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Abstract  

          In this paper, we discuss the dynamical behavior of eco-epidemiological mathematical model consisting of 

prey-predator model involving SIS infectious disease in prey population, is proposed and analyzed. This disease 

passed from a prey to predator through attacking of predator to prey. It is assumed that the disease transmitted 

within the same species by contact between susceptible individuals and infected individuals, in additional to the 

external sources from the environment. The existence, uniqueness and boundedness of the solution of the system 

are studied. The local and global stability conditions of all possible equilibrium points are established. Finally, 

some numerical simulations are given to illustrate the analytical results.  
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1. Introduction: 
            Eco-epidemiological is a new branch in mathematical biology which considers both the ecological and 

epidemiological issues simultaneously. The first breakthrough in modern mathematical ecology was done by 

Lotka (1924) for a predator – prey competing species. On the other hand, most of the models for the transmission 

of infectious diseases originated from the classic work of   Kermack  and  Mckendrik (1927) . After these 

pioneering works in two different fields, lots of research works have been done both in theoretical ecology and 

epidemiology. Anderson and May [1] where the first who merged the above two fields and formulated a prey – 

predator model where prey species infected by some diseases. Later on many researchers, especially in the last 

two decades , have proposed and studied different prey – predator models in the presence of disease  in one of the 

species see for example [ 2,3,4,5,6,7,8,9,10,11 ] and the references there in .In most previous studies , the only 

means of transmission of disease is the direct contact between individuals. However, many diseases are 

transmitted in the species not only by contact, but also directly from environment, such as influenza (birds flu) 

and others for example see [12,13,14]. Hethcote [14], May and Leonard [15] constructed a model to study the 

effect of   infectious diseases in predator – prey systems, in this model, the basic epidemic model was combined 

with Lotika – Volterra   model. Das et al [16] proposed prey – predator model with disease in prey spread by 

contact and external sources, including Holling type II as a functional response and linear disease incidence. 

Hsich and Hsiao [17] proposed a prey – predator model with disease in both populations. They observed that 

ecological threshold number for the prey – predator ecosystem always determine the coexistence of predator and 

prey where as disease basic reproduction number dictates whether the disease would become endemic in the 

ecosystem or not . R. Latief Tayeh and R. Kamel  Naji [18] had previously studied a prey- predator model 

involving  SI  infection disease in both the prey and predator species and the disease passed from a prey to 

predator through predation process. While the disease transmitted within the same species by  contact.  In this 

paper an       eco-epidemiological mathematical model consisting of prey-predator model involving SIS epidemic 

disease in both the prey and predator species has been proposed and analyzed. Further, in this model, linear type 

of functional response as well as linear incidence rate for describing the transition of disease are used. 

2. Model Formulation: 

           In this section an eco-epidemiological model is proposed for study. The model consists of a prey, whose 

total population density at time T   is denoted by  N(T), interacting with predator whose total population density 

at time T  is denoted by  P(T). The following assumptions are made in formulating the basic eco - 

epidemiological model:  
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1. There is an SIS epidemic disease in prey population divides the prey population into two classes namely 

S(T) that represents the density of susceptible prey species at time T and  I(T) which represents the 

density of  infected  prey species at time T. Therefore at any time T, we have   N (T) = S (T) + I (T). 

2. The disease is transmitted from a prey to predator during attacking of predator to prey, which divides the 

predator population into two classes namely P1(T) that represents the density of susceptible predator 

species at time T and  P2(T) which represents the density of infected predator species at time T. Therefore 

at any time T, we have P(T) = P1(T) + P2(T). 

3. The susceptible prey is capable of reproducing in logistic fashion with carrying capacity  k > 0 and 

intrinsic growth rate   r > 0. 

4. The disease transmitted within the same species by contact with an infected individual at infection   

rates   λ1 > 0   and   λ2 > 0 for the prey and predator respectively. In addition, there is an external source 

of disease causes incidence with the disease within the specific population at an external infection rates   

Ѳ1 > 0   and   Ѳ2 > 0   for the prey and predator respectively. 

