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Introduction: 

Since Zadeh [1] introduced the concept of fuzzy sets, many authors have extensively 

developed the theory of fuzzy sets and applications. George and Veeramani [2, 3] gave the 

concept of fuzzy metric space and defined a Hausdorff topology on this fuzzy metric space 

which have very important applications in quantum particle physics particularly in connection 

with both string and infinity theory. 

 

Bhaskar and Lakshmikantham [4], Lakshmikantham and Ćirić [5] discussed the mixed 

monotone mappings and gave some coupled fixed point theorems which can be used to 

discuss the existence and uniqueness of solution for a periodic boundary value problem. 

Sedghi et al. [6] gave a coupled fixed point theorem for contractions in fuzzy metric spaces, 

and Fang [7] gave some common fixed point theorems under contractions for compatible and 

weakly compatible mappings in Menger probabilistic metric spaces. Many authors [8–11] 

have proved fixed point theorems in (intuitionistic) fuzzy metric spaces or probabilistic metric 

spaces. 
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In this paper, using similar proof as in [7], we give a new common fixed point theorem under 

weaker conditions than in [6] and give an example which shows that the result is a genuine 

generalization of the corresponding result in [6]. 

Preliminaries: 

We start by recalling two definitions. 

Definition 2.1. Let X be a non empty set The mappings 𝐹: 𝑋 × 𝑋 → 𝑋 and 𝑔: 𝑋 → 𝑋 are said 

to commute if 𝑔𝐹(𝑥, 𝑦) = 𝐹(𝑔𝑥, 𝑔𝑦) for all 𝑥, 𝑦 ∈ 𝑋. 

Definition 2.2. An element (𝑥, 𝑦) ∈  𝑋 × 𝑋 is called a coupled coincidence point of the 

mappings 𝐹: 𝑋 × 𝑋 → 𝑋 and 𝑔: 𝑋 → 𝑋 if 𝐹(𝑥, 𝑦) = 𝑔𝑥 and 𝐹(𝑦, 𝑥) = 𝑔𝑦. 

     The mappings F and g have a common fixed if there exists 𝑥 ∈  𝑋 such that 𝑥 = 𝑔𝑥 =

𝐹(𝑥, 𝑥). 

Our main theorem states as follows. 

Main Results: 

Theorem 3.1: Let (X, M, T) be a complete fuzzy metric space satisfying (FM-6) with T a g-

convergent t-norm . Let F : X × X → X  and g : X → X be two mappings such that, for some 

k ϵ (0,1), 

M(F(x, y), F(u, v), Kt) ≥ Min{M(gx, gu, t),M(gy, gv, t),M(gx, gv, t),M(gy, gu, t)}. 

for all  x, y, u ,v ϵ X , t ≥ 0. Suppose that F ( X × X )   g(x) and that g  is continuous and 

commutes with F. If there exists a >  0 and  x0, y0 ϵ X such that 

𝑡𝑎𝑡>0
𝑠𝑢𝑝  (1 − 𝑀(𝑔𝑥0, 𝐹(𝑥0, 𝑦0), 𝑡)) < ∞ and 

𝑡𝑎𝑡>0
𝑠𝑢𝑝  (1 − 𝑀(𝑔𝑦0, 𝐹(𝑦0, 𝑥0), 𝑡)) < ∞  

then F and g have a unique common fixed points in X . 

We note that if (𝑥0, 𝑦0) is a coupled coincidence point of F and g, then the conditions 

𝑡𝑎𝑡>0
𝑠𝑢𝑝

(1 − 𝑀(𝑔𝑥0, 𝐹(𝑥0, 𝑦0), 𝑡)) < ∞ and  

𝑡𝑎𝑡>0
𝑠𝑢𝑝 (1 − 𝑀(𝑔𝑦0, 𝐹(𝑦0, 𝑥0), 𝑡)) < ∞  are satisfied. 

Proof: Let 𝑥0, 𝑦0 be as in the statement of the theorem . Since F(X × X)   g(x), we can 

choose 𝑥1, y1ϵ X  such that 𝑔𝑥1 = 𝐹(𝑥0, 𝑦0) and 𝑔𝑦1 = 𝐹(𝑦0, 𝑥0). Continuing in this way one 

can construct two sequences {𝑥𝑛}𝑛∈𝑁 and {𝑦𝑛}𝑛∈𝑁 in X with the properties 
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𝑔𝑥𝑛+1 = 𝐹(𝑥𝑛, 𝑦𝑛), 𝑔𝑦𝑛+1 = 𝐹(𝑦𝑛, 𝑥𝑛) for all  n ϵ N 

We divide the proof into five steps. 

