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Abstract 

Listwise or pairwise deletion as the method of handling missing data in multivariate data 

leads to loss of statistical power, biased results and underestimation of standard errors and P-

values.Four imputation techniques namely Regression, Stochastic, Expectation-Maximization 

(EM) and Multiple Imputation (MI) were considered and compared in terms of preserving the 

original distribution of the (multivariate) data and the relationships among the variables 

before the techniques were applied. Results show that none of the techniques performed 

absolutely better than the rest leaving the choice of imputation techniques in any dataset on 

the objectives of the researcher. 

Keyword: Imputation, missing data, Expectation Maximization, Multiple Imputation, Root 

Mean Square Error. 

1.0 Introduction 

Method of handling missing data in some statistical software like SAS, S-Plus and SPSS is 

listwise deletion. This involves dropping any case with missing value. Consequently, 

statistical power is lost, biased results are obtained and underestimation of standard errors and 

P-values are usually observed. 

Alternatively, imputation can be applied which according toEveritt (2002) is a process of 

estimating missing values using the non-missing information available for the subject. It 

addresses the problem of reduction in statistical power. There are several imputation 

techniques which include mean imputation (the average value is filled in), regression 

imputation (a regression model is used to predict the missing value), hot deck imputation 

(which imputes new values from similar cases), Stochastic imputation and the more recent 

methods like Maximum Likelihood, Multiple Imputation, Expectation Maximization (EM), 

etc. However, only four techniques are considered in this work namely: Regression 

imputation, Stochastic imputation, Expectation-Maximization and the Multiple Imputation. 

Von Hippel (2007) suggested that several factors should be considered before a technique is 

chosen. Such factors include type of parameter estimates that should be generated (biased or 

unbiased), non-response rate, nature of the missing data and availability of an auxiliary data 

that are correlated with characteristic of interest.  

1.1 Non-Response Rate 

For non-response rate, the researcher should consider percentage of missing data for each of 

the variable. ‘Small’ percentage of missing value is less problematic and may be corrected by 

simpler imputation techniques like overall mean or class-mean imputation technique where 

applicable. There’s no consistent definition of ‘small amount of missing data’. However, for 

Little and Rubin (2002) it ranges from 5% or less of values. 

http://www.iiste.org/


Mathematical Theory and Modeling                                                                                                                                                  www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.5, No.6, 2015 

 

96 

1.2 Nature of Missing Data 

The researcher needs to establish whether data are missing completely at random (MCAR), 

missing at random (MAR) or missing not at random (MNAR). This factor determines the 

choice of the technique to choose as well as the case deletion method to adopt.  If data are 

MCAR then listwise deletion yield unbiased results but if the data are not MCAR, listwise 

deletion will introduce bias because the sub-sample of case represented by the missing data 

are not representative of the original sample (and if the original sample was itself a 

representative sample of a population, then the complete cases are not representative of that 

population either. Brick and Kalton (2000) 

1.2.1Missing Completely at Random (MCAR) 

Here, the probability of response to a variable of interest, Y, is the same for all the units in the 

population. This means that the probability of response does not depend on the auxiliary 

variable(s), or the variable of interest, Y.Roughly speaking, the tendency for a data point to be 

missing is completely random. Pickles (2005) points out that for MCAR, the probability of 

missingness is a constant. This implies that Pi = P(i ϵ Sr) = P.   ∀ i ∊ U.  Where Sr is Sample of 

respondents for a given item and U is the target population of size N. Formally, when data are 

MCAR, evidently the set of objects with no missing data is also a random sample from the 

source population. Hence, most techniques for handling missing data under MCAR including 

listwise deletion yield unbiased results. According to Fellegi and Holt (1976), the imputed 

estimator, Ӯ
*
 for the population mean will be unbiased if data are MCAR. A statistical test for 

MCAR is a Chi-square test which is provided in the SPSS Missing Values Analysis (MVA) 

option. A significant value indicates that data are not MCAR. 

1.2.2Missing at Random (MAR) 

In this case, the probability of response to a variable of interest, Y is related to auxiliary 

variable(s) X. This implies that Pi = P(i ϵ Sr) = P(Xi). i.e.  data are MAR if the probability of 

response to Y is not a function of its own value but a function of the values of the auxiliary 

variable(s). Generally, when data are MAR, a complete case analysis is no longer based on 

random sample from the source population. Hence, all simple techniques including the 

listwise deletion and overall mean imputations yield biasedresults. However, more advanced 

techniques like Stochastic Regression and Multiple Imputation techniques give unbiased 

results even when missing data are MAR. 