5. The disease disappears and infected individuals become susceptible again at the recovery rates α > 0 

and   β > 0 for the prey and predator respectively. 

6. In the absence of the prey, the susceptible and infected predator decay exponentially with natural death 

rate γ2 > 0. 

7. The disease may causes mortality with a constant mortality   rates   γ1 > 0 and   γ3 > 0 for the prey and 

predator respectively. 

8. The susceptible predator consumes the susceptible and infected prey according to Lotka-Volterratype of 

functional response at constant consumption rates  c1 > 0 and c2> 0   

       for susceptible and infected respectively, while the infected predator can't attack the prey directly                   

       due  to the its weakness.                                           

Therefore, by using the above assumptions, the dynamic of prey-predator model can be represented in the 

following set of the first order nonlinear differential equations. 

 

dS

dT 
 = rS ( 1 – 

S+I 

K 
 ) – c1SP1 – λ1SI – Ѳ1S + αI 

 
dI

dT
 = λ1SI + Ѳ1S – c2IP1 – γ1I – αI  

         (1) 
dP1

dT
 = - λ1P1P2 – Ѳ2P1 + e1c1SP1 + (1-m) e2c2IP1 – γ2P1 + βP2                  

dP2

dT
 = λ1P1P2 + Ѳ2P1 + m e2c2IP1 - γ2P2 – γ3P2 - βP2  

 
With initial condition S(0) ≥ 0 , I(0) ≥ 0 , P1(0) ≥  0 , P2(0) ≥  0,  0 < ei < 1; i = 1,2 represent the conversion rate 

constants and  0 < m < 1 represents the infection rate of susceptible predator that predation the infected  prey. 

Cleary, system (1) included (16) parameters, which make the analysis difficult. 

So, in order to simplify the system the number of parameters is reduced by using the following dimensionless 

variables. 

 t = r T,  x = 
S

k 
 ,  y = 

I

k 
 ,  z = 

c1

r 
 P1 ,  w = 

c1

r 
 P2  . 

Thus we obtain: 

dx

dt
 = x (1 − x − (1 + u1)y − z −  u2) + u3y = f1(x, y, z, w) 

 
dy

dt
 = y (u1x −  u4z − (u3 +  u5 )) + u2x = f2(x, y, z, w)                                                 

               (2) 
dz

dt 
 = z (− u6w +  u8x +  u9 ( 1 − m)y − ( u7 + u10)) + u11w = f3(x, y, z, w) 
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dw

dt
 = u6zw + ( u7 + u9my )z – ( u10 + u11 + u12 )w = f4(x, y, z, w) 

 
Where: 

u1=  
λ1 k

r
 , u2= 

Ѳ1

r
 , u3= 

α

r
 , u4= 

c2

c1
 , u5= 

γ1

r
 , u6= 

γ2

c 1
 , u7= 

Ѳ2

r
 , u8= 

e1 c1 k

r
 , u9= 

e2 c2 k

r
 ,    u10=  

γ2

r
 , u11= 

β

r
 , u12= 

γ3

r
 . 

represent the dimensionless parameters of the system (2). Moreover the initial condition of system (2) may be 

taken as any point in the region 𝑅+
4  . The interaction functions in the right hand side of system (2) are 

continuously differentiable function on 𝑅+
4  , hence they are Lipschitizian. Therefore the solution of system (2) 

exists and is unique. Further, all the solutions of system (2) with non negative initial condition are uniformly 

bounded as shown in the following theorem. 

 

Theorem(1): All the solutions of system (2) which initiate in the 𝑅+
4  are uniformly bounded.               

Proof: Let x(t), y(t), z(t), w(t)  be any solution of the system (2).  

Define the function  M(t) = x(t) + y(t) + z(t) + w(t), then take the time derivative of  M(t) along the solution 

of the   system (2), gives 

 
dM

dt
 ≤ 1- nM , where n = min } 1 , u5 , u10 , ( u10 + u12 ) {. Then 

  
dM

dt
 + nM ≤ 1 

Again by solving this differential inequality for the initial value M(0) = M0 , we get : 

M(t) ≤ 
1

𝑛
  + (M0 −

1

n
  ) e

-nt
 . 