Step 1. We show that {𝑔𝑥𝑛}𝑛∈𝑁 and {𝑔𝑦𝑛}𝑛∈𝑁   are Cauchy sequences. 

Indeed, let  𝛼 > 0  be such that 𝑡𝛼 (1 − 𝑀(𝑔𝑦0,𝐹(𝑦0, 𝑥0), 𝑡)) ≤ 𝛼  

and  𝑡𝛼 (1 − 𝑀(𝑔𝑥0 , 𝐹(𝑥0,𝑦0), 𝑡)) ≤ 𝛼 

For all t > 0. Then 𝑀(𝑔𝑥0,   𝑔𝑥1,
1

𝑡𝑛   
) ≥ 1 − 𝛼(𝑡𝑎)𝑛  and   𝑀(𝑔𝑦0,   𝑔𝑦1,

1

𝑡𝑛   
)  ≥ 1 −

𝛼(𝑡𝛼)𝑛   for every t > 0 and   n ϵ N. 

If  t > 0  and ε ϵ (0,1)  are given , we choose 𝜇 in the interval (k,1) such that 

𝑇𝑖=𝑛+1
∞

 
(1 − 𝜇𝑞)𝑖) > 1 − ε and  𝛿 =

𝐾

𝜇 
 . As 𝛿 𝜀 (0,1),  we can find 𝑛1(= 𝑛1(𝑡)) such that 

∑ 𝛿𝑛  ∞
𝑛=𝑛1 < 𝑡.  

condition (2.1) implies that, for all s > 0, 

𝑀(𝑔𝑥1,   𝑔𝑥2,𝑘𝑠) = 𝑀(𝐹(𝑥0, 𝑦0), 𝐹(𝑥1, 𝑦1), 𝑠)                                       

              ≥ 𝑀𝑖𝑛{𝑀(𝑔𝑥0,   𝑔𝑥1, 𝑆),𝑀(𝑔𝑦0, 𝑔𝑦1, 𝑠)}  

𝑀(𝑔𝑦1,   𝑔𝑦2,𝑘𝑠) = 𝑀(𝐹(𝑦0, 𝑥0), 𝐹(𝑦1,  𝑥1), 𝑠)                       

                  ≥ 𝑀𝑖𝑛{𝑀(𝑔𝑦0, 𝑔𝑦1, 𝑠),𝑀(𝑔𝑥0, 𝑔𝑥1, 𝑠)} 

𝑀(𝑔𝑥2,   𝑔𝑥3 ,𝑘𝑠) = 𝑀(𝐹(𝑥1, 𝑦1  ), 𝐹(𝑥2,𝑦2), 𝑠) 

       ≥ 𝑀𝑖𝑛{𝑀(𝑔𝑥1,   𝑔𝑥2),𝑀(𝑔𝑦1,𝑔𝑦2), 𝑠} 

𝑀(𝑔𝑦2,   𝑔𝑦3,𝑘𝑠) = 𝑀(𝐹(𝑦1, 𝑥1), 𝐹(𝑦2, 𝑥2), 𝑠)   

      ≥ 𝑀𝑖𝑛{𝑀(𝑔𝑦1,   𝑔𝑦2, 𝑆),𝑀(𝑔𝑥1 ,𝑔𝑥2, 𝑆)} 

It follows by including that 

𝑀(𝑔𝑥𝑛,   𝑔𝑥𝑛+1, 𝑘
𝑛𝑆) ≥ 𝑀𝑖𝑛{𝑀(𝑔𝑥0, 𝑔𝑥1, 𝑆),𝑀(𝑔𝑦0,𝑔𝑦1, 𝑆),𝑀(𝑔𝑥1, 𝑔𝑥2, 𝑆),𝑀(𝑔𝑦1,𝑔𝑦2, 𝑆)} 

𝑀(𝑔𝑦𝑛,   𝑔𝑦𝑛+1, 𝑘
𝑛𝑆) ≥

𝑀𝑖𝑛{𝑀(𝑔𝑦0, 𝑔𝑦1, 𝑆),𝑀(𝑔𝑥1,𝑔𝑥2, 𝑆),𝑀(𝑔𝑦1, 𝑔𝑦2, 𝑆),𝑀(𝑔𝑥1,𝑔𝑥2, 𝑆)} 
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for all n ϵ N. Then for all x ϵ X and n ϵ N we obtain 

𝑀(𝑔𝑥𝑛, 𝑔𝑥𝑛+𝑚, 𝑡) ≥ 𝑀(𝑔𝑥𝑛, 𝑔𝑥𝑛+,𝑚, ∑ 𝛿𝑖∞
𝑥=𝑛1 )  

