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Abstract 

The most important characteristic of a stock or bond is its return or profit. This return is volatile and tomorrow’s 

price is uncertain and must be described by a probability distribution. The purpose of this study was to develop a 

model of stock returns in the Nairobi Securities Exchange (NSE) using the Generalized Autoregressive 

Conditional Heteroscedastic (GARCH) model. Closing prices of Safaricom and Kenya Commercial Bank (KCB) 

were obtained from the NSE for the period January 2011 to October 2014 which formed 1000 observations 

excluding weekends and holidays. Test for normality and stationarity was done using the Shapiro–Wilk test and 

Augmented Dickey Fuller (ADF) respectively. All the return series exhibited, leptokurtosis, volatility clustering 

and negative skewness. The estimation results reveal that GARCH (1, 1) best fits both return series over the 

period of study. 
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1. Introduction 

Modeling stock return volatility has become one of the most aspects of financial markets providing an important 

input for portfolio management, option pricing and market regulation. Volatility is unobservable in financial 

market and it is measured by standard deviations or variance of return which can be directly considered as a 

measure of risk of assets. The choice an investor makes of a portfolio is intended to maximize the expected 

return subject to a risk constraint, or to minimize his risk subject to a return constraint. An efficient model for 

forecasting of an asset’s price volatility provides a starting point for the assessment of investment risk. To price 

an option, one needs to know the volatility of the underlying asset. This can only be achieved through modeling 

the volatility. Volatility also has a great effect on the macro-economy. High volatility beyond a certain threshold 

will increase the risk of investor loses and raise concerns about the stability of the market and the wider economy 

(Hongyu, 2006). 

 

Investing in the NSE has attracted many individuals. This can be evidenced by the number of people who 

showed interest in buying the Safaricom IPO’s during its inception in 2008. Both academicians and practitioners 

recognize that volatility is not directly observable and that financial returns show certain characteristics that are 

specific to financial time series such as volatility clustering and leverage effect (Bollerslev, 1986).  

 

Financial econometricians have developed many time-varying volatility models among them ,the Autoregressive 

Conditional Heteroscedastic (ARCH) model proposed by (Engle, 1982) and its extension, the Generalized 

Autoregressive Conditional Heteroscedastic (GARCH) developed by (Bollerslev, 1986), and (Taylor, 1986) 

which have been applied widely. This study seeks to develop a model of stock returns volatility in the NSE.  

1.1 Objectives of the Study 

The objective of this study is to develop a model for stock returns and apply to selected companies in the NSE.  

 

2. Literature Review 

Various linear and non-linear models have been developed in the literature and extensively applied in practice to 
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describe stock return volatility. (Poterba, 1986) take into account the linear model and specify a stationary AR 

(1) process for volatility of the Standard and Poor, S&P 500 index. Another study by (French, 1987) uses a non-

linear stationary ARIMA (0, 1, 3) model to describe the volatility of the S&P 500 index. Similarly, Schwert 

(1990) and Schwert and Seguin (1990) use a linear AR (12) as an approximation for monthly stock return 

volatility.  

 

Linear time series models however are not robust to describe certain features of a volatility series. For instance 

there are well-defined empirical evidences that stock returns have a tendency to exhibit clusters of outliers 

(Mandelbrot (1963) and Fama (1965), implying that large variances tend to be followed by another large 

variance. They are unable to explain a number of important features common to much financial data, including 

leptokurtosis, volatility clustering, long memory, volatility smile and leverage effects. That is, because the 

assumption of homoscedasticity (or constant variance) is not appropriate when using financial data, and in such 

instances it is preferable to examine patterns that allow the variance to depend upon its history.  

 

Thus such limitations of linear models have motivated many researchers to consider non-linear alternatives. The 

Autoregressive Conditional Heteroscedastic (ARCH) model of   (Engle, 1982), the generalized ARCH (GARCH) 

model of (Bollerslev, 1986) and exponential GARCH (EGARCH) model of (Nelson, 1991)are the common non-

linear models used in finance literature. These ARCH class models have been found to be useful in capturing 

certain non-linear features of financial time series such as heavy tailed distributions and clusters of outliers.  