Then  M(t) ≤ 
1

n
  as t → ∞ . So  0 ≤  M(t)  ≤ 

1

n
  , hence all the solutions of system (2) are uniformly 

bounded  and the proof is complete.                                                                                                               ■ 

                                                                                                                                                                              

3. Existence of equilibrium points: 
            It is observed that, system (2) has at most three biologically feasible equilibrium points,                  Ei 

=(x, y, z, w); i = 0,1,2 . The existence conditions for each of these equilibrium points are discussed in the 

following: 

 

1 - The vanishing equilibrium point   E0 = (0,0,0,0)  always exists. 

2 - The predator free equilibrium point   E1 = ( x ̂,y ̂, 0, 0 ), where : 

                    y ̂=  
1−( x̂+ u2 )

( 1+ u1 ) – ( 
 u3

x̂
)
 ,  ( 1+ u1 ) ≠ 

u3

x̂
                                                                (3.1) 

While  x̂   represents a positive root of the following second order polynomial equation   
             A1 x

2 
+ A2 x + A3 = 0                                                                            (3.2) 

where: 
             A1 = u1 > 0  

            A2 = - ( u1 +u2 + u3 + u5 ) < 0 

            A3 = ( u3 + u5 ) – ( u2 u5 )  
 

Consequently, straightforward computation shows that   E1  exists uniquely in the Int.𝑅+
4  if and only if the 

following conditions are hold.   

 

            u3 + u5 <  u2 u5          (3.3) 

            
u3

1+ u1
 <  x̂ < 1 - u2             (3.4) 

 

3 - The positive (coexistence) equilibrium point   E2 = ( x
*
, y

*
, z

*
, w

*
 ) exists in the Int.𝑅+

4   if and only if there 

is a positive solution of the following set of algebraic equations 
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 f1 ( x ,y ,z ,w ) = 1 – x – (1+ u1 ) y – z – u2 + 
u3 y

x
 = 0                                                (3.5) 

                 

 f2 ( x ,y ,z ,w ) = u1x – u4z – (u3 + u5 ) + 
u2 x

y
 = 0                                                       (3.6) 

 

f3 ( x ,y ,z ,w ) = - u6w + u8x +u9 (1- m ) y – (u7 + u10 ) + 
u11w

z
 = 0                            (3.7) 

 

f4 ( x ,y ,z ,w ) = u6z + ( u7 + mu9 y ) 
z

w
 - ( u10 + u11 + u12 ) = 0                                      (3.8) 

 
By solving   (3.7) and  (3.8) , we obtain that  

          z ( x , y ) =  
A

u6 B
  ; B ≠ 0                                                                                     (3.9) 

 

          w ( x , y ) = 
A

u6( u10+ u12)
                                                                                 (3.10) 

Where:   

             A = ( u10 + u11 + u12 ) [ u8 x + u9 (1-m )y - (u7 + u10 ) ] + u11 ( u7 + mu9 y ) 

 

             B = ( u8 x + u9y - u10 )  
   Then by using   (3.9) and (3.10) in (3.5) and (3.6) yield the following two isoclines. 

g1( x , y ) = x ( 1- x – (1 + u1 ) y - 
A

u6 B
 - u2 ) + u3y = 0                                                  (3.11) 

g2( x ,y ) = y ( u1x – u4  
A

u6 B
 - ( u3 + u5 ) ) + u2x = 0                                  (3.12) 

Now from (3.11) we notice that, when y → ∞, then either   x =0 c! or  x  represents a positive root of the 

following second order polynomial equation. 

               B1 x
2
 + B2 x + B3 = 0                                                                                      (3.13) 

Where:   
           B1 = u6 u8  

                 B2 = u8 (u10 + u11 + u12 + u2 u6 ) – u6 ( u8 + u10 )  

           B3 = - (u7 (u10 + u12 ) + u10 (u10 + u11 + u12 – u6 ) )  

Straightforward computation shows that   Eq. (3.13)  has a unique positive root namely  x1   if and only if the 

following condition hold. 
 

             u6 < ( u10 + u11 + u12 )                                                                                       (3.14) 

Moreover from   Eq. (3.11) we have  
dx

dy
 = ( 

∂g1

∂y
  ) / ( 

∂g1

∂x
 ). So, 

dx

dy
 < 0 if one set of the following sets 

of conditions holds. 
 

