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Abstract 

The present study is concerned with the estimation of shape parameter of Kumaraswamy Distribution using 

various Bayesian approximation techniques like normal approximation, Lindley’s Approximation, Tierney and 

Kadane (T-K) Approximation. Different informative and non-informative priors are used to obtain the Baye’s 

estimate of parameter of Kumaraswamy Distributions under different approximation techniques. For comparing 

the efficiency of the obtained results a simulation study is carried out using R-software. 
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1. Introduction: 

Kumaraswamy (1980) developed a general probability density function for double bounded random 

processes, which is known as Kumaraswamy’s distribution. This distribution is applicable to many natural 

phenomena whose outcomes have lower and upper bounds, such as the heights of individuals, scores obtained on 

a test, atmospheric temperatures, hydrological data, etc. The probability distribution function and the cumulative 

distribution function of Kumaraswamy distribution is given as 

;10;)1();;( 11   xxxxf                                                   (1.1) 

1)1(1)(  xxF  

where 0,  are the shape parameters of the distribution. The pdf of kumaraswamy distribution can be 

unimodal, increasing, decreasing or constant, depending on the values of the parameters. The Kumaraswamy 

distribution is very similar to the Beta distribution, but has the important advantage of an invertible closed form 

cumulative distribution function. Nadarajah (2008) has pointed out that Kumaraswamy’s distribution is a special 

case of the three parameter beta distribution. Jones (2009) explored the genesis of the Kumraswamy distribution 

and made some similarities and differences between the beta and Kumaraswamy distributions. It has many of the 

same properties as the beta distribution but has some advantages in terms of tractability. Sundar and Subbiah 

(1989), Fletcher and Ponnambalam (1996), Seifi et al. (2000), Ponnambalam et al. (2001) considered this 

distribution for interests in hydrology and related areas.  

Gholizadeh et al. (2011a, 2011b) studied classical and Bayesian estimators of the kumaraswamy 

distribution using grouped and un-grouped data, also studied Bayesian and non-Bayesian estimators for the 

shape parameter, reliability and failure rate functions of the Kumaraswamy distribution in the cases of 

progressively type II censored samples. Mostafa et al. (2014) produced a study in Estimation for parameters of 

the Kumaraswamy distribution based on general progressive type II censoring. These estimates are derived using 

the maximum likelihood and Bayesian approaches. Mustafa et al. (2012a, 2012b) reviewed some results that 

have been derived on record values for based on m records from Kumaraswamy’s distribution and derived 

estimators for the two parameters using the maximum likelihood and Bayesian approaches and also studied 

classical and Bayesian estimation of P(Y < X) for it. 
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The kumaraswamy distribution has not been discussed in detail under the Bayesian approach. Our 

present study aims to obtain the Bayesian estimators for the shape parameter of the kumaraswamy distribution 

based on Bayesian approximation techniques. A simulation study has also been conducted along with concluding 

remarks. 

 

2. Normal Approximation:  

If the posterior distribution  xP |  is unimodal and roughly symmetric, it is convenient to 

approximate it by a normal distribution centered at the mode, yielding the approximation 

     1ˆ,ˆ~|


 INxP  

where    
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2 |log
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yP
I                                                                                               (2.1) 

If the mode,
 
̂  is in the interior parameter space, then  I

 
is positive; if ̂  is a vector parameter, then   I

  
is a matrix. 

Some good sources on the topic is provided by Ahmad et.al (2007, 2011) discussed Bayesian analysis 

of exponential distribution and gamma distribution using normal and Laplace approximations. Sultan et al. 

(2015) obtained the Baye’s estimates under different informative and non-informative priors of shape parameter 

of Topp-Leone Distribution using Bayesian approximation techniques 

In our study the normal approximations of kumaraswamy distribution under different priors is be obtained 

as under: 

The likelihood function of (1.1) for a sample of size n is given as 
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Under Jeffrey’s prior  /1)( g , the posterior distribution for   is as 
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Thus, the posterior distribution can be approximated as 
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Under modified Jeffrey’s prior 
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Thus, the posterior distribution can be approximated as 
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(2.6) 