 

A study by (Akgiray, 1989) uses a GARCH(1,1) model to investigate the time series properties of the stock 

returns and reports GARCH to be the best of several models in describing and forecasting stock market 

volatility. (Anil & Higgins, 1993)investigated the volatility of the conventional ordinary least squares to estimate 

optimal hedge ratio estimates using future contracts. Similarly, (Najand, 1991) examines the relative ability of 

linear and non-linear models to forecast daily S&P 500 futures index volatility. The study finds that non-linear 

GARCH models perform best. (Benoit, 1963) utilized the infinite variance distributions, when considering the 

models for stock market price changes. (Fama, 1965) when modeling stock market prices attributed their 

discrepancies to the possibility of the process having stable innovations and thus fitted an adequate model on this 

basis.  

Markov-Switching models have also been used to capture the volatility dynamics of financial time series. This is 

because they give rise to a plausible interpretation of nonlinearities. Markov switching model of stock returns 

was originally proposed by (Startz, & Nelson, 1989). (Bhar, 2004), among others employ markov switching 

models for the modeling of stock returns.  

There is a significant amount of research on volatility of stock markets of developed countries. For instance, 

(Gary, 2004) applied the GARCH model to the Shanghai Stock Exchange while (Bertram, 2004) modeled 

Australian Stock Exchange using ARCH models. Other studies on these stock markets include (Baudouhat, 

2004)who utilized the GARCH model in analyzing the Nordic financial market integration. (Walter, 2005) 

applied the structural GARCH model to portfolio risk management for the South African equity market as well 

(Hongyu, 2006) who forecasted the volatility of the Chinese stock market using the GARCH-type models. (Elie, 

2012) compared the GARCH model and the EGARCH under three distribution assumptions: the Gaussian, the t-

student and the general error distributions. He showed that the distribution of returns is far from being normally 
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distributed with fat tails and volatility clustering being persistent. (Al-Jafari, 2012) utilized a non-linear 

symmetric GARCH(1,1) model and two non-linear asymmetric models, TARCH(1,1) and EGARCH(1,1) to 

Muscat Securities Market and the empirical findings provide no presence of day-of –the –week effect 

The Sub-Saharan Africa has been under-researched as far as volatility modeling is concerned. Studies carried out 

in the African stock markets include, (Frimpong, 2006)who applied GARCH models to the Ghana Stock 

Exchange. (Brooks, 1997)examined the effect of political change in the South African Stock Market; (Appiah-

Kusi, 1998) investigated the volatility and volatility spillovers in the emerging markets in Africa. More recently, 

(Emenike, 2010) applied the EGARCH model to the Kenyan and Nigerian Stock Market returns. From the 

available literature, the NSE just like other Sub Saharan Africa Equity Markets has been under-researched as far 

as market volatility is concerned and therefore this study contributes to the small literature available on the 

Nairobi Stock Exchange. 

These developments in financial econometrics suggest the use of nonlinear time series structures to model the 

stock market prices and the expected returns. The focus of financial time series modeling has been on the ARCH 

model and its various extensions. However, the ARCH has limitations in that it treats negative and positive 

returns in the same way. It is also very restrictive in parameters and often over predicts the volatility because it 

responds slowly to large shocks. GARCH models have proved adequate in modeling and forecasting volatility. 

GARCH for instance takes into account excess kurtosis i.e. fat tail behavior and volatility clustering which are 

two important characteristics if time series. It also provides accurate forecast of variances and covariance of asset 

return through its ability to model time varying conditional variances.  

 

3. Methodology  

3.1 Data  

The data used in this study comprised Safaricom’s and KCB’s daily closing price over the period January, 2011 

to October, 2014 excluding weekends and public holidays forming a sample of 1000. The daily closing prices 

were obtained NSE. Since the return of an asset is a complete and scale free summary of an investment with 

attractive statistical features, use return series rather than the price series (Campell, Lo, & MacKinlay, 1997).  

 

3.2 Method 

ARCH Model  

ARCH models based on the variance of the error term at time 𝑡 depends on the realized values of the squared 

error terms in previous time periods. The model is specified as 

𝑦𝑡 = 𝜇𝑡  (3.1) 

𝜇𝑡 ∽ 𝑁(0, ℎ𝑡)  (3.2) 

ℎ𝑡 = 𝛼0 + ∑ 𝛼𝑗𝜇𝑡−𝑖
2   (3.3) 

This model is referred to as (𝑞), where 𝑞 refers to the order of the lagged squared returns included in the model. 

