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Abstract 

The study focused on the mathematical modelling of river blindness (Onchocerciasis) infectious 

disease using SIR model with demography and Euler method as the analytical procedure in Excel 

programming. Onchocerciasis is discussed, assumptions are made and basic deterministic features are 

studied. The interaction between the susceptibility and infection decline drastically to 0.01%, in the 90 

days simulated diseases about 52% of the population are susceptible to the disease and 50% on 

average infection rate is recorded within the 14 dyas before the infection starts decreasing from 55% 

and dies out. The recovery rate is 0.37(37%) and seemingly constant. 
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1. Introduction 

Mathematical modelling is a mathematical process of investigating the concept and theory of 

infectious disease transmission to forecast the further occurrence in order to device possible control of 

the epidemic. Mathematical model of epidemic was first developed by Daniel Bernoulli on the 

monitoring of smallpox outbreak and confirmed that vaccination against the disease can help improve 

life expectancy. The modern and better improve mathematical model of epidemic is due to G. 

McKendrick and W. O. Kermack (1927) who designed a simple deterministic model to study the 

behaviour of outbreak of many infectious disease and made records of them over time.  

 

1.1 Type of mathematical epidemic models 

There are basically two types of mathematical epidemic models. These are stochastic model and 

Deterministic model. The stochastic model deals with the random study of the epidemic process using 

probability techniques to estimate the epidemic outcomes and the measures the probability of 

extinction time and the size based on mean, variance and distribution. Deterministic model of 

epidemic focuses on the rate of transmission base on stages that is derived mathematically using 

differential function with respect to time in limiting large population. There are time dependent and 

non-time dependent known as autonomous.  This transition rate is defined as compartments. Hence, 

deterministic mathematical model of epidemic is described as deterministic compartmental models. It 

uses limiting population, time of occurrence within the subgroup to enable the approximation of the 

deterministic dynamics of the epidemics. 
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1.2 The Mathematical classical Model Reviews of deterministic model 

In determining the Epidemic Models such as the deterministic compartmental models in 

epidemiological study, what should come to mind of the modeller is the nature of the epidemic based 

on demography or without demography. Demography is very important in the study of the transition 

rate of infectious diseases.  

Demography deals with population dynamics of the susceptible or infected population in a closed 

system with characteristics such as age, sex, location, birth, death, race or social and economic status 

of the population understudy. Deterministic compartmental model without demography may be SIR, 

SIS, SIRS models and with demography SIR model sometimes may involve model with E 

compartment (Keeling, Matt, 2008).  

The variables are described as S-Susceptible, I-Infection, E-Exposed period and R-Recovery. 

Deterministic compartmental models of SIR is due to Kermack and McKendrick (1927) where S–the 

number of susceptible, I–the number of infective, R–the number of recoveries  –contact rate 

 –recovery rate. In situation of model concerning demography the population parameter,  , is 

included during the model compartment designed (Anderson, 1992; Hackborn, 2008,  Iannelli, 2005). 

 

1.3 Modeling River Blindness Disease  
River blindness is popularly known as Onchocerciasis. It is an infection caused by the parasite 

Onchocerca volvulus (worm) spread by the bite of an infected blackfly. River Blindness transmission 

is most common with intense outbreak in remote African, Southern American and in the Middle East 

especially in Yemen rural agricultural villages usually located near rapidly flowing streams. Adventure 

travellers, missionaries, and Peace Corps volunteers who are at risk of blackfly bites in endemic areas 

are susceptible. Persons with heavy river blindness infections usually have one or more of the three 

conditions: dermatitis, eye lesions, and/or subcutaneous nodules. Superficial skin biopsies will identify 

the parasite microscopically. The disease is mostly treated with oral medication (Ivermectin) and the 

use of insecticides such as DEET, and Wearing long sleeve shirts and pants.  

 

2. Epidemiology  

The World Health Organization's (WHO) on onchocerciasis estimates the global prevalence is 17.7 

million, of whom about 270,000 are blind and another 500,000 have a visual impairment. About 99% 

of infected persons are in Africa and 11% in Nigeria and it more prevalence in Mubi Village Gombe 

State where about 89% of the entire village suffers one form of blindness or the other. This 

hyper-endemic earn the community the village of the blind. The occurrence is also found in Yemen 

and some countries in the southern Americas. Onchocerciasis is locally transmitted in thirty countries 

of Africa, 13 foci in the Americas (Mexico, Guatemala, Ecuador, Colombia, Venezuela, Brazil) and in 

Yemen. These countries are classified as Endemic, Meso and Hyper endermic by the OCP countries 

categories (Available at  

http://www.wellnessproposals.com/health-care/handouts/parasitic-zoonotic-diseases/onchocerciasis-fa

ctsheet.pdf) 

 

2.2 Transmission  

Onchocerciasis infection is transmitted when a blackfly bites a person who has onchocerciasis, 

microscopic worms (called microfilariae) in the infected person's skin and can then be transmitted 

among person with the population. The microfilariae develop over 2 weeks to a stage where they are 

infectious to a human that is the contact transmission rate. An infectious person will typically transmit 

the disease to another person with infection rate of 2.12 on average (available at 

http://www.wellnessproposals.com/health-care/handouts/parasitic-zoonotic-diseases/onchocerciasis-fa

ctsheet.pdf). 