 The MAR test is a ‘‘Separate variance t-tests’’ which is also available on the SPSS Missing 

Values Analysis (MVA). A significant value indicates that data are MAR. 

1.2.3Missing Not at Random (MNAR) 

Often times, data are MNAR, implying that missingness is related to one or more of the 

outcome variables or that the missingness has a systematic pattern, Schaefer and Graham 

(2002). If there is a pattern to the missing values, the best decision is that they are MNAR. 

There are some simple ways researchers can examine their data to determine whether missing 

data follow a pattern. For instance, during instrument development like questionnaire, etc., 

response sets should include ‘don’t know’, ‘does not apply’ or ‘refused’ responses. These 

responses allow the researcher to distinguish among these ‘no answer’ responses. For 

example, if the majority of responses to an item asking for particular information which may 

be income, age, marital status, etc. are ‘refused’, the researcher will be confident that there is 
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a pattern to the responses. When missing data are MNAR, valuable information is lost from 

the data and there is no universal way of handling the missing data properly. 

 Although, data imputation techniques typically assume that at a minimum, data are MAR, 

more advanced imputation techniques are robust and produce nearly as good results without 

strictly meeting this assumption. Little and Rubin (2002). 

2.0 Methodology 

Procedures for data imputation using regression, stochastic, Expectation-Maximization (EM) 

and Multiple Imputation (MI) were described. The descriptive statistics, the statistical 

relationships and the normal Q-Q plots of the four variables were obtained and examined 

before and after imputation. The SPSS and R were used for the analysis. 

2.1 Regression Imputation 

This assumes a linear relationship between the variables used in the regression equation when 

there may not be one. We used the variable with the missing data as the dependent variable. 

Cases with the complete data for the predictor variables were used to generate the regression 

equation. Predictors of the missing values were identified using a correlation matrix. The best 

predictors were the variables with the highest correlations and were therefore used as the 

independent variables in a regression equation to predict missing values for the incomplete 

cases. That is for a variable Yi with missing values, a model 

𝑌𝑖  =  𝛽0 +  𝛽1𝑌1  +  𝛽2𝑌2   + ⋯ + 𝛽(𝑖−1)𝑌(𝑖−1)     1.1 

is fitted for the non-missing observations.  

Where𝛽0,𝛽1, … , 𝛽(𝑖−1) are the estimated parameters of the model and𝑌1  , 𝑌2 , …,𝑌(𝑖−1)are the 

covariates used as predictors of the missing value. Multicollinearity was also considered. 

 

2.2 Stochastic Imputation 

We introduced an error term to Equation 1.1 because regression imputation doesn’t supply 

‘uncertainty’ about the predicted value. Consequently, imputed data in 1.1 do not have an 

error term included in their estimation, thus the estimates fit perfectly along the regression 

line without any residual variance. This causes relationships to be over identified and 

underestimation of variance. 

From the regression model in 1.1 above, the parameter estimates and the associated Variance-

Covariance matrix of the fitted model are given by  

𝛽0,∗ 𝛽1 ∗, … , 𝛽(𝑖−1) ∗ and 𝜎2𝑄𝑖respectively. Where 𝑄𝑖 is the usual X
I
X matrix from the 

intercept and the variables 𝑌1  , 𝑌2 ,…,𝑌(𝑖−1). For each imputation, new parametersβ₀*, β₁*,…, 

β(i-1)*  and σ
2

i
*
 are drawn from the posterior predictive distribution of the missing data. Then a 

new model for the estimation of missing data is given by 

𝑌𝑖  =  𝛽0 +  𝛽1𝑌1  +  𝛽2𝑌2   + ⋯ + 𝛽(𝑖−1)𝑌(𝑖−1) + 𝑟𝑚𝑠𝑒 ∗ 𝜀𝑖  1.2 

Where𝜀𝑖~ N (0,1) , and rmse is the Root Mean Square Error. 
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Clearly from 1.2, the error term for each model is a function of its Root Mean Square Error 

(rmse) 

The procedure used here is summarized as follows: 

(i)  Regress the variable with the missing data on other variables. 

(ii) Obtain the root mean square error (Standard Error) of the estimate. 

(iii) Compute the predicted value of the missing data given the values of other 

variables in the equation. 

