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Abstract 

An Application of Cubic spline and piecewise interpolation formula was applied to compute heat transfer across 

the thermocline depth of three lakes in the study area of Auchi in Edo State of Nigeria. Eight temperature values 

each for depths 1m to 8m were collected from the lakes. Graphs of these temperatures against the depths were 

plotted. Cubic spline interpolation equation was modelled. MAPLE 15 software was used to simulate the 

modelled equation using the values of temperatures and depths in order to obtain the unknown coefficients of the 

variables in the 21 new equations. Three optimal equations were found to represent the thermocline depth for the 

three lakes. These equations were used to obtain the thermocline gradients (
𝑑𝑇

𝑑𝑧
) and subsequently to compute 

the heat flux across the thermocline for the three lakes. Similar methods were used for cubic piecewise 

interpolation. The analytical and numerical results obtained for the computation of thermocline depth and 

temperature were presented for the three lakes with relative error analysis. Absolute Relative Error|∈𝑎𝑆| for 

Analytic solution with Cubic Spline Interpolation was 0.41%, 0.70% and 0.74%, while Absolute Relative 

Error|∈𝑎𝑃| for Analytic solution with Cubic Piecewise Interpolation are 0.82%, 2.11% and 1.48% respectively. 

Comparative analysis showed that the results obtained with cubic spline interpolation method had less 

percentage error than the cubic piecewise interpolation method. 

Keywords: Cubic spline, Interpolation, Heat transfer, Thermocline 

 

1.  Introduction 

In the mathematical field of numerical analysis, interpolation is a method of constructing new data point within 

the range of a discrete set of known data points. In a more informal language, interpolation means a guess at 

what happens between two values already known. In Engineering and Environmental sciences application, data 

collected from the field are usually discrete, therefore a more analytically controlled function that fits the field 

data is desirable and the process of estimating the outcomes in between these desirable data points is achieved 

through interpolation (Crochiere and Rabiner, 1983). 

There are two main uses of interpolation. The first use is in reconstructing the function 𝑓(𝑥) when it is not 

given explicitly and/or only the values of 𝑓(𝑥) and certain order derivatives at a set of points, called nodes are 

known. Secondly interpolation is used to replace the function 𝑓(𝑥) by an interpolating polynomial 𝑝(𝑥) so 

that many common operations like the determination of roots, differentiation, integration etc. which are intended 

for the function 𝑓(𝑥) may be performed using the interpolant 𝑝(𝑥) (Jain et  al.; 2007) 

Spline interpolation is a form of interpolation where the interpolant is a special type of piecewise polynomial 

called spline. Spline interpolation is often preferred over polynomial interpolation because the interpolation error 

can be made small even when using low degree polynomials for the spline (Hazewinkel, 2001). Spline 

interpolation avoids the problem of Runge’s phenomenon, in which oscillation occurs between points when 

interpolating using high degree polynomials (Kim, 2005; Turner, 1989). 

Cubic Spline interpolation is a special case of spline interpolation that is used very often to avoid the problem of 

Runge’s phenomenon. This method gives an interpolating polynomial that is smoother and has smaller error than 

other interpolating polynomials such as Lagrange polynomial and Newton polynomial (Jain et al.; 2007). 

Current literatures exist showing the application of Spline and cubic interpolation. The optimal point for a given 

group of oil wells was found by Jamal (2001) using the application of Lagrange multiplier, an approach that 

depend on the functional relationship between oil production and gas injection rates. Jamal (2001) used two type 

of function (quadratic and rational functions) to fit the gas injection against oil production rate. Ntherful (2013) 
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worked on optimal Spline based Gas-left Allocation using Lagrange’s multiplier in an oil production field. After 

fitting the gas injection and oil output rates of the wells with cubic spline functions, the optimal rates of gas 

injection and oil output in each of the wells are determined using the Lagrange multiplier method. It was found 

that the total optimum oil production rate for data fitting with spline based function was higher than the total 

optimum oil production rate for data fitting with rational function. The optimal value of the spline based function 

was found to be twice that of rational function. 

Nelson et al. (1997), worked on parametric studies on thermally stratified chilled water storage system. In their 

work, they analyze the stratification decay in thermally stratified vertical cylindrical cool storage system using a 

one dimensional conjugate heat conduction model. They found out that the thermoclines degrade due to the heat 

transfer from the ambient, thermal diffusion in the storage tank, axial wall conduction and mixing due to 

admission of the fluid in the storage tank during charging and discharging. Another application of heat transfer 

was found in the construction of a natural cubic spline of the heat capacity of gadolinium using experimental 

measurement at fixed values of magnetic induction and the least square curve fitting was used to obtain the 

approximation function of the heat capacity of gadolinium (Siddikov, n.d). 