 

3. S-I-R Model of River Blindness Disease with demography 

This section focuses on the assumptions and black bus model of the disease. It also shows the model 

differential behaviour, the steady state calculation, disease free equilibrium in terms of 0R . 
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3.1. Assumptions  

The SIR Model with demography is used in case study of River blindness disease to compute the 

amount of susceptible, infected, recovered people in a dynamic population. This model considered as 

best to be used based on the following assumptions: 

1) The population is dynamic  

2) People are born into the system to be susceptible and they die as a result of non-recovery or 

natural death as the case may be. 

3) The people coming into the system are susceptible and the only process to leave the susceptible 

compartment is to become infected from the disease. They leave the infected group to recovery stage. 

Once they are recovered, they become immune.  

4) Only birth and death are consider with no consideration to age, sex, social status, and race 

affecting the probability of being infected.  

5) There is no inherited immunity. 

6) The population is mixed homogenous base on level of interaction. 

7) There are no changes in the population of black fly bite. 

 

3.2 The SIR Model with demography formulation 

The formulation of model requires the description of the parameters involve: 

Let  tS  be the number of susceptible individuals at time t is,  tI  be the number of infected 

individuals at time t,  tR  is the number of recovered individuals at time t and N is the total 

population size       NtRtItS  . Therefore, the assumptions lead to compartment black box 

model and a set of differential equations.     

 

 

3.2.1 The compartment black box model 

The SIR Model with demography is expressed as: 
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To interpret the parameters (Diekmann and Heesterbeek, 2000) explain that S is the population that are 

susceptible, I is the number of people that are infected with the river blindness the disease where   is 

the recovery rate (with greater or equal to zero), is the probability of becoming infected, is the number 

of people infected person comes in contact with in each period of time on average,   is the average 

number of transmissions from an infected person in a time period (with greater or equal to zero), and 

 is the life expectancy. From these equations (1, 2, 3), we can see from equation (1), that the 

susceptible group will decrease over time and approach zero. From equation (3), we know that the 

recovered group increase and will approach N over time (Hackborn, 2008; Iannelli, 2005). 

3.2.2 Steady State Analysis 

To determine the steady state of the SIR model with demography, let the rate of susceptibility, 
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infection and recovery equal to zero; 00 
dt

dI

dt

dS
and 0

dt

dR
, hence we assume that 

0S , 0R and 0I  therefore 1 RIS  for ISR 1  

Setting the equation 1, 2 and 3 to zero 

)1.3(0

)1.2(0

)1.1(0







RI

IISI

ISI







 

From the equation 2.1 then factoring out I  we get 0)(   ISI and 0))((  SI  

Then 0I and 0)(  S  )(  S  dividing both sides by  we have the steady 
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The steady state of R is obtained using the function of ISR 1  
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3.2.3 The Disease Free Equilibrium 

From the steady state of 
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0R  is the probability of transmission rate with the in period of infection of 
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is the SIR model with demography value of   making the rate of infection to be    . 

The equilibrium of the expression of the non-zero steady states in terms of 0R  of 
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terms of the value of 0R  (see Smith, David, and Lang, 2008). 
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The equilibrium in terms of 0R  are: 
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4. Analysis  

 

4.1 Computation Procedure 

Applying the numerical analysis using Euler method, the numerical expression for The equilibrium of 
** , IS and 
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Where h  is the step size and entering the function into Excel using the programming formulae in the 

cell 7 and key parameters are simulated using Euler numerical method see appendix A for the 

simulated data table: The parameters are defined as follow: 
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4.2 Euler Method Computation 
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  Fig 1. Graphical Result of Simulated 

Analysis 90 days    

 
Fig 3.   Graphical Result of Simulated 

Analysis 270 days 
 

 

 

 

 

 
 Fig 2.   Graphical Result of Simulated 

Analysis 180 days  
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Fig 3. Graphical Result of Simulated 

Analysis 365 days 
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5. Discussion 

The fig 1 illustrates about 0.47(47%) and 47% are infected by the river blindness in the first ten days 

of the three months simulated period of the disease. About negligible number of the population 

recovered. From the 19 days of the first three month the infection begins to decline and recovery rate 

starts increasing from 0.37(37%) in the 21days. The interaction between the susceptibility and 

infection decline drastically to 0.01%, in the 90 days simulated diseases about 52% of the population 

are susceptible to the disease and 50% on average infection rate is recorded within the 14 days before 

the infection starts decreasing from 55% and dies out. The recovery rate is 0.37(37%) which is 

seemingly constant. This finding suggests endemic onchocerciasis representing a serious health risk to 

the endemic community in northern Nigeria as the susceptibility level is 0.55(55%) with critical point 

of infection level at 50% on average and begins to decrease drastically. This may be as a result of 

intervention by the health workers in terms of treatment and awareness. In the subsequent months, that 

is, 9 to 12 months the disease susceptibility, infection rate and recovery assume the same behavioural 

pattern see fig 3 and 4 above. 