(iv) Add random variability (which is simply a product of the rmse and ϵi)  to the 

predicted value Yi  

2.3          Expectation–Maximization (EM) Imputation 

The EM technique is a maximum likelihood based approach that works with the relationship 

between the unknown parameters of the data model and the missing data. We assumed a 

multivariate normal model. The procedure here is summarized as follows: 

We first estimate the model parameters, then estimate the missing values, then use the filled-in 

dataset to re-estimate the parameters, then use the re-estimated parameters to estimate 

missing values, and so on. When the process finally converges on stable estimates the 

iterative process ends. Schaefer and Olsen (1998) 

Recall that regression imputation underestimates the true variability in the data because there 

is no error associated with the imputed observations. Howell, D.C. (2008) points out that EM 

like Stochastic imputation corrects that problem by estimating variances and covariances that 

incorporate the residual variance from the regression. For instance, assume that we impute 

values for missing data on Y1from data on Y2, Y3and Y4, to find the estimated mean of Y1we 

simply take the mean of that variable. Now that we have a new set of parameterestimates, we 

repeat the imputation process to produce another set of data. From that new set we re-estimate 

our parameters as above, and then impute yet another set of data. We continue this process in 

an iterative fashion until the estimates converge. 

2.4      Multiple Imputation. 

MI uses a stochastic linear model. 

𝑌𝑖  =  𝛽0 +  𝛽1𝑌1  +  𝛽2𝑌2   + ⋯ + 𝛽(𝑖−1)𝑌(𝑖−1) + 𝜀𝑖                                                                  1.3 

Where𝜀𝑖~ N(0,1)  and 𝛽0,𝛽1, … , 𝛽(𝑖−1)are the parameters of the model. 

 From the term ‘multiple’, clearly we are required to impute several times. This implies that 

we shall have multiple complete dataset before we proceed with analysis. We then combine 

the results of those analyses and make inference. The process involves three different stages 

namely: 

(i) Impute for the missing data k times using the above model. 

(ii) The k completed datasets are analysed for the parameter estimates of interest. 

(iii) The results from the k completed datasets are combined for inference. 

Step (iii) is broken down as follows: 

Suppose k imputations were done, from each analysis, we calculate and save the estimates. 

The overall estimate is the mean of the individual estimates. 

For the overall standard error for each variable, the within-imputation variance was first 

calculated which is the mean of the variances of the variable in the five dataset given below as                                                 
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𝑦 =
1

𝑘
∑ 𝑊𝑘

𝑖=1 I                                                                                                                         1.4 

Wi    i = 1,…,k are the variances for each dataset.     

The between-imputation variance which is the variance of the variances of the variable in the 

k dataset is given below as: 

𝐵 =
1

𝑘−1
∑ (𝑊𝑖     

𝑘−1
𝑖=1 −  �̅�)2                                                                                          

1.5 

 

The total variance is given by 

T=  �̅� + (1+ 
1

𝑛
)B                                                                           1.6 

Where  (1 + 
1

𝑛
)  is a correction factor. Then the overall standard error is the square root of T, 

(T)
1/2

 

 

3.0     Example/ Analysis 

We illustrate with a multivariate data of four variables obtained from the Records department 

of Bishop Shananhan Hospital, Nsukka, Enugu State, Nigeria. The variables are Age of the 

patients,(Y1,), Number of days they spent in the hospital (Y2), Blood pressure (Systolic)Y3 

and their Weight (Y4). It is on 40 patients, with each patient providing information on each 

variable. There are 20 missing observations out of 160 across the data implying a non-

response rate of 12.5%. Little’s Chi-Square test for MCAR and the ‘Separate Variance t-test’ 

for MAR were used to determine the nature of the missing data. Using the MVA(Missing 

Value Analysis) option on SPSS, under EM estimation, the Little’s MCAR test has the 

following values: Chi-Square = 14.006, degree of freedom = 14 and P-value = 0.449. At 5% 

level of significance, the null hypothesis that data are MCAR was accepted which implies that 

the probability of missingness is a constant and the set of items with no missing data is a 

random sample from the source population. Conclusion: Data are MCAR (5% level of 

significance).  

Like in all practical cases and for a valid inference, the assumption of linear dependency 

amongst the variables was not taken for granted. We obtained a correlation matrix and tested 

for linear dependency among the variables. The essence of this was to determine how the four 

variables are correlated amongst themselves and subsequently determine the independent 

variable(s) that should be used in the imputation model for each variable.  Using 

𝐻0:  𝜌𝑖𝑗 = 0𝑉𝑠   𝐻1:  𝜌𝑖𝑗 ≠ 0  i ≠ j   ∀𝑖𝑖 =1,2,3,4: ∀𝑗,   𝑗  = 1, 2,3,4  where 𝜌𝑖𝑗 signifies 

correlation between 𝑌𝑖 and  𝑌𝑗 . 