This research work focuses on the application of spline cubic interpolation and piecewise cubic interpolation on 

heat transfer in selected lakes. The thermal stratification of the lakes informs the temperature difference at each 

layer of the lake.  However, the values of the interval between the thermocline depth, temperatures at these 

intervals and the heat flux will be used to derive equations using cubic spline interpolation and piecewise cubic 

interpolation. The results from these equations will then be used to obtain the thermocline depths, thermocline 

temperatures and the thermocline heat flux for the selected lakes. A comparative analysis of the values obtained 

using the cubic spline interpolation and piecewise cubic interpolation will be made to determine the method with 

the least percentage error.  

 

2. An Overview of Approximation and Interpolation Theory 

Curve fitting is the process of finding a curve that could best fit a given set of data (Won et al.; 2005). There are 

two approaches of fitting a curve from a set of data points. The first approach called collocation is the case where 

the curve is made to pass through all data points. This approach is used either when the data is known to be 

accurate or the data are generated from the evaluation of some complicated function at discrete set of points. 

Such function could be polynomial, trigonometric or exponential functions. The second approach is when a 

given curve is made to represent the general trend of the data. This approach is useful when there are more data 

points than the number of unknown coefficient or when the data appear to have a significant error or noise 

(Singiresu, 2002). 

Interpolation is used to estimate the value of a function between known data points without knowing the actual 

function. Two main broad categories of interpolation exists; global and piecewise interpolation (Henrici, 1982). 

Global interpolation methods use a single equation that maps all the data points into an 𝑛th order polynomial. 

These methods result in smooth curves, but in many cases they are prone to severe oscillation and overshoot at 

intermediate points. Piecewise interpolation method uses a polynomial of low degree between each pair of 

known data points. If a first degree polynomial is used, it is called linear interpolation, for second and third 

degree polynomial; it is called quadratic and cubic spline respectively. The higher the degree of the spline, the 

smoother the curve spline of degree 𝑚, will have continuous derivative up to (𝑚 − 1) at the data points. 

Interpolating a set of data points can be done using polynomial, spline function or Fourier series. However 

polynomial interpolation is commonly used and many numerical methods are based on polynomial 

approximations. 

For a given set of (𝑁 + 1)  data points (𝑥𝑜 , 𝑦𝑜), (𝑥1, 𝑦1), … , (𝑥𝑁 , 𝑦𝑁), it is of interest to find 𝑁𝑡ℎ  order 

polynomial function that can match these data points. The 𝑁𝑡ℎ polynomial function is given as  

𝑃𝑁 = 𝑎𝑜 + 𝑎1𝑥 + 𝑎2𝑥2+ .  .  . +𝑎𝑁𝑥𝑁                               (2) 

The coefficients can be obtained by solving a set of algebraic equations 
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𝑎𝑜 + 𝑎1𝑥𝑜 + 𝑎2𝑥𝑜
2+ .  .  . +𝑎𝑁𝑥𝑜

𝑁 = 𝑦𝑜 

𝑎𝑜 + 𝑎1𝑥1 + 𝑎2𝑥1
2+ .  .  . +𝑎𝑁𝑥1

𝑁 = 𝑦1 

⋮ ⋮ ⋮ ⋮ ⋮ 

𝑎𝑜 + 𝑎𝑁𝑥𝑁 + 𝑎2𝑥𝑁
2 + .  .  . +𝑎𝑁𝑥𝑁

𝑁 = 𝑦𝑁 

As the number of data points increases, so also that of the unknown variables and equations, the resulting system 

of equations may not be so easy to solve. However, there are a number of alternative forms of expressing an 

interpolating polynomial beyond the familiar format stated above. Among them are Lagrange, Newton’s forward 

and backward difference, and Hermite interpolations. 

According to Singiresu (2002), the errors of a single polynomial tend to increase drastically as its order 𝑛 

becomes large. The higher order polynomial often introduces unnecessary oscillation and wiggles and due to this, 

polynomial interpolation will not be always accurate. To avoid this, information from more data points will be 

used and at the same time keeping the function true to the data behaviour is the objective of spline interpolation. 