Under gamma prior 0;0,;)( 1     baeg ba

 
where a, b are the known hyper parameters. The 

posterior distribution for   is as 
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The second order derivative of the log posterior density is given as 
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Therefore negative of Hessian 
 

1

)|(ln
)ˆ(

2

2

2











an

bTxP
I




  

 
 2

1 1
)ˆ(

bT

an
I









                                                                                                       

 

Thus, the posterior distribution can be approximated as 
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Thus, the posterior distribution can be approximated as 
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3. Lindley’s Approximation: 

Sometimes, the integrals appearing in Bayesian estimation can’t be reduced to closed form and it becomes 

tedious to evaluate of the posterior expectation for obtaining the Baye’s estimators. Thus, we propose the use of 

Lindley’s approximation method (1980) for obtaining Baye’s estimates. Lindley developed an asymptotic 

approximation to the ratio 
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Thus, for Kumaraswamy Distribution Lindley’s approximation for shape parameter   under Jeffrey’s prior, 

modified Jeffrey’s prior, gamma prior and inverse levy prior can be obtained as  
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Thus Lindley’s approximation for  from (4.3) is obtained as 
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Under gamma prior 0;0,;)( 1     baeg ba
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Under inverse levy prior
 

0;0;)( 22/1 


 



reg

r

 , where r is the known hyper parameter  

22
)(;

22

ln
)(ln)(

r

n

T
U

r
gU 


 


  

Thus  
222

12
)|(

T

nr

T

n
xE 




                                                                                                  

(3.7) 

4. T-K Approximation: 

Laplace’s method uses asymptotic arguments in the development of new simulation techniques. From (4.2) 

it may be observed that Lindley’s approximation requires evaluation of third order partial derivatives of 

likelihood function which may be cumbersome to compute when the parameter   is a vector valued parameter. 

Tierney and Kadane (1986) gave Laplace method to evaluate )|)(( xhE  as 
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Under extension of Jeffrey’s prior 
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Under Gamma prior 0;0,;)( 1     baeg ba
; the posterior distribution for  is given in (2.7)  
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Under inverse levy prior 0;0;)( 22/1 
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 the posterior distribution for  is given in (2.9)  
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Simulation study: 

In our simulation study we have generated a sample of sizes n=25, 50, 100 to observe the effect of 

small, medium, and large samples on the estimators. The results are replicated 5000 times and the average of the 

results has been presented in the tables. To examine the performance of Bayesian estimates for shape parameter 

of kumaraswamy distribution under different approximation techniques, estimates are presented along with 

posterior standard deviation and MSE in case of Lindley’s approximation given in parenthesis in the below 

tables. 
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Table1: Posterior estimates and posterior standard deviation (in parenthesis) under normal 

approximation:
 

n   Jeffrey’s 

prior 

Modified 

Jeffrey’s 

prior 

Gamma prior Inverse levy prior 

a1=b1=1 a1=b1=2 a1=b1=3 r=1 r=2 r=3 

25 

0.5 
0.47631 

(0.09722) 

0.46639 

(0.09620) 

0.4865 

(0.09730) 

0.4963 

(0.09733) 

0.5057 

(0.09732) 

0.4767 

(0.09632) 

0.4676 

(0.09448) 

0.4589 

(0.09271) 

1.0 
0.9480 

(0.19352) 

0.9283 

(0.19149) 

0.9501 

(0.19001) 

0.9518 

(0.18667) 

0.9535 

(0.18351) 

0.9310 

(0.18810) 

0.8969 

(0.18121) 

0.8652 

(0.17481) 

1.5 
1.3228 

(0.27002) 

1.2952 

(0.26719) 

1.3059 

(0.26119) 

1.2907 

(0.25314) 

1.27702 

(0.24576) 

1.2798 

(0.25856) 

1.2163 

(0.24573) 

1.1587 

(0.23410) 

50
 

0.5 
0.6085 

(0.08693) 

0.6023 

(0.08649) 

0.6133 

(0.08674) 

0.6180 

(0.08654) 

0.6226 

(0.08634) 

0.6072 

(0.08630) 

0.5998 

(0.08526) 

0.5926 

(0.08424) 

1.0 
1.1862 

(0.16946) 

1.1741 

(0.16859) 

1.1818 

(0.16713) 

1.1776 

(0.16490) 