In Table 1 below, the values outside the bracket are the Pearson correlation coefficient while 

the values in the bracket are the P-values for the tests of hypothesis above.  
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Table 1.  Correlation before imputation 

 Age Days BP Weight 

Age (P-Value) 1 0.437 (0.016)* 0.575(0.001)** -0.453(0.014)* 

Days 0.437(0.016)* 1 0.449(0.011)* -0.233(0.207) 

BP 0.575(0.001)** 0.499(0.011)* 1 -0.347(0.060) 

Weight -0.453(0.014)* -0.233(0.207) -0.347(0.060) 1 

 

** Correlation significant at 1% level of significance. 

* Correlation significant at 5% level of significance. 

Table 2   Descriptive Statistics before Imputation 

 N Mean SE(Mean) Variance Skewness 

Age 35 54.0000 2.77534 269.588 0.061 

Days 35 11.2857 0.81845 23.445 0.133 

BP 36 123.3333 1.92106 132.857 -0.515 

Weight 34 64.7857 1.52675 79.253 0.252 

 

Clearly from Table 1, at 5% level of significance, Only Y2, Y3 and Y4 are correlated with Y1. 

Using regression imputation to impute for Y1, it was discovered that regressing Y1 on Y2, Y3 

and Y4 yielded a model with a low (adjusted) Coefficient of DeterminationR
2
 which is very 

poor for the purpose of prediction and even a high standard error of the estimate. 

Consequently, Y4 was dropped   and a “better” model emerged. Y2, Y3 and Y4 were also 

imputed using the same procedure. Using Table 1 and considering the (adjusted) R
2
, we shall 

have the following imputation models, 

𝑌1𝑖  = 𝛽0 +  𝛽1𝑌2𝑖  + 𝛽2𝑌3𝑖   1.6 

𝑌2𝑖  = 𝛽0 +  𝛽1𝑌1𝑖  + 𝛽2𝑌3𝑖   1.7   

𝑌3𝑖  = 𝛽0 +  𝛽1𝑌1𝑖  + 𝛽2𝑌4𝑖   1.8 

𝑌4𝑖  = 𝛽0 +  𝛽1𝑌1𝑖  + 𝛽2𝑌3𝑖   1.9  

 

The parameters were estimated and the following models emerged: 

,  𝑌1𝑖  = −31.419 +  0.898𝑌2𝑖  +  0.620𝑌3𝑖    2.0 

𝑌2𝑖  = −11.282 +  0.100𝑌1𝑖  +  0.134𝑌3𝑖 2.1 

𝑌3𝑖  = 148.860 +  0.190𝑌1𝑖  − 0.519𝑌4𝑖 2.2 

𝑌4𝑖  = 118.360 −  0.378𝑌1𝑖  − 0.105𝑌3𝑖 2.3 

 

The Variance Inflation factor (VIF) is an indicator of multicollinearity. It’s an index that 

measures how much the variance of an estimated regression coefficient is inflated due to 

multicollinearity. Kutner (2004) suggests that VIF > 5 signifies high multicollinearity. The 

VIF is given by  
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VIF = 1/1-R
2
                                                                                            2.4                                                               

where R
2 

is the Adjusted coefficient of determination of the model.  

For the models in 2.0, 2.1, 2.2 and 2.3, the VIF were computed as 1.278, 1.442, 1.299 and 

1.284 respectively. These values are less than 5. So, there was no problem of 

multicollinearity. 

 

For Y1, there are missing cases in items 3, 7, 17, 25 and 36 and there imputed values are 42, 

66,53, 42 and 62 respectively. 

The complete dataset from regression imputation included the other variables is tabulated on 

the Appendix. 

 

For  𝑌1  , the regression model before imputation is given in 2.0 as  

 

𝑌1𝑖  = −31.419 +  0.898𝑌2𝑖  +  0.620𝑌3𝑖 
  

While the regression model after imputation is given by: 

                                                𝑌1𝑖  
= −38.632 +  0.904𝑌2𝑖  +  0.672𝑌3𝑖2.4 

3.1 Stochastic Regression: 

 Using the normal variates, 𝜀𝑖𝑗  ~N(0,1)  generated by the SPSS. We have the following 

models: 

 𝑌1𝑖  = −31.419 +  0.898𝑌2𝑖  +  0.620𝑌3𝑖 +  13.784 ∗  𝜀𝑖𝑗                                   2.5 