The most common spline and piecewise interpolation used are linear, quadratic and cubic respectively. To obtain 

a smoother curve, cubic splines are frequently recommended, because they provide the simplest representation 

that exhibits the desired appearance of smoothness. They are generally well behaved and continuous up to the 

second order derivative at the data points. Even though cubic splines are less prone to oscillation or overshooting 

due to instability inherent in higher order polynomial than global polynomial equations, they do not prevent it. 

Thus, to avoid these oscillations, it is common to divide the interval into sub-interval and approximate the 

function using low degree polynomial on each sub-interval (Kruger, n.d).  

 

2.1 Mathematical Treatments  

Give a function 𝑓 on [𝑎, 𝑏] and nodes 𝑎 = 𝑥0 < 𝑥1 <. . . < 𝑥𝑛 = 𝑏, a cubic spline interpolant 𝑓 satisfied the 

following conditions (Kim, 2005 and Jain et al. 2007): 

1. 𝑓 is a cubic polynomial on each subinterval [𝑥𝑖 , 𝑥𝑖+1] 

2. 𝑆𝑖(𝑥𝑖) = 𝑓𝑖(𝑥𝑖)  𝑓𝑜𝑟 𝑖 = 0,1,2, . . 𝑛   (i.e the spline matches function values) 

3. 𝑆𝑖(𝑥𝑖+1) = 𝑆𝑖+1(𝑥𝑖+1) = 𝑓𝑖+1 for 𝑖 = 0,1, … . 𝑛 − 2  (i.e the spline is continuous) 

4. 𝑆𝑖
′(𝑥𝑖+1) = 𝑆𝑖+1

′ (𝑥𝑖+1) for 𝑖 = 0,1, … . 𝑛 − 2 (the spline 𝐶1) 

5. 𝑆𝑖
′′(𝑥𝑖+1) = 𝑆𝑖+1

′′ (𝑥𝑖+1) for 𝑖 = 0,1, … . . 𝑛 − 2 (i.e the spline 𝐶2) 

6. (i).𝑆𝑖
′′(𝑥0) = 𝑆𝑖

𝑖𝑖(𝑥𝑛) = 0 (Natural Spline resulting from free boundary condition). 

(ii). 𝑆𝑖
′(𝑥0) = 𝑓𝑖

′(𝑥0) 𝑎𝑛𝑑 𝑆𝑖
′(𝑥𝑛) = 𝑓𝑖

′(𝑥𝑛)  (Clamped end condition resulting from clamped boundary 

condition) 

In the derivation of the cubic spline interpolation polynomial, we follow the above conditions one after the other. 

The objective of the cubic spline is to derive a third-order polynomial for each interval between knots as 

represented by a general cubic spline polynomial function given below 

𝑆𝑖(𝑥) = 𝑎𝑖 + 𝑏𝑖(𝑥 − 𝑥𝑖) + 𝑐𝑖(𝑥 − 𝑥𝑖)
2 + 𝑑𝑖(𝑥 − 𝑥𝑖)3       (2.1) 

The first condition is that the cubic spline must pass through all data points.  

Hence we have 

𝑓𝑖 = 𝑎𝑖 + 𝑏𝑖(𝑥 − 𝑥𝑖) + 𝑐𝑖(𝑥 − 𝑥𝑖)2 + 𝑑𝑖(𝑥 − 𝑥𝑖)
3       (2.2𝑎) 

⟹ 𝑓𝑖 = 𝑎𝑖 + 𝑏𝑖(𝑥𝑖 − 𝑥𝑖) + 𝑐𝑖(𝑥𝑖 − 𝑥𝑖)
2 + 𝑑𝑖(𝑥𝑖 − 𝑥𝑖)

3      (2.2𝑏) 

Hence 𝑓𝑖 = 𝑎𝑖              (2.3) 
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Therefore the constant in each cubic must be equal to the value of the dependent variable at the beginning of the 

interval. Substituting (2.3) in (2.1), we have  

𝑆𝑖(𝑥) = 𝑓𝑖 + 𝑏𝑖(𝑥 − 𝑥𝑖) + 𝑐𝑖(𝑥 − 𝑥𝑖)2 + 𝑑𝑖(𝑥 − 𝑥𝑖)
3      (2.4) 

Next we apply the third condition that each of the cubic spline must join the knot.  

