,0,0) 15 1 

(abcde) (0,0,0,0,1) 24 0 

 

By Cauchy Frobenius Lemma, we get the number of the orbits of A 5   acting on X(4), 
1

|A5|
∑ |Fix(g)|g∈ A5

 =
1

60
 [(1 × 5) + (20 × 2) + (15 × 1) + (24 × 0)] 

=
60

60
=1. 

This implies that A 5   acts transitively on X(4).        

Alternatively we can use the Orbit-Stabilizer Theorem (Theorem 1.1.12). In this case we have to show that the 

length of the orbit of a point say {1,2,3,4} in X(4) is 5, the same as the number of points in X(4). Let g ∈ A5 have 

cycle type (α1, α2, α3, α4, α5), then the number of permutations in A5   fixing {1,2,3,4} and having the same cycle 

type as g is given by Lemma 2.1.2. We now have the following Table; 

                                    Table 2.2.4: Number of permutations in G=A 5  fixing {1,2,3,4} 

Permutation in A5 Cycle type Number fixing {1,2,3,4} 

1 (5,0,0,0,0) 1 

(abc) (2,0,1,0,0) 8 

(ab)(cd) (1,2,0,0,0) 3 

(abcd) (0,0,0,0,1) 0 

Total  12 

 

From the table |𝐺{1,2,3,4}|=12. 

 

Therefore by Orbit-Stabilizer Theorem, 

 |OrbG {1, 2, 3, 4}|=|G: StabG {1, 2, 3, 4}| 

=
|G|

|StabG {1,2,3,4}|
 

=
60

12
=5=|X(4)| . 

Hence the orbit of {1,2,3,4} is the whole of  X(4) and therefore A 5acts transitively on X(4).         ∎ 

Theorem 2.2.3 

A5 does not act doubly transitively on X(4) 

Proof   

Given any two pair of points say {1, 2, 3, 4}, {1, 2, 3, 5} ∈ X(4) and {1, 2,4,5}, {1, 5, 3, 4} ∈ X(4) and suppose 

that there exists a permutation g ∈ A5 such that g[{1, 2, 3, 4}, {1, 2, 3,5}]=[{1, 2, 4,5}, {1,5, 3, 4}]; then g {1, 2, 3, 
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4}= {g(1),g(2), g(3), g(4)}= {1,2,4,5} and g {1, 2, 3, 5}= {g(1),g(2), g(3), g(5)}={1, 5, 3, 4}. Implying that 

g(2)=2 and g(2)=5, this is impossible. Thus A5 does not act doubly transitively on X(4) .                                   ∎ 

Theorem 2.2.4 G=A6 acts transitively on X(4). 

Proof 

We will prove this by Cauchy-Frobenius Lemma (Theorem 1.1.15). Let g ∈ A6 have cycle type          (α1, α2, α3, 

α4, α5, α6),  then the number of permutations in A6 having the same cycle type as g is given by Theorem 1.1.13 

and the number of elements in X(4) fixed by each g ∈ A6   is given by Lemma 2.1.1. We now have the following 

Table;Table 2.2.5: Permutations in A 6   and number of fixed points 

Permutations in A 6   Cycle type Number of 

permutations 
|𝐅𝐢𝐱(𝐠)| in 𝐗(𝟒) 

1 (6,0,0,0,0,0) 1 360 

(abc) (3,0,1,0,0,0) 40 0 

(ab)(cd) (2,2,0,0,0,0) 45 0 

(abcde) (1,0,0,0,1,0) 144 0 

(ab)(cdef) (0,1,0,1,0,0) 90 0 

(abc)(def) (0,0,2,0,0,0) 40 0 

 

By Cauchy-Frobenius Lemma, we get the number of the orbits of A 6   acting on X(4), 
1

|A6|
∑ |Fix(g)|g∈ A6

 =
1

360
 

[(1 × 360) + (0 × 40) + (0 × 144) + (0 × 45) + (0 × 90) +                                             (0 × 40)] 

       =
360

360
=1. 