𝑌2𝑖  = −11.282 +  0.100𝑌1𝑖  +  0.134𝑌3𝑖 +  4.946 ∗ 𝜀𝑖𝑗2.6       

𝑌3𝑖  =    148.860 +  0.190𝑌1𝑖  − 0.519𝑌4𝑖 +  8.660 ∗  𝜀𝑖𝑗2.7                                                  

𝑌4𝑖  =     118.360 −  0.378𝑌1𝑖  − 0.105𝑌3𝑖 +  7.248 ∗  𝜀𝑖𝑗2.8   

The rmse for the imputation models in 2.5, 2.6, 2.7 and 2.8 are 13.820, 4.624, 9.309 and 7.428 

respectively. For Y2, the missing cases are in items 6, 23, 26, 30 and 33 and the imputed 

values are 18.1, 9.6 ,5.1, 8.6 and 9.5 respectively.  

The descriptive statistics after stochastic imputation and the new correlation matrix with their 

significance levels are tabulated below 

 

3.2 Expectation-Maximization.  

This technique is stochastic in nature. The imputation models used were those of the 

regression imputation but with the EM algorithm introducing an error term which is a normal 

variate, ϵj ~ N(0,1) (not a function of the rmse) Using the EM Algorithm for Missing Value 

Analysis (MVA)options,we used 25 iterations which is the default number of iterations. This 

implies that the algorithm estimated the model parameters, then estimated the missing values, 

then used the filled-in dataset to re-estimate the parameters with the process occurring 25 

times before the values converged. The estimates are Maximum Likelihood Estimates 

For the four variables, we used the following imputation models: 
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 𝑌1𝑖  = −31.419 +  0.898𝑌2𝑖  +  0.620𝑌3𝑖 + 𝜀𝑖𝑗                                       2.9 

𝑌2𝑖  = −11.282 +  0.100𝑌1𝑖  +  0.134𝑌3𝑖 + 𝜀𝑖𝑗                                              3.0 

 𝑌3𝑖  =    148.860 +  0.190𝑌1𝑖  − 0.519𝑌4𝑖 +  𝜀𝑖𝑗                                         3.1 

𝑌4𝑖  =     118.360 −  0.378𝑌1𝑖  − 0.105𝑌3𝑖 + 𝜀𝑖𝑗                                              3.2               

 

3.3 Multiple Imputation. 

Graham,et al(2007) recommends at least five imputations. From each analysis, we calculated 

and saved the estimates.  

The overall estimate is the average of the individual estimates.  

 

𝑊 ̅̅̅̅ =  
1

𝑛
∑ 𝑊𝑛

𝑖=1 I                                                                                                                                                                                 3.3 

 Where Wi:  i = 1,…,5 are the individual estimates. 

For the overall standard error, the within imputation variance as given by 1.4, the between-

imputation variance by 1.5 and the total variance by 1.6 were all computed.  

Then the overall standard error is the square root of T while a significance test of null 

hypothesis is performed using the test statistic below  

 T = 
𝑊 ̅̅̅̅

√(𝑇)
~t–distribution.                                                                                                          3.4 

where�̅� is the average of the estimate and √(𝑇) is the overall standard error. For Y1, the 

within-imputation variance Ӯ1 = 291.089 and the between imputation variance B1 = 

393.243.Therefore, the total variance T1 (as computed using equation 1.6) = 694.163. The 

overall standard error of Y1 is simply given by (694.416)
 1/2

 = 26.34697. The total variance 

and overall standard error of other variables were computed in a similar manner. 

Table 3Correlations before Imputation 

 Age Days BP Weight 

Age (P-Value) 1 0.437 (0.016)* 0.575(0.001)** -0.453(0.014)* 

Days 0.437(0.016)* 1 0.449(0.011)* -0.233(0.207) 

BP 0.575(0.001)** 0.499(0.011)* 1 -0.347(0.060) 

Weight -0.453(0.014)* -0.233(0.207) -0.347(0.060) 1 
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Table 4After Regression Imputation 

 Age Days BP Weight 

Age (P-Value) 1 0.481 (0.02)* 0.590(0.000)** -0.443(0.004)** 

Days 0.481 (0.02)* 1 0.447(0.004)** -0.202(0.212) 

BP 0.590(0.000)** 0.447(0.004)** 1 -0.358(0.023)* 

Weight -0.443(0.004)** -0.202(0.212) -0.358(0.023)* 1 

Table 5After Stochastic Imputation 

 Age Days BP Weight 

Age (P-Value) 1 0.492 (0.001)** 0.558(0.000)** -0.426(0.006)* 

Days 0.492 (0.001)** 1 0.478(0.002)** -0.243(0.130) 