1.1736 

(0.16275) 

1.1700 

(0.16629) 

1.1430 

(0.16245) 

1.1272 

(0.15879) 

1.5 
1.1762 

(0.16946) 

1.1752 

(0.16859) 

1.1718 

(0.16713) 

1.1686 

(0.16490) 

1.1670 

(0.16275) 

1.1670 

(0.16629) 

1.1489 

(0.16245) 

1.1172 

(0.15879) 

100
 

0.5 
0.5060 

(0.05086) 

0.5035 

(0.05073) 

0.5085 

(0.05085) 

0.5110 

(0.05085) 

0.5135 

(0.05084) 

0.5060 

(0.05073) 

0.5034 

(0.05047) 

0.5009 

(0.05022) 

1.0 
1.1802 

(0.11861) 

1.1742 

(0.11831) 

1.1780 

(0.11780) 

1.1760 

(0.11701) 

1.1739 

(0.11624) 

1.1722 

(0.11751) 

1.1585 

(0.11614) 

1.1452 

(0.11480) 

1.5 
1.2474 

(0.12536) 

1.2411 

(0.12505) 

1.2443 

(0.12443) 

1.2413 

(0.12351) 

1.2384 

(0.12262) 

1.2381 

(0.12412) 

1.2228 

(0.12259) 

1.2080 

(0.12110) 

 

Table2: Posterior estimates and MSE under Lindley’s approximation: 

n   Jeffrey’s 

prior 

Modified 

Jeffrey’s 

prior 

Gamma prior Inverse levy prior 

a1=b1=1 a1=b1=2 a1=b1=3 r=1 r=2 r=3 

25 

0.5 
0.4961 

(0.00987) 

0.4862 

(0.00999) 

0.5061 

(0.00983) 

0.5161 

(0.01005) 

0.5261 

(0.01053) 

0.5012 

(0.00981) 

0.4962 

(0.00986) 

0.4913 

(0.00992) 

1.0 
0.9875 

(0.03917) 

0.9678 

(0.04005) 

0.9881 

(0.03916) 

0.9885 

(0.03915) 

0.9890 

(0.03914) 

0.9878 

(0.03916) 

0.9683 

(0.03902) 

0.9488 

(0.03864) 

1.5 
1.3779 

(0.09080) 

1.3503 

(0.09831) 

1.3571 

(0.09631) 

1.3362 

(0.10273) 

1.3154 

(0.10997) 

1.3675 

(0.09315) 

1.3295 

(0.00874) 

1.2915 

(0.00865) 

50
 

0.5 
0.6209 

(0.02231) 

0.6147 

(0.02085) 

0.6256 

(0.02347) 

0.6304 

(0.02470) 

0.6351 

(0.02595) 

0.6233 

(0.02290) 

0.6194 

(0.02195) 

0.6156 

(0.02106) 

1.0 
1.2104 

(0.07356) 

1.1983 

(0.06862) 

1.2053 

(0.07144) 

1.2002 

(0.06938) 

1.1951 

(0.06736) 

1.2079 

(0.07252) 

1.1932 

(0.06662) 

1.1785 

(0.06116) 

1.5 
1.8048 

(0.15800) 

1.7868 

(0.14735) 

1.7758 

(0.14226) 

1.7467 

(0.12596) 

1.7177 

(0.11249) 

1.7903 

(0.14137) 

1.7577 

(0.12150) 

1.7252 

(0.11181) 

100
 

0.5 
0.5111 

(0.00272) 

0.5086 

(0.00269) 

0.5136 

(0.00278) 

0.5161 

(0.00285) 

0.5186 

(0.00294) 

0.5124 

(0.00271) 

0.5111 

(0.00272) 

0.5098 

(0.00267) 

1.0 
1.1921 

(0.05110) 

1.1961 

(0.05093) 

1.1898 

(0.05022) 

1.1875 

(0.04935) 

1.1852 

(0.04849) 

1.1909 

(0.05064) 

1.1838 

(0.18298) 

1.1767 

(0.04542) 

1.5 
1.2600 

(0.07340) 

1.2557 

(0.07548) 

1.2567 

(0.07549) 

1.2534 

(0.07661) 

1.2501 

(0.07825) 