For (𝑖 + 1) knot,we have 

𝑆𝑖+1(𝑥) = 𝑓𝑖 + 𝑏𝑖(𝑥𝑖+1 − 𝑥𝑖) + 𝑐𝑖(𝑥𝑖+1 − 𝑥𝑖)
2 + 𝑑𝑖(𝑥𝑖+1 − 𝑥𝑖)3 

⟹ 𝑓𝑖+1 = 𝑓𝑖 + 𝑏𝑖ℎ𝑖 + 𝑐𝑖ℎ𝑖
2 + 𝑑𝑖ℎ𝑖

3
          (2.5) 

𝑤ℎ𝑒𝑟𝑒 ℎ𝑖 = 𝑥𝑖+1 − 𝑥𝑖 

Applying the fourth condition, the first derivation at the interior nodes must be equal.  

Hence differentiating (2.4)yields 

𝑆𝑖
′(𝑥) = 𝑏𝑖 + 2𝑐𝑖(𝑥 − 𝑥𝑖) + 3𝑑𝑖(𝑥 − 𝑥𝑖)2          (2.6)  

The equivalent of the derivative at the interior node (𝑖 + 1) is given as  

𝑏𝑖 + 2𝑐𝑖ℎ𝑖 + 3𝑑𝑖ℎ𝑖
2 = 𝑏𝑖+1           (2.7) 

Applying the fifth condition, the second derivative at the interior nodes must also be equal.  

Hence differentiating equation (2.6) yields 

 

𝑆𝑖
′′(𝑥) = 2𝑐𝑖 + 6𝑑𝑖(𝑥 − 𝑥𝑖)           (2.8) 

The equivalent of the second derivative at the interior node (𝑖 + 1)is given as 

𝑐𝑖 + 3 𝑑𝑖ℎ𝑖 = 𝑐𝑖+1             (2.9) 

Solving (2.9)for 𝑑𝑖 , yields 

𝑑𝑖 =
𝐶𝑖+1−𝐶𝑖

3ℎ𝑖
              (2.10) 

Substituting (2.10) into (2.5) yields 

𝑓𝑖+1 = 𝑓𝑖 + 𝑏𝑖ℎ𝑖 +
ℎ𝑖

2

3
(2𝑐𝑖 + 𝑐𝑖+1)          (2.11) 

Substituting (2.10) into (2.7) yields 

𝑏𝑖+1 = 𝑏𝑖 + ℎ𝑖(𝑐𝑖 + 𝑐𝑖+1)           (2.12) 

Equation (2.11) can be solved for 𝑏𝑖 to get 

𝑏𝑖 =
𝑓𝑖+1−𝑓𝑖

ℎ𝑖
−

ℎ𝑖

3
(2𝑐𝑖+𝑐𝑖+1),            (2.13) 

Reducing the index by 1, equation (2.12) and (2.13)can be rewritten as 
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𝑏𝑖−1 =
𝑓𝑖−𝑓𝑖−1

ℎ𝑖−1
−

ℎ𝑖−1

3
(2𝑐𝑖−1+𝑐𝑖),          (2.14) 

𝑏𝑖 = 𝑏𝑖−1 + ℎ𝑖−1(𝑐𝑖−1+𝑐𝑖)           (2.15) 

Substituting equation (2.13) and (2.14) in (2.15) yields 

𝑓𝑖+1 − 𝑓𝑖

ℎ𝑖

−
ℎ𝑖

3
(2𝑐𝑖+𝑐𝑖+1) =

𝑓𝑖 − 𝑓𝑖−1

ℎ𝑖−1

−
ℎ𝑖−1

3
(2𝑐𝑖−1+𝑐𝑖) + ℎ𝑖−1(𝑐𝑖−1+𝑐𝑖) 

Further simplification yields   

ℎ𝑖−1𝑐𝑖−1 + 2(ℎ𝑖−1 + ℎ𝑖)𝑐𝑖 + ℎ𝑖𝑐𝑖+1 = 3 (
𝑓𝑖+1−𝑓𝑖

ℎ𝑖
) − 3 (

𝑓𝑖−𝑓𝑖−1

ℎ𝑖−1
)    (2.16) 

Using divided difference notation,𝑓[𝑥𝑖 , 𝑥𝑗] =
𝑓𝑖−𝑓𝑗

𝑥𝑖−𝑥𝑗
 

Equation (2.16)can be written as  

ℎ𝑖−1𝑐𝑖−1 + 2(ℎ𝑖−1 + ℎ𝑖)𝑐𝑖 + ℎ𝑖𝑐𝑖+1 = 3(𝑓[𝑥𝑖+1, 𝑥𝑖] − 𝑓[𝑥𝑖 , 𝑥𝑖−1])    (2.17) 