        ≥ 𝑀(𝑔𝑥𝑛, 𝑔𝑥𝑛+𝑚 ∑ 𝛿𝑖)𝑛+𝑚−1
𝑖=𝑛  

                              ≥ 𝑇𝑖=𝑛
𝑛+𝑚−1 𝑀(𝑔𝑥𝑖 , 𝑔𝑥𝑖+1, 𝑆

𝑖 ) 

≥ 𝑇𝑖=𝑛
𝑛+𝑚−1

(

 𝑀𝑖𝑛

{
 

  𝑀 (𝑔𝑥0, 𝑔𝑥1,
1

𝜇𝑖
) ,𝑀 (𝑔𝑦0, 𝑔𝑦1,

1

𝜇𝑖
)

𝑀 (𝑔𝑥1, 𝑔𝑥2,
1

𝜇𝑖
) ,𝑀 (𝑔𝑦1, 𝑔𝑦2,

1

𝜇𝑖
)
}
 

 

)

  

                              ≥ 𝑇𝑖=𝑛
𝑛+𝑚−1(1 − 𝛼𝜇𝛼𝑖) 

If we choose l0 ϵ N such that 𝛼𝜇𝑎𝑙0   ≤ 𝜇𝑎,  then   

 1 − 𝛼(𝜇𝑎)𝑛+𝑙0  ≥ 1 − ( 𝜇𝑎  )𝑛+1   for all n, 

Thus  𝑀(𝑔𝑥𝑛+𝑙0 , 𝑔𝑥𝑛+𝑙0+𝑚, 𝑡) ≥   𝑇𝑙=𝑛+1   
∞ (1 − (𝜇𝑎)𝑖 > 1 − 𝜀, 

for every n ≥  n1 and m ϵ N, hence {𝑔𝑥𝑛 } is a Cauchy sequence. 

Similarly one can show that {𝑔𝑦𝑛 } is a Cauchy sequence. 

Step 2. We prove that g and F have a coupled coincidence point. Since X  is complete, thus 

exist x, y ϵ x such that lim𝑛→∞ 𝐹(𝑥𝑛,𝑦𝑛) = lim𝑛→∞ 𝑔(𝑥𝑛) = 𝑥, lim𝑛→∞ 𝐹(𝑦𝑛,𝑥𝑛) =

lim𝑛→∞ 𝑔(𝑦𝑛) = 𝑦 

Since F & g are compatible. 

lim
𝑛→∞

(𝑔𝐹(𝑥𝑛,𝑦𝑛) , 𝐹(𝑔(𝑥𝑛), 𝑔(𝑦𝑛)), 𝑡) = 1, 

lim
𝑛→∞

(𝑔𝐹(𝑦𝑛,𝑥𝑛) , 𝐹(𝑔(𝑦𝑛), 𝑔(𝑥𝑛)), 𝑡) = 1. 

for all t > 0. Next we prove that 

𝑔(𝑥) = 𝐹(𝑥, 𝑦), 𝑔(𝑦) = 𝐹(𝑦, 𝑥) 

from the continuity of  g it follows that lim𝑛→∞ 𝑔𝑔𝑥𝑛 = 𝑔𝑥  and  lim𝑛→∞ 𝑔𝑔𝑦𝑛 ` = 𝑔𝑦  as F 

and g comments. 
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𝑔𝑔𝑥𝑛+1 = 𝑔𝐹(𝑥𝑛, 𝑦𝑛) = 𝐹(𝑔𝑥𝑛,𝑔𝑦𝑛)  and  𝑔𝑔𝑦𝑛+1 = 𝑔𝐹(𝑦𝑛, 𝑥𝑛) = 𝐹(𝑔𝑦𝑛,𝑔𝑥𝑛) 

Consequently, for all t > 0 and n ϵ N, 

𝑀(𝑔𝑥, 𝐹(𝑥, 𝑦), 𝑘𝑡) ≥ 𝑀(𝑔𝑔𝑥𝑛+1,𝐹(𝑥, 𝑦), 𝑘𝑡),𝑀(𝑔𝑥, 𝑔𝑔𝑥𝑛+1 ,𝑘 𝑡) 

                                                        = 𝑀(𝑔𝐹(𝑥𝑛, 𝑦𝑛), 𝐹(𝑥, 𝑦), 𝑘𝑡),𝑀(𝑔𝑥, 𝑔𝑔𝑥𝑛+1,𝑘𝑡) 

                                                       