             
∂g1

∂y
 > 0, 

∂g1

∂x
 < 0   OR  

∂g1

∂y
 < 0,  

∂g1

∂x
 > 0           (3.15) 

Further, from Eq. (3.12) we notice that, when y → ∞  then  x = 0 , in addition since we have                   
dx

dy
 = 

( 
∂g2

∂y
  ) / ( 

∂g2

∂x
 ) . So,  

dx

dy
 > 0 if one set of the following sets of conditions holds. 

 

      
∂g2

∂y
 > 0, 

∂g2

∂x
 > 0   OR  

∂g2

∂y
 < 0,  

∂g2

∂x
 < 0        (3.16) 
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Then the two isoclines (3.11) & (3.12) intersect at a unique positive point (x
*
, y

*
) in the Int.𝑅+

4   of   xy ــ plane 

.Substituting the value of  x
* 

and y
* 

in Eq.(3.9) & (3.10) yield that z (x
*
,y

*
) = z

* 
and   w (x

*
,y

*
) = w

* 
 which are 

positive if and only if the following condition hold.
 

u10  < min { u8 x + u9y , u8 x + u9 (1-m )y – u7 }        (3.17) 

              

Accordingly, the positive equilibrium point   E2 exists uniquely in the Int. 𝑅+
4   if  in addition to the conditions 

(3.14 - 3.17) the isoclinic  g1( x , y ) = 0  intersect the  x-axis at the positive value namely  x1 .  

 

4. Local stability analysis of system (2): 
             In this section the local stability analysis of all feasible equilibrium points of system(2) is studied analytically by 

linearization method as bellow. Note that, from now onward the symbols  λix , λiy ,λiz   and  λiw   represent the 

eigenvalues of the Jacobian matrix  J (Ei ) ; i= 0,1,2 that describe the dynamics in the x- direction , y- direction ,  z- 

direction and w- direction respectively, where the Jacobian matrix  J( x, y, z, w ) of the system (2) at each of them can 

be written:  

 

J = 





























































































w

f

z

f

y

f

x

f

w

f

z

f

y

f

x

f

w

f

z

f

y

f

x

f

w

f

z

f

y

f

x

f

4444

3333

2222

1111

                             (4.1) 

 

Where   fi ; i = 1,2,3,4  are given in system (2) and 

 
𝜕𝑓1

𝜕𝑥
 = 1 – ( u2 + 2x + (1+u1)y + z ); 

𝜕𝑓1

𝜕𝑦
 = u3 – ( 1+u1)x ; 

𝜕𝑓1

𝜕𝑧
 = - x ; 

𝜕𝑓1

𝜕𝑤
 =0 ;   

𝜕𝑓2 

𝜕𝑥 
 = u2 + u1y ; 

𝜕𝑓2 

𝜕𝑦 
 = u1x – ( u4z + u3+ u5 ); 

𝜕𝑓2 

𝜕𝑧 
 = - u4y ;  

𝜕𝑓2 

𝜕𝑤 
  = 0 ; 

𝜕𝑓3

𝜕𝑥
 = u8z ; 

𝜕𝑓3 

𝜕𝑦 
 =u9(1-m)z ; 

𝜕𝑓3 

𝜕𝑧 
 = u8x + u9(1-m)y – (u6w + u7 + u10) ; 

𝜕𝑓3 

𝜕𝑤 
=u11 – u6z ; 

 
𝜕𝑓4 

𝜕𝑥 
 = 0 ; 

𝜕𝑓4 

𝜕𝑦
 = u9mz ; 

𝜕𝑓4 

𝜕𝑧
  = u7 + u9my + u6w ; 

𝜕𝑓4 

𝜕𝑤
 = u6z – (u10 + u11 + u12) . 