Equation (2.17)  can be written for the interior knots, 𝑖 = 2, 3,   .  .  . , 𝑛 − 2 , which result in (𝑛 − 3) 

simultaneous tridiagonal equations with (𝑛 − 1)  unknown coefficient 𝑐1, 𝑐2,   .  .  . , 𝑐𝑛−1 . Using the last 

condition (boundary condition), the second derivative at the first node (that is equation (2.8)) can be set to zero, 

given as  

 

𝑆𝑖
′′(𝑥) = 2𝑐𝑖 + 6𝑑𝑖(𝑥 − 𝑥𝑖) = 0 ⟹ 𝑐𝑖 = 0        (2.18) 

Similarly the same evaluation can be made at the last node, given as  

𝑆𝑛−1
′′ (𝑥𝑛) = 2𝑐 𝑛−1 + 6𝑑𝑛−1ℎ𝑛−1 = 0         (2.19) 

Recalling (2.9), equation (2.19) became 

𝑐𝑛−1 + 3𝑑𝑛−1ℎ𝑛−1 = 𝑐𝑛 = 0           (2.20) 

Thus to impose a zero second derivative at the last node, we set 𝑐𝑛 = 0 

Rewriting equation (2.17) in matrix form, we have  

 
 

 

    

    















































































































0

,,3

.

.

.

.

,,3

0

.

.

.
.

1.......

2.....

........

........

........

....2.

.....2

.......1

211

1223

1

3

2

1

1122

3212

2211

nnnn

n

nnnnn xxFxxF

xxFxxF

c

c

c

c

c

hhhh

hhhh

hhhh

           

      (2.21)

 

From (2.20) we can now solve for c’s. Equation (2.10) and (2.13) can then be used to determine the 
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remaining coefficient 𝑏 and 𝑑.  

Alternatively the above scheme for 𝑎𝑖, 𝑏𝑖, 𝑐𝑖 and 𝑑𝑖 can be found by solving a total of  (4𝑛 − 4) equations 

with (4𝑛 − 4) unknowns using matrix method of solving a system of equations. This is gotten from the 

condition 1 through 6 in section 2.1. From conditions 1 and 2, the spline function goes through the first and last 

point of the interval, yielding 2(𝑛 − 1) equations as shown in equations (2.3) and (2.5) respectively. 

Also from condition 4 of section 2, the first derivative is continuous at each interior point, yielding (𝑛 − 2) 

equations as shown in equation(2.6). 

Another condition (the fifth condition) of section 2 requires that the second derivative is continuous at each 

interior point which leads to (𝑛 − 2) equations as shown in equation (2.8). 

The sixth condition of section 2.1, that the second derivative at the end knots is zero yields (
𝑛

4
) equations. 

Finally this gives a total of (4𝑛 − 4) equations with (4𝑛 − 4) unknown. This can be solve using 𝐴𝑥 = 𝑏 as 

shown below 

       
       

 
 

 
 

 

 











































































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(2.22) 

For the purpose of computational advantage, we also use the newton’s divided difference interpolation to obtain 

the interpolating polynomial of cubic piecewise for the three sites as shown in equation (2.22).  

Alternatively we can use the piecewise cubic interpolation formula, given below (Jain et al. 2007)  

𝑃𝑖,3(𝑥) = 𝑙𝑖,𝑜(𝑥)𝑓(𝑥𝑜) + 𝑙𝑖,1(𝑥)𝑓(𝑥𝑖+1) + 𝑙𝑖,2(𝑥)𝑓(𝑥𝑖+2) + 𝑙𝑖,3(𝑥)𝑓(𝑥`𝑖+3)    (2.23) 

where 

𝑙𝑖,𝑜 =
(𝑥−𝑥𝑖+1)(𝑥−𝑥𝑖+2)(𝑥−𝑥𝑖+3)

(𝑥𝑖−𝑥𝑖+1)(𝑥𝑖−𝑥𝑖+2)(𝑥𝑖−𝑥𝑖+3)
,    𝑙𝑖,1 =

(𝑥−𝑥𝑖)(𝑥−𝑥𝑖+2)(𝑥−𝑥𝑖+3)