BP 0.558(0.000)** 0.478(0.002)** 1 -0.296(0.063) 

Weight -0.426(0.006)** -0.243(0.130) -0.296(0.063) 1 

 

Table 6After EM Imputation 

 Age Days BP Weight 

Age (P-Value) 1 0.477 (0.002)** 0.631(0.000)** -0.423(0.007)** 

Days 0.477 (0.002)** 1 0.452(0.003)** -0.276(0.084) 

BP 0.631(0.000)** 0.452(0.003)** 1 -0.278(0.083) 

Weight -0.423(0.007)** -0.276(0.084) -0.278(0.083) 1 

Table 7After Multiple Imputation 

 Age Days BP Weight 

Age (P-Value) 1 0.443 (0.016)* 0.595(0.000)** -0.305(0.014)* 

Days 0.443 (0.016)* 1 0.409(0.011)* -0.228(0.207) 

BP 0.595(0.001)** 0.409(0.011)* 1 -0.337(0.060) 

Weight -0.305(0.014)* -0.228(0.207) -0.337(0.060) 1 

*  Correlation significant at 5% level of significance. 

**Correlation significant at 1% level of significance 
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Table 8Descriptive Statistics before Imputation 

 N Mean SE(Mean) Variance Skewness 

Age 35 54.0000 2.77534 269.588 0.061 

Days 35 11.2857 0.81845 23.445 0.133 

BP 36 123.3333 1.92106 132.857 -0.515 

Weight 34 64.7857 1.52675 79.253 0.252 

 

 

The Normal QQ Plot of the four variables before imputation are given below: 
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Table 9Descriptive Statistics after regression Imputation 

 N Mean SE(Mean) Variance Skewness 

Age 40 53.8250 2.49192 248.387  0.078 

Days 40 10.9050 0.74744 22.347  0.282 

BP 40 123.0000 1.74091 121.347 -0.443 

Weight 40 64.5725 1.31076 68.724  0.328 

 

 

 
 

 

 

 
Table 10Descriptive Statistics after Stochastic imputation 

 N Mean SE(Mean) Variance Skewness 

Age 40 53.3250 2.61146 272.789 0.089 

Days 40 11.2265 0.74672 22.304 0.236 
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BP 40 122.6250 1.97976 126.702 -0.366 

Weight 40 64.3800 1.40524 78.988 0.008 

 

 

 

 
 

Table11Descriptive Statistics after EM Imputation. 

 N Mean SE(Mean) Variance Skewness 

Age 40 53.5750 2.70484 292.646 0.074 

Days 40 11.3050 0.80582 25.973 0.138 

BP 40 122.8732 1.89100 143.035 -0.410 

Weight 40 64.8541 1.50293 90.352 0.242 
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Table 12Descriptive Statistics after MI imputation 

 N Mean SE(Mean) Variance Skewness 

Age 40 53.33816 26.34697 694.163 -0.0108 

Days 40 11.40202 4.89959 24.006 0.1106 

BP 40 122.92726 14.40951 207.634 -0.4628 

Weight 40 64.70972 12.57911 158.234 0.2428 

 

4.0 DISCUSSION OF RESULTS AND FINDINGS    

Regression imputation underestimated the standard error of the four variables as shown in 

Table 9, From269.588 to 248.387 for Y1, 23. 445 to 22.347 for Y2, 132.857 to 121.347 for Y3 

and 79.253 to 68.724 for Y4 . Also, from Table 4, we see that the P-values in the test for 

correlation between the variables, Y1, Y2 , Y3 and Y4 are underestimated. At 5% level of 
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significance, ρ34 was not significant before imputation with P-value of 0.060 but significant 

after imputation with a p-value of 0.023. However, at 1% level of significance, ρ14, and ρ23 

which were not significantbefore imputation with p-values 0.014 and 0.011 respectively 

became significantafter imputationwith p-values 0.004 and 0.004. This shows that regression 

imputation is not robust enough to preserve the relationships among the variables and may 

lead to Type 1 error – reporting significance in hypothesis testing when there is none. This, of 

course leads to erroneous inference. Also in Table 9, the changes in values for skewness (a 

distribution’s departure from symmetry) are very minimal which suggests that there may not 

be any deviation from the original distribution of the dataset before imputation. 