This implies that A6   acts transitively on X(4).                                                                                    

Alternatively we can use the Orbit-Stabilizer Theorem (Theorem 1.1.14). In this case we have to show that the 

length of the orbit of a point say {1,2,3,4} in X(4) is 15, the same as the number of points in X(4) . Let g ∈ A have 

cycle type (α1, α2, α3, α4, α5, α6), then the number of permutations in A6   fixing {1,2,3,4} and having the same 

cycle type as g is given by Lemma 2.1.2.  

We now have the following Table; 

Table 2.2.6: Number of permutations in G=A 6  fixing {1,2,3,4} 

Permutation in A6 Cycle type Number fixing {1,2,3,4} 

1 (6,0,0,0,0,0) 1 

(abc) (3,0,1,0,0,0) 8 

(ab)(cd) (2,2,0,0,0,0) 9 

(abcde) (1,0,0,0,1,0) 0 

(ab)(cdef) (0,1,0,1,0,0) 6 

(abc)(def) (0,0,2,0,0,0) 0 

Total  24 

From the table |𝐺{1,2,3,4}|=24. 

Therefore by Orbit-Stabilizer Theorem, 
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 |OrbG {1, 2, 3, 4}|=|G: StabG {1, 2, 3, 4}| 

=
|G|

|StabG {1,2,3,4}|
 

=
360

24
=15=|X(4)| . 

Hence the orbit of {1,2,3,4} is the whole of  X(4) and therefore A 6 acts transitively on X(4).     ∎ 

Theorem 2.2.5 

A6 does not act doubly transitively on X(4). 

Proof  

Given any two pair of points say {1, 2, 3, 4}, {1, 2, 3, 5} ∈ X(4) and {1, 2,4,6}, {1, 6, 3, 4} ∈ X(4) and suppose 

that there exists a permutation g ∈ A6 such that g[{1, 2, 3, 4}, {1, 2, 3,5}]=[{1, 2, 4,6}, {1,6, 3, 4}]; then g {1, 2, 3, 

4}= {g(1),g(2), g(3), g(4)}= {1,2,4,6} and g {1, 2, 3, 5}= {g(1),g(2), g(3), g(5)}={1, 6, 3, 4}. Implying that 

g(2)=2 and g(2)=6, this is impossible. Thus A6 does not act doubly transitively on X(4) .                                   ∎ 

Theorem 2.2.6 

G=A7 acts transitively on X(4). 

 Proof 

We can prove this by Cauchy-Frobenius Lemma (Theorem 1.1.15). Let g ∈ A7 have cycle type          (α1, α2, α3, 

α4, α5, α6 α7),  then the number of permutations in A7 having the same cycle type as g is given by Theorem 1.1.13 

and the number of elements in X(4) fixed by each g ∈ A7  is given by Lemma 2.1.1. We now have the following 

Table; 

                           Table 2.2.7: Permutations in A7 and the number of fixed points  

Permutation g in A7 Cycle type Number of 

permutations 

|𝐅𝐢𝐱(𝐠)| in 𝐗(𝟒) 

1 (7,0,0,0,0,0,0,) 1       35 

(abc) (4,0,1,0,0,0,0) 70 5 

(abcde) (2,0,0,0,1,0,0) 504 0 

(abcdefg) (0,0,0,0,0,0,1) 720 0 

(ab)(cdef) (1,1,0,1,0,0,0) 630 1 

(ab)(cd) (3,2,0,0,0,0,0) 105 7 

(ab)(cd)(efg) (0,2,1,0,0,0,0) 210 1 

(abc)(def) (1,0,2,0,0,0,0) 280 2 

 

By Cauchy-Frobenius Lemma we get the number of the orbits of A7 acting on X(4) , 
1

|A7|
∑ |Fix(g)|g∈ A7

=
1

2520
[(35x1) + (5x70) + (0x504) + (0x720) + (1x630) + (7x105) + (1x210) +

(2x280)] 

                                    =
1

2520
[35+350+630+735+210+560] 

                                 =
2520

2520
=1 . 
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This implies that A7 acts transitively on X(4) .   