(𝑥𝑖+1−𝑥𝑖)(𝑥𝑖+1−𝑥𝑖+2)(𝑥𝑖+1−𝑥𝑖+3)
,   𝑙𝑖,2 =

(𝑥−𝑥𝑖)(𝑥−𝑥𝑖+1)(𝑥−𝑥𝑖+3)

(𝑥𝑖+2−𝑥𝑖)(𝑥𝑖+2−𝑥𝑖+1)(𝑥𝑖+2−𝑥𝑖+3)
 

and 𝑙𝑖,3 =
(𝑥−𝑥𝑖)(𝑥−𝑥𝑖+1)(𝑥−𝑥𝑖+2)

(𝑥𝑖+3−𝑥𝑖)(𝑥𝑖+3−𝑥𝑖+1)(𝑥𝑖+3−𝑥𝑖+2)
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For interpolating the polynomial of cubic piecewise, the Newton’s divided difference interpolation formula for 

the solution in term of four points(𝑥0, 𝑓0), (𝑥1, 𝑓1), (𝑥2, 𝑓2), and (𝑥3, 𝑓3) is given as 

𝑓𝑛(𝑥) = 𝑓0 + ∆𝑥0𝑓[𝑥0, 𝑥1] + ∆𝑥0∆𝑥1𝑓[𝑥0, 𝑥1, 𝑥2] + ∆𝑥0∆𝑥1∆𝑥2𝑓[𝑥0, 𝑥1, 𝑥2, 𝑥3]   (2.24) 

where  ∆𝑥0 = 𝑥 − 𝑥0, ∆𝑥1 = 𝑥 − 𝑥1, ∆𝑥2 = 𝑥 − 𝑥2, 𝑓[𝑥0, 𝑥1] =
𝑓(𝑥0)−𝑓(𝑥0)

𝑥1−𝑥0
 

𝑓[𝑥0, 𝑥1, . . . , 𝑥𝑛] =
𝑓[𝑥1, 𝑥2, . . . , 𝑥𝑛] − 𝑓[𝑥0, 𝑥1, . . . , 𝑥𝑛−1]

𝑥𝑛 − 𝑥0

 

2.2 Determination of the Temperature of the thermocline Depth 

The location of the thermocline depth is defined as the inflection point of the temperature-depth curve, that 

is the point at which  
𝑑2𝑇

𝑑𝑧2 = 0 . We calculate the thermocline depth of the lakes in the study area using 
𝑑2𝑇

𝑑𝑧2 = 0 

 

2.3 Determination of heat flux across the thermocline 

 According to Fourier’s law of heat conduction, heat flows from the regions of high temperature to low 

temperature. For the one-dimensional case, this can be expressed mathematically as 𝑞 = −𝑘
𝑑𝑇

𝑑𝑥
 

Where 𝑞(𝑥) = heat flux (𝑤/𝑚2) 𝑘 = coefficient of thermal conductivity 𝑊/(𝑚. 𝑘), 𝑇 = Temperature(𝑘) 

  𝑥 = Distance(𝑚). 

The temperature gradient is important in its own right because it can be used in conjunction with Fourier’s law to 

determine the heat flux across the thermocline. Heat flux is defined as the amount of heat transferred per unit 

area per unit time from or to a surface (John and John, 2008). It is calculated using the formula = −𝛼𝜌𝑐
𝑑𝑇

𝑑𝑧
 , 

where 𝐽 = heat flux[𝐽/(𝑚2. 𝑠)], 𝛼 = an eddy diffusion coefficient (10−3 𝑚2

𝑠
) , 𝜌 = 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 (≅

1000𝑘𝑔

𝑚3 ) 

and 𝑐 = specific heat [≅ 4200𝐽/(𝑘𝑔𝐾)] 

From the twenty one equations (21) obtained (i.e. in this study seven equations each for the three lakes sampled), 

three optimal equations that represents the thermocline depth for the three lakes were chosen. These optimal 

equations were differentiated and used to obtain the thermocline gradient(
𝑑𝑇

𝑑𝑧
). These gradients were substituted 

into the heat flux equation to obtain the values of the heat flux across the thermocline for the three lakes. 

 

2.4 Determination of cubic spline equations using Maple 15 software 

The maple 15 software was launch and it displayed the dialogue box. From the dialog box, access was 

granted into the worksheet. Values of the temperatures and their corresponding depths for the various lakes were 

inputted into the worksheet alongside the degree and end point of the spline interpolation. The entire entries were 

then made to run in order to obtain twenty one cubic spline interpolation equations (seven equations for each 

lake) using the linear Algebra package. 