≥ 𝑀𝑖𝑛 {
𝑀(𝑔𝐹(𝑥𝑛,𝑦𝑛  ), 𝐹(𝑔𝑥𝑛,𝑔𝑦𝑛  ), 𝑘𝑡),𝑀(𝑔𝑔𝑥𝑛,𝑔𝑥, 𝑘𝑡)

𝑀(𝑔𝑔𝑦𝑛,𝑔𝑦, 𝑘𝑡),𝑀(𝑔𝑥, 𝑔𝑔𝑥𝑛+1, 𝑘 𝑡)
} 

 

Since g & F are compatible with the continuity of g, we get 𝑀(𝑔𝑥, 𝐹(𝑥, 𝑦), 𝑘𝑡) ≥ 1  which 

implies that 𝑔𝑥 = 𝐹(𝑥, 𝑦). 

Similarly  we can get 𝑔𝑦 = 𝐹(𝑦, 𝑥). 

Step 3. We prove that𝑔𝑥 = 𝑦 and 𝑔𝑦 = 𝑥. 

Obtained from 

𝑀(𝑔𝑥, 𝑔𝑦𝑛+1, 𝑘𝑡) = 𝑀(𝐹(𝑥, 𝑦), 𝐹(𝑦𝑛,𝑥𝑛), 

Letting n→∞ in the inequality 

𝑀(𝑔𝑥, 𝑔𝑦𝑛+1, 𝑘𝑡) ≥ 𝑀𝑖𝑛{(𝑔𝑥, 𝑔𝑦𝑛,𝑡),𝑀(𝑔𝑦, 𝑔𝑥𝑛,𝑡) 

We get, 𝑀(𝑔𝑥, 𝑦, 𝑘𝑡) ≥ 𝑀𝑖𝑛{𝑀(𝑔𝑥, 𝑦, 𝑡),𝑀(𝑔𝑦, 𝑥, 𝑡)} 

and similarly we can get, 

𝑀(𝑔𝑦, 𝑥, 𝑘𝑡) ≥ 𝑀𝑖𝑛{𝑀(𝑔𝑥, 𝑦, 𝑡),𝑀(𝑔𝑦, 𝑥, 𝑡)} 

Thus,         𝑀𝑖𝑛{𝑀(𝑔𝑥, 𝑦, 𝑡), 𝑀(𝑔𝑦, 𝑥, 𝑡)} ≥ 𝑀𝑖𝑛 {𝑀 (𝑔𝑥, 𝑦,
𝑡

𝑘𝑛
) ,𝑀 (𝑔𝑦, 𝑥,

1

𝑘𝑛
 )}. 

By this way, we can get for all n ϵ N 

𝑀𝑖𝑛{𝑀(𝑔𝑥, 𝑦, 𝑡), 𝑀(𝑔𝑦, 𝑥, 𝑡)} = 1 for all t > 0. 
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It follows that 𝑀(𝑔𝑥, 𝑦, 𝑡) = 𝑀(𝑔𝑦, 𝑥, 𝑡) = 1 for t > 0. 

We can get  that 𝑔𝑥 = 𝑦 𝑎𝑛𝑑 𝑔𝑦 = 𝑥, as claimed. 

Step 4. We prove that 𝑥 = 𝑦. 

Indeed from                𝑀(𝑔𝑥𝑛+1,𝑔𝑦𝑛+1, 𝑘𝑡) = 𝑀(𝐹(𝑥𝑛,𝑦𝑛), 𝐹(𝑦𝑛,𝑥𝑛), 𝑘𝑡 

             ≥ 𝑀𝑖𝑛{𝑀(𝑔𝑥𝑛,𝑔𝑦𝑛,𝑡),𝑀(𝑔𝑦𝑛,𝑔𝑥𝑛, 𝑡),𝑀(𝑔𝑦𝑛,𝑔𝑥𝑛,𝑡) 

                                   𝑀(𝑥, 𝑦, 𝑘𝑡) ≥ 𝑀𝑖𝑛{𝑀(𝑥, 𝑦, 𝑡),𝑀(𝑦, 𝑥, 𝑡)                                      (𝑡 > 0) 

It follows that 𝑀(𝑥, 𝑦, 𝑘𝑡) ≥ 𝑀(𝑥, 𝑦, 𝑡) for all t > 0 and so x = y 

Step 5. We prove that the fixed point is unique. Let z , w be common fixed points for F  and 

g. Then from (2.1) we obtain 

𝑀(𝐹(𝑧, 𝑧), 𝐹(𝑤,𝑤), 𝑘𝑡) ≥ 𝑀𝑖𝑛{𝑀(𝑔𝑧, 𝑔𝑤, 𝑡),𝑀(𝑔𝑧, 𝑔𝑤, 𝑡),𝑀(𝑔𝑧, 𝑔𝑤, 𝑡),𝑀(𝑔𝑧, 𝑔𝑤, 𝑡) (𝑡

> 0) 

That is  𝑀(𝑧,𝑤, 𝑘𝑡) ≥ 𝑀(𝑧, 𝑤, 𝑡) for all  t > 0, implying𝑧 = 𝑤. 