Alternatively we can use the Orbit-Stabilizer Theorem (Theorem 1.1.14). In this case we have to show that the 

length of the orbit of a point say {1, 2, 3, 4} in X(4) is 35, the same as the number of points in X(4). Let g ∈  A7 

have a cycle type (α1,α2 ,…, αn), the number of permutations in A7 fixing {1, 2, 3, 4} and having the same cycle 

type as g is given by Lemma 2.1.2. We now have the following Table;  

                             Table 2.2.8:  Number of permutations in G=A7 fixing {1, 2, 3, 4} 

Permutation g in A7 Cycle type Number  fixing {1,2,3,4} 

1 (7,0,0,0,0,0,0,) 1 

(abc) (4,0,1,0,0,0,0) 10 

(abcde) (2,0,0,0,1,0,0) 0 

(abcdefg) (0,0,0,0,0,0,1) 0 

(ab)(cdef) (1,1,0,1,0,0,0) 18 

(ab)(cd) (3,2,0,0,0,0,0) 21 

(ab)(cd)(efg) (0,2,1,0,0,0,0) 6 

(abc)(def) (1,0,2,0,0,0,0) 16 

Total  72 

 

From the table |𝐺{1,2,3,4}|=72. 

Therefore by Orbit-Stabilizer Theorem, 

 |OrbG {1, 2, 3, 4}|=|G: StabG {1, 2, 3, 4}| 

=
|G|

|StabG {1,2,3,4}|
 

=
2520

72
=35=|X(4)| . 

Hence the orbit of {1, 2, 3, 4} is the whole of X(4) and therefore A7 acts transitively on 

X(4).                                                                                                                                                   ∎ 

Does not act doubly transitively on X(4).  

Proof  

 Given any two pair of points say {1, 2, 3, 4},{1, 2, 3, 5}∈ X(4) and {1, 2, 3, 6},{1, 7, 3, 4}∈ X(4) and suppose 

that there exists a permutation g ∈ A7 such that g[{1, 2, 3, 4}, {1, 2, 3, 5}] = [{1, 2, 3, 6}, {1,7, 3, 4}]; then g {1, 2, 

3, 4}= {g(1),g(2), g(3), g(4)}= {1,2,3, 6} and g {1, 2, 3, 5}= {g(1),g(2), g(3), g(5)} = {1, 7, 3, 4}. Implying that 

g(2)=2 and g(2)=7, this is impossible. Thus A7 does not act doubly transitively on X(4) 

.                                                                          ∎ 

3.ACTIONS OF THE ALTERNATING GROUP An ON ORDERED QUADRUPPLES 

3.1  some general results of permutation groups acting on X[4]  

Similarly like in section 2.1 we give the proofs of two lemmas which will be very useful in the investigation of 

transitivity of the action of An on X[4]  

Lemma 2.1.3 

Let g ∈ An be a permutation with cycle type ( α1, α2,…, αn). Then |Fix (g)| in X[4] is given by the formula 

4!(α1
4

). 
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Proof  

Let [a,b,c,d] ∈ X[4] and g ∈ An. Then g fixes [a,b,c,d] if and only if each of the elements a,b,c,d are mapped onto 

themselves, that is, g [a,b,c,d]=[g(a),g(b),g(c),g(d)]=[a,b,c,d] implying  ga=a, gb=b, gc=c and gd=d. Thus each of 

a,b,c and d comes  from single cycles. Therefore the number of unordered quadruples fixed by g ∈ An is  

               (α1
4

). 

 But unordered quadruple, can be rearranged to give 24=4! distinct ordered quadruples. Thus the number of 

ordered quadruples fixed by g ∈ An is   

             4!(α1
4

).          ∎ 

Lemma 2.1.4  

Let g ∈ An be a permutation with cycle type (α1, α2,…,αn). Then the number of permutations in An fixing 

[a,b,c,d] ∈ X[4] and having the same cycle type as g is given by 

                 
(n−4)!

(α1−4)!1
α1−4∏ α

i!iαi
n
i=2

    , for α1 ≥4. 

Proof 

Let g ∈ An have cycle type (α1, α2,…, αn) and let g fix [a,b,c,d] .Then each of a,b,c and d must come from a 

single cycle in g. Thus to count the number of permutations in An having the the same cycle types as g and fixing 

a,b,c and d is the same as counting the number of permutations in An-4 having cycle type (α1-4, α2,…, αn). By 

Theorem 1.1.13 this number is 

  
(n−4)!