If we use 𝐴𝑅𝐶𝐻(1) model it becomes 

ℎ𝑡 = 𝛼0 + 𝛼1 + 𝛼𝑡−1
2   (3.3) 

Since ℎ𝑡 is a conditional variance, its value must always be strictly positive; a negative variance at any point in 

time would be meaningless. To have positive conditional variance estimates, all of the coefficients in the 

conditional variance are usually required to be non-negative. Thus coefficients must be satisfy  𝛼0 ≥ 0 and 

𝛼1 ≥ 0 

GARCH Model 

Bollerslev (1986) and Taylor (1986) developed the 𝐺𝐴𝑅𝐶𝐻(𝑝, 𝑞) model. The model allows the conditional 
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variance of variable to be dependent upon previous lags; first lag of the squared residual from the mean equation 

and present news about the volatility from the previous period which is as follows 

ℎ𝑡 = 𝛼0 + ∑ 𝛼𝑖𝜇𝑡−𝑖
2 + ∑ 𝛽𝑖ℎ𝑡−𝑖         (3.4) 

In the literature most used and simple model is the 𝐺𝐴𝑅𝐶𝐻(1,1) process, for which the conditional variance can 

be written as follows 

 

ℎ𝑡 = 𝛼0 + 𝛼1𝜇𝑡−1
2 + 𝛽1ℎ𝑡−1 (3.5) 

 

Under the hypothesis of covariance stationarity, the unconditional variance ℎ𝑡 can be found by taking the 

unconditional expectation of equation 3.5. 

We find that 

ℎ = 𝛼0 + 𝛼1ℎ + 𝛽1ℎ          (3.6) 

Solving the equation 3.5 we have 

ℎ =
𝛼0

1−𝛼1−𝛽1
           (3.7) 

 

For this unconditional variance to exist, it must be the case that 𝛼1 + 𝛽1 < 1and for it to be positive, we require 

that  𝛼0 > 0 

4. Data Analysis and Results 

4.1 Statistical Analysis 

The daily closing price series are first converted to return series. Let 𝑌𝑡 denote the daily closing price of a stock 

at the end of the day 𝑡, the daily stock return series was generated by 

𝑟𝑡 = 𝑙𝑛
𝑌𝑡

𝑌𝑡−1
           (4.1) 

where  𝑟𝑡  is the return, 𝑌𝑡  is today’s price and 𝑌𝑡−1 is yesterday’s price.  

Stationarity of the return series was checked using unit root test. Lagrange Multiplier (LM) and Ljung-Box 

statistics were used to test for ARCH effects on the squared residuals of the regressed AR (p) process. Under the 

null hypothesis that there is no ARCH effects the LM test statistic equal to 𝑇𝑅2 has asymptotic chi -squared 

distribution with 𝑝 degree of freedom. 

4.2 Results and Discussion 

4.2.1 Data Exploration 

 

 

Figure 4.1: Time series plot of the closing prices 

From Figure 4.1 the closing prices are very irregular with varied degree of fluctuations. The time plots clearly 

show that the mean and variance are not constant, showing non-stationarity of the data.  Series such as these 

cannot be used for further statistical inferences because of their implications (Gujarati, 2004), thus theneed to 

transform them to returns. The plots of daily returns of Safaricom and KCB are presented [Insert Figure 4.2]. 
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The plots for returns are stationary and exhibit no trend and the amplitude vary with time a phenomenon called 

ARCH effects. Volatility clustering is also evident. 

4.2.2 Descriptive Statistics for closing prices and returns 

Table 4.2: Descriptive statistics for prices and returns 

A. Prices KCB Closing price Safaricom Closing price 

Mean 

Median 

Minimum 

Maximum 

Standard deviation 

C.V. 

Skewness 

Ex. kurtosis 

Observations 

22.166 

22.000 

15.500 

33.000 

2.9001 

0.13083 

1.4555 

3.2942 

1000 

1000 

4.8966 

4.8000 

2.7000 

8.1500 

1.1534 

0.23555 

0.32651 

-0.0026444 

1000 

1000 

B.  Returns KCB  returns Safaricom  returns 

Mean 

Median 

Minimum 

Maximum 

Standard deviation 

C.V. 