 

2.5 Absolute Relative Error between the Analytic solution and the two methods 

The absolute relative approximate error a obtained between the analytic solution of the temperature results 

with the Cubic Piecewise Interpolation and Cubic Spline Interpolation error is given below:  
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The error for Analytic solution with the Cubic Spline Interpolation is given by 

 

|∈𝑎𝑆𝑝𝑙𝑖𝑛𝑒| = |
𝑝∗∗(𝑧) − 𝑝(𝑧)

𝑝∗∗(𝑧)
| × 100 

Where 𝑝∗∗(𝑧) = Temperature obtained by Analytic Solution 

𝑝(𝑧) = Temperature estimate obtained by Cubic Spline Interpolation 

 

The error for Analytic solution with the Cubic Piecewise Interpolation is given by 

 

|∈𝑎𝑃𝑖𝑒𝑐𝑒𝑤𝑖𝑠𝑒| = |
𝑝∗∗(𝑧) − 𝑝∗(𝑧)

𝑝∗∗(𝑧)
| × 100 

Where 𝑝∗∗(𝑧) = Temperature obtained by Analytic Solution 

𝑝∗(𝑧) = Temperature estimate obtained by Cubic Piecewise Interpolation  

 

3. Research Method 

3.1 The Study Area 

The study area is Edo State of Nigeria. Edo State is an inland state in western Nigeria. Its capital is Benin 

City. It is bounded in the north and east by Kogi State, in the south by Delta State and in the west by Ondo State. 

The State was created on the 27th August 1991 when Bendel State was split into Edo and Delta State. Three lakes 

were chosen all located in Auchi. Auchi is a town in Edo State, Nigeria. It serves as the administrative 

headquarters of Etsako West Local Government Area. According to the 1991 population census of Nigeria, 

Auchi population was estimated at 42,610. 

 

3.2  Materials 

Table 3.1 Showing Laboratory materials use in the Research work 

S/N Materials/Equipment Description Uses 

1. Laboratory Thermometer Calibrated mercury in glass 

thermometer with a sensitive bulb.   

Measurement of temperature in the water 

body during solar radiation 

2. Calibrated Rope  A rope calibrated in meters with 1m 

for each length was attached to the 

thermometer. 

The calibrated rope was used to determine 

the depth of the water body in the selected 

lake sites. 

3. Maple 15 Software Mathematical symbolic software. Maple software is use in a broad spectrum 

concept from Calculus, Algebra, 

introductory interpolation to higher degree 

of interpolations 

 

3.3  Methodology 

Three lakes were chosen for this research work and they are located around Auchi in Edo State. A mercury 

in glass thermometer was attached to a rope graduated from 1.0m – 8.0m, and lowered into each of these lakes at 

different time. For each lake, the temperature reading at 1m was taken after 10 minutes interval. A similar 
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procedure was adopted for lengths ranging from 2 to 8m depth of the lakes after 10 minutes each 1m for each of 

the lakes. The temperatures and their corresponding depths were recorded. 

In obtaining the cubic piecewise interpolation polynomials, we use the Newton’s divided difference method for 

two sets of points [1,2,3,4]  and [4,5,6,7] in the data from the study area for each site. Also the Thermocline 

depth for each site were also computed. 

 

4.  Results and Discussion 

Table 4.1 shows the results of the values of temperatures at various depths that were determined from the 

three lakes selected for the study around Auchi in Edo State. For each of the lakes the temperature reading at 1 m 

each was taken after 10 minutes interval and their corresponding depths were recorded after 1 m each until a 

depth of 8 m was reached 

 

Table 4.1 Temperature and depth taken for three (3) lakes around Auchi 

Lake 1 Lake 2 Lake 3 

Depth (z) 𝒎 Temperature 

(
0
C) 

Depth (z) 

𝑚 

Temperature 

(
0
C) 

Depth (z) 

𝑚 

Temperature 

(
0
C) 

1.0 30 1.0 35 1.0 34 

2.0 30 2.0 35 2.0 34 

3.0 30 3.0 34 3.0 34 

4.0 28 4.0 32 4.0 30 

5.0 23 5.0 26 5.0 23 

6.0 19 6.0 22 6.0 21 

7.0 18 7.0 21 7.0 20 

8.0 18 8.0 21 8.0 20 

 

Figures 4.1, 4.2 and 4.3 are graphical representation of the analytical results presented in Table 4.1. The 

graph shows plot for the temperature against depth for the three lake site respectively. The graphs shows that 

with increasing depths of lakes there was decreasing temperature. However, the heat transfer vis a vis the 

temperature at the region between 4 and 5 m for the three lakes was highest indicating the region of thermocline 

thickness and thermocline depths for the three lakes. The thermocline depth were found to be 4.7m at 24.50℃ 

for the first lake, 4.6m at 28.50℃ for the second lake and 4.4m at 27℃ for the third lake. Meanwhile, the graphs 

also shows other regions above thermocline thickness known as the epilimnion and the regions below the 

thermocline thickness known as the hypolimnion.    