                            (α1−4)!1α1−4 ∏ αi!iαin
i=2

 ,       for 𝛼1≥4.    ∎ 

.3 Some properties of the alternating groups An (n≤7) acting on 𝐗[𝟒] 

Theorem 2.3.1  G=A6 acts transitively on X[4].  

Proof  

We can prove this by the use of Cauchy-Frobenius Lemma (Theorem 1.1.15). Let g ∈ A6 have cycle type (α1, 

α2,…,α6), then the number of permutations in A6 having the same cycle type as g is given by Theorem 1.1.13 and 

the number of elements in X[4] fixed by g is given by Lemma 2.1.3. We now have the following Table;  

                                          Table 2.3.1: Permutations in A6 and the number of fixed points 

Permutation in A6 Cycle type Number of 

permutations 
|𝐅𝐢𝐱(𝐠)| in 𝐗[𝟒] 

1 (6,0,0,0,0,0) 1 360 

(abc) (3,0,1,0,0,0) 40 0 

(abcde) (1,0,0,0,1,0) 144 0 

(ab)(cd) (2,2,0,0,0,0) 45 0 

(ab)(cdef) (0,1,0,1,0,0) 90 0 

(abc)(def) (0,0,2,0,0,0) 40 0 

 

By Cauchy-Frobenius Theorem we get the number of the orbits of A6 acting on  X[4] , 

1

|A6|
∑ |Fix(g)|g∈ A6

 =
1

360
[(360x1) + (0x40) + (0x144) + (0x45) + (0x90) + (0x40)] 

                     =
360

360
=1. 

This implies that A6 acts transitively on X[4].       ∎ 
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Alternatively we can use the Orbit-Stabilizer Theorem (Theorem 1.1.14). In this case we have to show that the 

length of the orbit of a point say [1, 2, 3, 4] in X[4] is 360, the same as the number of points in X[4]. Let g ∈ A6 

have cycle type (α1α2,…,α6), then the number of permutations in A6 fixing [1, 2, 3, 4] and having the same cycle 

type as g is given by Lemma 2.1.4. We now have the following Table;  

                           Table 2.3.2:  Number of permutations in G=A6 fixing [1, 2, 3, 4] 

Permutation in A6 Cycle type Number  fixing [12,3,4] 

1 (6,0,0,0,0,0) 1 

(abc) (3,0,1,0,0,0) 0 

(abcde) (1,0,0,0,1,0) 0 

(ab)(cd) (2,2,0,0,0,0) 0 

(ab)(cdef) (0,1,0,1,0,0) 0 

(abc)(def) (0,0,2,0,0,0) 0 

 

By Orbit-Stabilizer Theorem, 

 |OrbG [1, 2, 3, 4]|=|G: StabG [1, 2, 3, 4]| 

                            =
|G|

|StabG [1,2,3,4]|
=

360

1
 

                            =360=|X[4]| . 

Hence the orbit of [1, 2, 3, 4] is the whole of X[4] and therefore A6 acts transitively on X[4] .       ∎  

Theorem  2.3.2  

G=A6 does not act doubly transitively on X[4].  

Proof  

Given any two pair of points say [1, 2, 3, 4], [1, 2, 4, 5] ∈ X[4] and [1, 2, 3, 6], [1, 6, 3, 4] ∈ X[4] and suppose that 

there exists a permutation g ∈ A6 such that g[[1, 2, 3, 4], [1, 2, 4, 5]] = [[1, 2, 3, 6], [1,6, 3, 4]]; then g [1, 2, 3, 4]= 

[g(1),g(2), g(3), g(4)]= [1,2,3,6] and g [1, 2, 3, 5]= [g(1),g(2), g(3), g(5)] = [1, 6, 3, 4]. Implying that g(2)=2 and 

g(2)=6, this is impossible. Thus A6 does not act doubly transitively on 

X[4].                                                                                                     ∎  

Theorem  2.3.3 

G=A7 acts transitively on X[4].  