Stochastic imputation underestimated standard errors but not as much as Regression 

imputation. Table 10 reveals that the variance for the four variables increased. This is clearly 

due to the introduction of the error term, rmse*ϵijwhere ϵij~ N(0,1) in the models which 

increases the variability in the dataset. Table 5 shows that at 5% level of significance the 

statistical relationships are preserved. However, at 1% level of significance, ρ21, ρ32 and ρ41 

which were not significantbefore imputation with p-values 0.016, 0.011 and 0.014 

respectively became significantafter imputation.with p-values 0.001, 0.002 and 0.006 

respectively. Also, changes in values for skewness are not much as shown in Table 10. 

 EM imputation only records a slight underestimation of standard errors. A study of Tables 8 

and 11 reveals the underestimation after EM imputation as follows: 2.77534 to 2.70484, 

0.81845 to 0.80582, 1.92106 to 1.89100 and 1.52675 to 1.50293 for S.E(Y1), S.E(Y2), 

S.E(Y3) and S.E(Y4) respectively. This underestimation is very minimal and Table 6 shows 

that relationships at 5% level of significance are still maintained. This verifies the claim of  

Enders, C.K. (2010) that “EM imputations preserve the relationships with other variables, 

which is extremely vital if the researcher is going into Factor Analysis and Regression.” 

Interestingly, at 1% level of significance as revealed in Table 6 , ρ12, ρ23 and ρ14 which were 

not significantat 5% became  significant with  with p-values 0.002, 0.007 and 0.003 

respectively. The skewness for the four variables remains almost the same with the ones 

before imputation. From 0.061 to 0.074 for Y1, 0.133 to 0.138 for Y2,  -0.515 to -0.410 for Y3  

and 0.252 to 0.242 for Y4. These values are close to zero showing that their distributions still 

remain approximately symmetric. 

 

Multiple imputation, MI is the only technique that preserved the relationships of the variables 

both at 5% and 1% levels of significance. This is evident in Table 7. This makes it “better” 

than the EM technique especially in studies where the statistical relationships amongst the 

variables are paramount. A study of Table 12 reveals that there is no underestimation of 

standard errors rather they were inflated. The S.E.(Y1) moved from 2.77534 to 26.43697, 

0.81845 to 4.89959 for S.E.(Y2), 1.92106 to 14.40951 for S.E.(Y3) and 1.52675 to 12.57911 

for S.E.(Y4). This could be a disturbing development when testing hypotheses about the 

variables especially for Y1 which records the highest margin. Clearly, MI doesn’t 

underestimate standard errors but may create the problem of Type II error- not reporting 

significance when they actually exist. Now, because of the inverse relationship between the 

probability of Type II error, β and statistical power (1- β), we can say that the MI has not been 

able to appropriately tackle the issue of reduced power in this case. Though, some statisticians 

would rather risk Type II error than Type I error because in hypothesis testing, the practice is 

usually to consider Type I error more seriously than Type II error. In other words, any 

technique that would minimise Type I error would surely be preferred. 

Once again, values in skewness did not change significantly showing that the distribution of 

the dataset is still maintained. The results of MI done well are unbiased parameter estimates 

and no underestimation of standard errors and P-values. However, MI created by an incorrect 

model can lead to erroneous decisions. 
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Descriptive statistics before Imputation                                                          Descriptive 

statistics after MI 

 N Mean SE(Mean) Variance Skewness N Mean SE(Mean) Variance Skewness 

Age 35 54.0000 2.77534 269.588 0.061 40 53.33816 26.34697 694.416 -0.0108 

Days 35 11.2857 0.81845 23.445 0.133 40 11.40202 4.89959 24.006 0.1106 

BP 36 123.3333 1.92106 132.857 -0.515 40 122.92726 14.40951 207.634 -0.4628 

Weight 34 64.7857 1.52675 79.253 0.252 40 64.70972 12.57911 158.234 0.2428 

 

 5.0   Conclusion 

The existence of missing data creates problems that can never be completely solved but 

managed using some good imputation techniques. 

 

The underestimation of standard errors and P-values are highest in the regression technique, 

moderate in the stochastic, minimal in the EM technique and inflated in the MI. At 5% level 

of significance, correlations were maintained only by the EM and the MI techniques with only 

the MI still maintaining correlations at 1% level of significance but with inflated standard 

errors, exposing the researcher to the risk of Type II error. Unlike Multiple Imputations, the 

regression imputation, stochastic imputation and EM techniques are not robust enough to 

preserve relationships among variables at 1% level of significance. These techniques should 

be dropped in vital statistics, epidemiology, and government budgeting where most decisions 

are based on hypothesis testing at 1% level of significance 

An attempt to compare these techniques shows that none of them is universally better than the 

other. While regression, stochastic and the EM were relatively better than the MI in 

maintaining the distribution of the original dataset. MI performed better than them in 

maintaining the relationships. Some underestimate standard errors and P-values thereby 

creating the problems of Type I error while others like the MI inflate standard errors and P-

values, creating the problem of Type II error.  