Table 4.2 shows the summary of Analytical and numerical result obtained from data analyzed from the 

three sites. The thermocline depth for Lake 1, Lake 2 and Lake 3 were found to be 4.73𝑚, 4.64𝑚 and 4.38𝑚 

respectively which indicates that the thermocline depths varies with lakes. In addition, the percentage error 

between the analytical and numerical results for temperature (cubic spline interpolation) were found to be 0.41%, 

0.70% and 0.74% for the three sites respectively. The percentage error between the analytical results for 

temperature and numerical result (cubic piecewise interpolation) were found to be 0.82%, 2.11% and 1.48% for 

Lake 1, Lake 2 and Lake 3 respectively. These errors are indications that cubic spline interpolation have lower 

error than cubic piecewise interpolation for heat transfer across the thermocline depth (cubic case). 
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Figure 4.1 Cubic Spline Interpolation using Natural Boundary Condition for Lake 1 
 

Figure 4.2 Cubic Spline Interpolation using Natural Boundary Condition for Lake 2 
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Table 4.2 Summary of Analytical and Numerical Results  

S/N Descriptions  Lake 1 Lake 2 Lake 3 

1 Thermocline depth (Analytical solution by Graph)  4.7𝑚 4.6𝑚 4.4𝑚 

2 Thermocline depth (by 
𝑑2𝑇

𝑑𝑧2 = 0)  4.73𝑚 4.64𝑚 4.38𝑚 

3 Temperature (Analytical solution by Graph)   
 

24.50℃ 28.50℃ 27.00℃ 

4 Temperature (Cubic Spline Interpolation)  24.44℃ 28.29℃ 27.19℃ 

5 Temperature (Cubic Piecewise Interpolation)  24.34℃ 27.98℃ 26.56℃ 

6 Heat Flux (Heat Transfer)  22,730.42𝐽
/(𝑚2. 𝑠) 

27,632.19𝐽
/(𝑚2. 𝑠) 

4,350.92 𝐽
/(𝑚2. 𝑠) 

7 Absolute Relative Error|∈𝑎𝑆| for Analytic solution with 

Cubic Spline Interpolation 
 0.41 % 0.70 % 0.74 % 

8 Absolute Relative Error|∈𝑎𝑃|for Analytic solution with 

Cubic Piecewise Interpolation 
 0.82 % 2.11 % 1.48 % 

 

The heat flux across the thermocline thickness were also computed to be 22,730.42𝐽/(𝑚2. 𝑠), 27,632.19𝐽/

(𝑚2. 𝑠) and 4,350.92𝐽/(𝑚2. 𝑠) respectively for Lake 1, Lake 2 and Lake 3 respectively. These are indications 

of the amount of heat transfer per unit area per unit time across the thermocline depth. 

 

5.  Conclusion 

The results obtained from this work showed that the thermocline thickness as well as the thermocline depth 

vis-a-vis the heat transfer for the lakes were found to be in the interval of 4.0m and 5.0m depth. The cubic spline 

was derived and the result was use to approximate thermocline depth and temperature. 

T (temp-0C) Thermocline Thickness 

(4.4𝑚, 27℃) 

Thermocline depth 

Epilimnion 

Hypolimnion 

Figure 4.3 Cubic Spline Interpolation using Natural Boundary Condition for Lake 

3 
 

z (Depth-m) 
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The cubic spline interpolation method showed less percentage error when compared to the analytical result, 

while the results obtained from the cubic piecewise interpolation method showed a higher percentage error when 

compared to the analytical results.  

The effective determination of the thermocline depth will enable fishermen to know when to set out to catch 

fishes and also in generating income by the use of aquatic study. Maple software is highly recommended for use 

in handling any constraint of cubic case interpolation problems. Finally cubic spline interpolation method will 

produce better results when use to determined thermocline depth. 
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