1.2537 

(0.07546) 

1.2504 

(0.07481) 

1.2425 

(0.07210) 
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Table3: Posterior estimates and posterior standard deviation (in parenthesis) under T-K approximation:
 

n   Jeffrey’s 

prior 

Modified 

Jeffrey’s 

prior 

Gamma prior Inverse levy prior 

a1=b1=1 a1=b1=2 a1=b1=3 r=1 r=2 r=3 

25 

0.5 
0.5773 

(0.12722) 

0.5673 

(0.10620) 

0.5865 

(0.12730) 

0.5953 

(0.12733) 

0.5147 

(0.10732) 

0.5757 

(0.09732) 

0.5646 

(0.09548) 

0.5539 

(0.09371) 

1.0 
1.2480 

(0.21352) 

1.2283 

(0.20149) 

1.2150 

(0.21001) 

1.2151 

(0.20667) 

1.2135 

(0.20351) 

1.2131 

(0.18910) 

1.2096 

(0.18721) 

1.2052 

(0.17591) 

1.5 
1.4238 

(0.28012) 

1.4052 

(0.25929) 

1.3159 

(0.27219) 

1.3007 

(0.26315) 

1.2870 

(0.25578) 

1.2898 

(0.25866) 

1.2463 

(0.24683) 

1.1687 

(0.23411) 

50
 

0.5 
0.6185 

(0.08899) 

0.6123 

(0.08655) 

0.6183 

(0.08774) 

0.6189 

(0.08755) 

0.6128 

(0.08659) 

0.6091 

(0.08650) 

0.5898 

(0.08546) 

0.5828 

(0.08439) 

1.0 
1.1962 

(0.17946) 

1.1941 

(0.17269) 

1.1848 

(0.17715) 

1.1788 

(0.17390) 

1.1766 

(0.17275) 

1.1715 

(0.16694) 

1.1580 

(0.16279) 

1.1392 

(0.15888) 

1.5 
1.1882 

(0.17976) 

1.1841 

(0.16369) 

1.1899 

(0.16819) 

1.1795 

(0.16780) 

1.1786 

(0.16376) 

1.1720 

(0.16739) 

1.1530 

(0.16354) 

1.1274 

(0.15888) 

100
 

0.5 
0.5960 

(0.05188) 

0.5935 

(0.05073) 

0.5885 

(0.05170) 

0.5770 

(0.05099) 

0.5735 

(0.05085) 

0.5562 

(0.05078) 

0.5634 

(0.05057) 

0.5409 

(0.05033) 

1.0 
1.1992 

(0.11967) 

1.1942 

(0.11735) 

1.1880 

(0.11880) 

1.1860 

(0.11805) 

1.1799 

(0.11745) 

1.1742 

(0.11789) 

1.1685 

(0.11714) 

1.1552 

(0.11580) 

1.5 
1.2574 

(0.12636) 

1.2489 

(0.12505) 

1.2458 

(0.12548) 

1.2443 

(0.12454) 

1.2375 

(0.12582) 

1.2361 

(0.12422) 

1.2218 

(0.12269) 

1.2078 

(0.12210) 

 

Conclusion: 

In this paper the focus was to study the importance of Bayesian approximation techniques. We 

presented approximate to Bayesian integrals of Kumarswamy distribution depending upon numerical integration 

and simulation study and showed how to study posterior distribution by means of simulation study. From the 

findings of above tables it can be observed that the large sample distribution could be improved when prior is 

taken into account. In all cases normal approximation, Lindley’s approximation, T-K approximation, Bayesian 

estimates under informative priors are better than those under non-informative priors especially the Inverse levy 

distribution proves to be efficient with minimum posterior standard deviation and mean square error in case of 

Lindley’s approximation. In case of non-informative priors modified Jeffrey’s prior proves to be efficient. We 

observe that under informative as well as non- informative priors, the normal approximation behaves well than 

T-K approximation, although the posterior variances in case of T-K approximation are very close to that of 

normal approximation. Further we conclude that the posterior standard deviation based on different priors tends 

to decrease with the increase in sample size. It implies that the estimators obtained are consistent. It can also be 

observed that the performance of Bayes estimates under informative priors (inverse levy) is better than non-

informative prior. 
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