Our next theorem shows that ,if the t-norm T is of Hadzic- type, then the conditions 

sup𝑡>0 𝑡
𝛼 (1 − 𝑀(𝑔𝑥0,𝐹(𝑥0, 𝑦0), 𝑡)) < ∞  and sup𝑡>0 𝑡

𝛼 (1 − 𝑀(𝑔𝑦0,𝐹(𝑦0, 𝑥0), 𝑡)) < ∞ 

Can be dropped. 

Theorem 3.2: Let (X, M, T) be a complete fuzzy metric space satisfying (FM-6) with 𝑇 ∈ 𝐻. 

Let F : X × X → X  and g : X → X be two mappings such that, for some k ϵ (0,1), 

M(F(x, y), F(u, v), Kt) ≥ Min{M(gx, gu, t),M(gy, gv, t),M(gx, gv, t),M(gy, gu, t)}. 

for all  x, y, u ,v ϵ X , t > 0. Suppose that F ( X × X )   g(x) and  g  is continuous and 

commutes with F. Then F and g have a unique common fixed point in X. 

Proof: We only have to verify step 1 in Theorem 2.3, that is to prove that 

{𝑔𝑥𝑛} 𝑎𝑛𝑑 {𝑔𝑦𝑛}are Cauchy  sequence. 

Let 𝑡 > 0 𝑎𝑛𝑑 𝜀 ∈ (0,1) be given. Since T is a t-norm of Hadzic- type then exists 𝜇 > 0 such 

that 𝑇𝑘(1 − 𝜇) > 1 − 𝜀 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑘 ∈ 𝑁. 
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By (FM-6), we can find 𝑠 > 0   such that 

𝑀(𝑔𝑥0, 𝑔𝑥1, 𝑠) > 1 − 𝜇     𝑎𝑛𝑑        𝑀(𝑔𝑦0, 𝑔𝑦1, 𝑠) > 1 − 𝜇 

Let 𝑛0 ∈ 𝑁 be such that 𝑡 > ∑ 𝑘𝑖𝑠.∞
𝑖=𝑛0

 

As in Step 1 in the proof of theorem 2.3 it can be proved that 

𝑀(𝑔𝑥𝑛,   𝑔𝑥𝑛+1, 𝑘
𝑛𝑆) ≥ 𝑀𝑖𝑛 {

𝑀(𝑔𝑥0, 𝑔𝑥1, 𝑆),𝑀(𝑔𝑦0,𝑔𝑦1, 𝑆)

𝑀(𝑔𝑥1, 𝑔𝑥2, 𝑆),𝑀(𝑔𝑦1,𝑔𝑦2, 𝑆)
} > 1 − 𝜇 

and              𝑀(𝑔𝑦𝑛,   𝑔𝑦𝑛+1, 𝑘
𝑛𝑆) ≥ 𝑀𝑖𝑛 {

𝑀(𝑔𝑦0, 𝑔𝑦1, 𝑆),𝑀(𝑔𝑥0,𝑔𝑥1, 𝑆)

𝑀(𝑔𝑦1, 𝑔𝑦2, 𝑆),𝑀(𝑔𝑥1,𝑔𝑥2, 𝑆)
} > 1 − 𝜇 

for all 𝑛 ∈ 𝑁. Therefore, for all 𝑛 ≥ 𝑛0 and all 𝑚 ∈ 𝑁the following inequalities hold: 

𝑀(𝑔𝑥𝑛,   𝑔𝑥𝑛+1, 𝑡) ≥ 𝑀(𝑔𝑥𝑛,   𝑔𝑥𝑛+1, ∑ 𝑘𝑖𝑆

∞

𝑖=𝑛1

) ≥ 𝑀(𝑔𝑥𝑛,   𝑔𝑥𝑛+𝑚, ∑ 𝑘𝑖𝑆

𝑛+𝑚−1

𝑖=𝑛

) 

         ≥ 𝑇𝑖=𝑛
𝑛+𝑚−1 𝑀(𝑔𝑥𝑖 , 𝑔𝑥𝑖+1, 𝑘

𝑖𝑠) ≥ 𝑇𝑖=𝑛
𝑛+𝑚−1(1 − 𝜇) > 1 − 𝜀. 
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