6. Conclusion 

The SIR Model is used in epidemiology to compute the amount of susceptible, infected, and recovered 

people in a population.  It is also used to explain the change in the number of people needing medical 

attention during an epidemic. It is important to note that this model does not work with all diseases 

and can be improved using contact and number of black fly population in the disease environment to 

determine the stochastic nature of the disease. This model can be used to explain the change in the 

number of people needing medical attention during an epidemic. It is important to note that this model 

does not work with all diseases. For the SIR model to be appropriate, once a person has recovered 

from the disease, they would receive lifelong immunity. The SIR model is also not appropriate if a 

person was infected but is not infectious. This finding suggests endemic onchocerciasis representing a 

serious health risk to the endemic community in northern Nigeria as the susceptibility level is 

0.55(55%) with critical point of infection level at 56% and begins to decrease drastically. This may be 

as a result of intervention by the health workers in terms of treatment and awareness. 
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Appendix A 

 

s(0) 0.65 

 

beta 2.3451 gamma 0.067 I0 0.001 R0 0 

h 1 

   

Mu 0.0017 

     

tn Sn In Rn 

0 0.65 0.001 0 

1 0.64907 0.00246 6.7E-05 

2 0.64593 0.00603 0.00023 

3 0.63741 0.01474 0.00064 

4 0.61599 0.03575 0.00162 

5 0.565 0.08494 0.00401 

6 0.45319 0.19166 0.0097 

7 0.25043 0.38218 0.02252 

8 0.02726 0.58037 0.04809 

9 -0.0082 0.5776 0.08689 

10 0.00462 0.52683 0.12545 

11 0.00061 0.49634 0.16053 

12 0.0016 0.46294 0.19351 

13 0.00156 0.43288 0.2242 

14 0.00167 0.40472 0.25282 

15 0.00178 0.37851 0.27951 

16 0.0019 0.35408 0.30439 

17 0.00202 0.33133 0.3276 

18 0.00215 0.31014 0.34924 

19 0.00228 0.29039 0.36943 

20 0.00242 0.272 0.38825 

21 0.00257 0.25486 0.40582 

22 0.00273 0.23889 0.4222 

23 0.0029 0.22401 0.43749 

24 0.00307 0.21014 0.45176 

25 0.00325 0.19722 0.46507 

26 0.00344 0.18517 0.47749 

27 0.00364 0.17394 0.48909 

28 0.00385 0.16348 0.49991 

29 0.00407 0.15372 0.51001 

30 0.00429 0.14463 0.51944 

31 0.00453 0.13615 0.52825 

32 0.00478 0.12824 0.53647 
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33 0.00503 0.12087 0.54416 

34 0.0053 0.11399 0.55133 

35 0.00557 0.10758 0.55803 

36 0.00586 0.10159 0.56429 

37 0.00615 0.09601 0.57013 

38 0.00646 0.0908 0.5756 

39 0.00677 0.08593 0.5807 

40 0.00709 0.0814 0.58547 

41 0.00743 0.07716 0.58993 

42 0.00777 0.0732 0.5941 

43 0.00812 0.06951 0.59799 

44 0.00849 0.06606 0.60163 

45 0.00886 0.06283 0.60504 

46 0.00924 0.05982 0.60822 

47 0.00963 0.05701 0.61119 

48 0.01002 0.05438 0.61397 

49 0.01043 0.05192 0.61657 

50 0.01084 0.04962 0.619 

51 0.01126 0.04747 0.62127 

52 0.01169 0.04547 0.6234 

53 0.01212 0.04359 0.62538 

54 0.01256 0.04183 0.62724 

55 0.01301 0.04019 0.62898 

56 0.01346 0.03866 0.6306 

57 0.01392 0.03722 0.63212 

58 0.01438 0.03588 0.63354 

59 0.01484 0.03462 0.63487 

60 0.01531 0.03345 0.63611 

61 0.01579 0.03235 0.63727 

62 0.01626 0.03133 0.63835 

63 0.01674 0.03037 0.63936 

64 0.01722 0.02948 0.64031 

65 0.0177 0.02864 0.6412 

66 0.01818 0.02786 0.64203 

67 0.01866 0.02714 0.6428 

68 0.01914 0.02646 0.64353 

69 0.01962 0.02583 0.64421 

70 0.0201 0.02524 0.64484 

71 0.02058 0.0247 0.64544 

72 0.02105 0.0242 0.646 

73 0.02152 0.02373 0.64652 

74 0.02199 0.02329 0.64701 

75 0.02245 0.0229 0.64747 
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76 0.0229 0.02253 0.6479 

77 0.02335 0.02219 0.64831 

78 0.0238 0.02188 0.6487 
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