The EM has the advantage that even when the assumption of multivariate normal distribution 

of observations is in error, the algorithm seems to work remarkably well. But because it still 

underestimates standard errors, it is only advisable if the percentage of missing data is under 

5%. Enders (2010) 

Luengo, et al (2011) suggested that the EM and the MI techniques should be adopted in fields 

of knowledge like Bioinformatics, Climatic science and Medicine. 

However, there is no universal imputation technique that performs ‘best’ for all cases. It all 

depends on the objectives of the researcher.  

 

6.0 References 

Brick, M. and Kalton, G., (2000), “Weighting in household panel surveys”, Researching 

social and economic change: the uses of household panel studies, ed Rose, D., Routldege, 

London. 

Enders, C.K. (2010), “Applied missing data analysis”, New York: Guilford Press. 

http://www.iiste.org/


Mathematical Theory and Modeling                                                                                                                                                  www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.5, No.6, 2015 

 

110 

Everitt, B.S. (2002), “The Cambridge Dictionary of Statistics 2
nd

 Edition”. Institute of 

psychiatry, kings College, University of London. 

Fellegi, I. P, and D. Holt (1976), “A Systematic Approach to Automatic Edit and Imputation”, 

Journal of the American Statistical Association, 71, pp. 17-35. 

Graham J. W., Olchowski  A. E., and Gilreath T. D., (2007). “How many imputations are 

really needed?” Some practical classifications of multiple imputation theory.  

Howell, D.C (2008), “The analysis of Missing data handbook of Social science 

Methodology”, London. 

Julian, L.,  Salvador, G., and Francisco, H. (2011), “On the choice of best imputation methods 

for missing values considering three groups of classification methods”. Springer-Verlag 

London limited. 

Kutner, M. H., Nachtsheim C.J., Neter, J., (2004), “Applied Linear Regression Models”, 4
th

 

Edition. Mc Graw Hill Irwin 

 

Little, R.J.A, and Rubin, D.B.(2002), “Statistical Analysis with Missing Data”, 2
nd

 edition. 

New York: John Wiley. 

 

Pickles,  A. (2005), “Missing data, problems and solutions”, Kimberly Kempf-Leonard (ed.), 

Encyclopedia of Social Measurement. Amsterdam: Elsevier 689–694. 

 

Schaeffer, J.L. and Graham, J.W. (2002). “Missing data: Our view of the state of the art”. 

Psychological Methods 7. 

 

Schafer, J.L. (1997) , “Analysis of Incomplete Multivariate Data” London: Chapman & Hall, 

London. (Book No. 72, Chapman & Hall series Monographs on Statistics and Applied 

Probability.) 

 

Von, H., and Paul, T., (2007) , “Regression with missing Y’s: an improved strategy for 

analysing multiple imputed data. Sociological Methodology.  

http://www.iiste.org/


The IISTE is a pioneer in the Open-Access hosting service and academic event management.  

The aim of the firm is Accelerating Global Knowledge Sharing. 

 

More information about the firm can be found on the homepage:  

http://www.iiste.org 

 

CALL FOR JOURNAL PAPERS 

There are more than 30 peer-reviewed academic journals hosted under the hosting platform.   

Prospective authors of journals can find the submission instruction on the following 

page: http://www.iiste.org/journals/  All the journals articles are available online to the 

readers all over the world without financial, legal, or technical barriers other than those 

inseparable from gaining access to the internet itself.  Paper version of the journals is also 

available upon request of readers and authors.  

 

MORE RESOURCES 

Book publication information: http://www.iiste.org/book/ 

Academic conference: http://www.iiste.org/conference/upcoming-conferences-call-for-paper/  

 

IISTE Knowledge Sharing Partners 

EBSCO, Index Copernicus, Ulrich's Periodicals Directory, JournalTOCS, PKP Open 

Archives Harvester, Bielefeld Academic Search Engine, Elektronische Zeitschriftenbibliothek 

EZB, Open J-Gate, OCLC WorldCat, Universe Digtial Library , NewJour, Google Scholar 

 

 

http://www.iiste.org/
http://www.iiste.org/journals/
http://www.iiste.org/book/
http://www.iiste.org/conference/upcoming-conferences-call-for-paper/