Skewness 

Ex. kurtosis 

Observations 

-0.00039499 

0.00000 

-0.18540 

0.093930 

0.021025 

53.230 

-1.0826 

14.321 

999 

-0.00050147 

0.00000 

-0.17556 

0.50872 

0.033079 

65.964 

7.5401 

116.23 

999 

 

Table 4.2 above shows summary statistics for the two companies’ return series. The results indicate high 

volatility and the risky nature of the market since the standard deviation of the market returns is high in 

comparison with the mean. Also the standard deviations are very close for both Safaricom and KCB with 

Safaricom being slightly volatile. Both price series have positive skewness implying that the distribution has a 

long right tail. On the other hand, the return series for Safaricom have negative skewness implying that the 

distribution has a long left tail and positive for KCB implying that the distribution has long right tail. The values 

for kurtosis are high (above three) for both return series implying they are leptokurtic. The Shapiro-Wilk test 

rejects normality at the 5% level for all series. So, the samples have all financial characteristics: volatility 

clustering and leptokurtosis.  

4.2.3 Test for Unit Root 

A stationary check for both closing prices and returns using Augmented Dickey Fuller (ADF) test shows that 

under the null hypothesis, unit root is not detected in both returns.          
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Table 4.3: ADF and PP test for prices and returns for Safaricom and KCB 

Safaricom Closing Prices Return series 

ADF Value -3.5 -9.13 

P-value 0.04 0.01 

KCB   

ADF Value -2.71 -9.38 

P-value 0.27 0.01 

 

4.2.4 Testing for ARCH effects in Returns  

Before fitting the autoregressive models, the presence of ARCH effects in the residuals is tested. If there does not 

exist a significant ARCH effect in the residuals then the ARCH model is mis-specified. Testing the hypothesis of 

no significant ARCH effects is based on the Lagragian Multiplier (LM) approach as stated earlier on the 

methodology.  

Table 4.4:Lagragian Multiplier test for Arch effects 

Returns Chi-square df p-value 

KCB 117.15 6 <0.001 

Safaricom 74.5019 4       <0.001 

From Table 4.4the p-values for both series are less than 0.05 hence we reject the null hypothesis of no 

significant arch effect in the daily returns of Safaricom and KCB and conclude there are significant arch effects.  

4.2.5 Parameter Estimation 

From R output 

Estimate       Std. Error     t value      Pr (>|t|)     

a0          4.101e-05      8.491e-06     4.829       1.37e-06 *** 

a1           1.866e-01      2.617e-02     7.131       9.98e-13 *** 

b1           7.209e-01      3.363e-02     21.438      < 2e-16 *** 

 

For Safaricom the fitted GARCH (1, 1) model is  

𝑟 t =  5.76 +  t  

2

t � = 0.00004 + 0.186 𝑍 1
2
t  + 0.7209 1

2
t

 

 

  From the following output for KCB 

Estimate       Std. Error     t value      Pr (>|t|)     

a0  2.895e-05     5.833e-06     4.963        6.95e-07 *** 

a1            1.912e-01     2.592e-02     7.376        1.63e-13 *** 

b1           7.597e-01     2.561e-02      29.662       < 2e-16 *** 

 

The fitted 𝐺𝐴𝑅𝐶𝐻 (1, 1) model is                      

𝑟 t =  20.18 + t  
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2

t � = 0.000028 + 0.19 𝑍 1
2
t + 0.7597 1

2
t

 

To assess the accuracy of the estimates, the standard errors are used the smaller the better. From the standard 

errors the estimates are precise. Based on 95% confidence level, the coefficients of the fitted 𝐺𝐴𝑅𝐶𝐻 (1, 1) 

model are significantly different from zero.  

4.25 Goodness-of-Fit 

Here the adequacy of the selected models is done.  This is done by using standardized residuals which are 

assumed to follow either normal or standardized t distribution. It must satisfy the requirement of a white noise. 

The plots include normal plots, 𝐴𝐶𝐹 plot time series plot and histogram. If the model fits the data well the 

histogram of the residuals should be symmetric. The normal probability plot should be a straight line while the 

time plot should exhibit random variation. For 𝐴𝐶𝐹 plots all the correlation should be within the boundary line 

meaning the data is stationary. [Insert Figure 4.3] 

It is clear that all the correlations are within the test bounds implying the fitted model is adequate. Further the 

𝑄 − 𝑄 plot shows that the models were adequate.  
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Figure 4.2: Time series plot of the return series 

 

Figure 4.3:  ACF plots of residuals for Safaricom and KCB 
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