Proof  

We can prove this by the use of Cauchy–Frobenius Lemma (Theorem 1.1.15). Let g ∈ A7 have cycle type (α1, 

α2,…,α7), then the number of permutations in A7 having the same cycle type as g is given by Theorem 1.1.13 and 

the number of elements in X[4] fixed by g is given by Lemma 2.1.3. We now have the following Table;  

                                           Table 2.3.3: Permutations in A7 and the number of fixed points 

Permutation g in A7 Cycle type Number of 

permutations 
|𝐅𝐢𝐱(𝐠)| in 𝐗[𝟒] 

1 (7,0,0,0,0,0,0,) 1 840 

(abc) (4,0,1,0,0,0,0) 70 24 

(abcde) (2,0,0,0,1,0,0) 504 0 

(abcdefg) (0,0,0,0,0,0,1) 720 0 

(ab)(cdef) (1,1,0,1,0,0,0) 630 0 

(ab)(cd) (3,2,0,0,0,0,0) 105 0 

(ab)(cd)(efg) (0,2,1,0,0,0,0) 210 0 

(abc)(def) (1,0,2,0,0,0,0) 280 0 
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By Cauchy-Frobenius Lemma we get the number of the orbits of A7 acting on  X[4], 
1

|A7|
∑ |Fix(g)|g∈ A7

 

=
1

2520
[(840x1) + (24x70) + (0x504) + (0x720) + (0x630) +                                             (0x105) +

(0x210) + (0x280)] 

                        =
1

2520
[840+1680+0+0+0+0+0+0+0] 

                        =
2520

2520
=1.  

This implies that A7 acts transitively on X[4].                                                                                 

Alternatively we can use the Orbit-Stabilizer Theorem (Theorem 1.1.14). In this case we have to show that the 

length of the orbit of a point say [1, 2, 3, 4] in X[4] is 840, the same as the number of points in X[4]. Let g ∈ An 

have cycle type (α1α2,…,α7), then number of permutations in A7 fixing [1, 2, 3, 4] and having the same cycle type 

as g is given by Lemma 2.1.4. We now have the following Table;  

                                          Table 2.3.4:  Number of permutations in G=A7 fixing [1, 2, 3, 4] 

Permutation g in A7 Cycle type Number  fixing [12,3,4] 

1 (7,0,0,0,0,0,0,) 1 

(abc) (4,0,1,0,0,0,0) 2 

(abcde) (2,0,0,0,1,0,0) 0 

(abcdefg) (0,0,0,0,0,0,1) 0 

(ab)(cdef) (1,1,0,1,0,0,0) 0 

(ab)(cd) (3,2,0,0,0,0,0) 0 

(ab)(cd)(efg) (0,2,1,0,0,0,0) 0 

(abc)(def) (1,0,2,0,0,0,0) 0 

Total  3 

 

By Orbit-Stabilizer Theorem, 

 |OrbG [1, 2, 3, 4]|=|G: StabG [1, 2, 3, 4]| 

                            =
|G|

|StabG [1,2,3,4]|
=

2520

3
 

                            =840=|X[4]| . 

Hence the orbit of [1, 2, 3, 4] is the whole of X[4] and therefore A7 acts transitively on X[4] .       ∎ 

Theorem 2.3.4 

G=A7 does not act doubly transitively on X[4].  

Proof  

Given any two pair of points say [1, 2, 3, 4], [1, 2, 4, 7] ∈ X[4] and [1, 2, 3, 5], [1, 7, 3, 4] ∈ X[4] and suppose that 

there exists a permutation g ∈ A7 such that g[[1, 2, 3, 4], [1, 2, 4, 7]] 
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= [[1, 2, 3, 5], [1,7, 3, 4]]; then g [1, 2, 3, 4]= [g(1),g(2), g(3), g(4)]= [1,2,3,5] and g [1, 2, 4, 7]= [g(1),g(2), g(3), 

g(7)] = [1, 7, 3, 4]. Implying that g(2)=2 and g(2)=7, this is impossible. Thus A7 does not act doubly transitively 

on X[4].                                                                                                     ∎  

Therefore G acts transitively on 𝑋[4] 

Conclusion: This implies that An (for n≤ 7) acts transitively on X 
(4)

 a nd 𝑋[4] 
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