                 
Now, the Jacobian matrix of system (2) at   E0 can be written as: 

 

                  J0= 



























)(00

)(00

00)(

001

1211107

11107

532

32

uuuu

uuu

uuu

uu

                               (4.2) 

 

Accordingly, the characteristic equation of this Jacobian matrix is given by: 

[ λ
2
 + A1λ +A2 ] [ λ

2
 + A3 λ +A4 ] = 0 

 
Where: 
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              A1 = (u3 + u5 ) – ( 1- u2 )  

             A2 = - ( u3 + u5 – (u2 u5) ) 

             A3 = ( u7 + 2u10 + u11 + u12 ) 

             A4 = u7 (u10+u12) + u10( u10+u11+u12) 

 
From which, we obtain that:  

                                        λ0 x, y = - 
A1

2
 ± 

1

2
 √A1

2  −  4 A2 

                                 (4.3) 

                                   

                                                  λ0 z, w = - 
A3

2
 ± 

1

2
 √A3

2  −  4 A4 

 
Therefore all the eigenvalues have negative real part  provided that the following condition                         is 

satisfied:  

u2 > 1+ 
u3

u5
                                                                                                      (4.4) 

So, the equilibrium point  E0  is locally asymptotically stable in the Int.𝑅+
4  . However, it is  (a saddle point) 

unstable otherwise. 

 

The Jacobian matrix of system (2) at   E1   can be written as: 

 J1 = J (E1) = [aij]4x4                                                                                               (4.5) 

Here: 

a11 = 1- ( u2+ 2x̂ + (1+u1) ŷ ) ; a12 = u3- (1+u1) x̂ ; a13 = - x̂ ; a14 = 0 ; 

a21 =  u2 + u1ŷ ; a22 = u1x̂ - (u3 + u5) ; a23 = - u4ŷ ; a24 = 0 ; a31 = a32 = 0 ; 

a33 =  u8x̂  + u9 (1-m)ŷ - (u7 + u10); a34 = u11 ; a41= a42 = 0 ; a43 = u7 + u9mŷ ; a44= -(u10+u11+u12). 

 
hence,  the characteristic equation of this Jacobian matrix is given by: 

[ λ
2 
+ R1 λ + R2 ] [ λ

2 
+ R3 λ + R4 ] = 0  

 

Where: 

R1 = ( u2 + u3 + u5+ 2 x̂ + (1+u1) ŷ ) – (1 + u1x̂ ) 

R2 = (u1 + u2 + 2(u3 + u5) ) x̂ + ( u3 + u5(1+u1) ) ŷ + u2u5 - ( u3 + u5 + 2u1 x̂
2
 ) 

R3= (u7 + 2u10 + u11+ u12 ) – ( u8 x̂ + u9 (1-m) ŷ )                                                                       

R4 = u7(u10 + u12 ) + u10 (u10+ u11+ u12) – (u8 (u10+u11+u12) x̂ + u9ŷ ((1-m) ( u10 + u12) + u11)). 
From which, we obtain that :  

                                                    λ1 x, y = - 
R1

2  
 ±  

1

2
 √R1

2  −  4 R2 

                                                          (4.6) 

 λ1 z, w = - 
R3

2  
 ±  

1

2
 √R3

2  −  4 R4 

Therefore all the eigenvalues have negative real part  provided that the following conditions are satisfied:  
 

         x̂
2 < 

(u1+u2+2(u3+u5))x ̂+ ( u5( 1+u1)+ u3)ŷ+ u5 ( u2−1)− u3

2u1
  , (4.7) 

        x ̂ < min { a, b }     
Where:  

               a =  
( u7+2u10+u11+u12)− u9(1−m) ŷ 

u8
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          b =  
u7(u10+ u12)+ u10(u10+u11+u12)− u9ŷ ((1−m)(u10+ u12)+ u11)

u8( u10+u11+u12)
 

 
So, the equilibrium point   E1 is locally asymptotically stable in the Int.𝑅+

4  . However, it is  (a saddle point) 

unstable otherwise. 
 

            In the following theorem, the local stability conditions of the positive equilibrium point   E2         are 

established. 

 

Theorem (3): Assume that the positive (coexistence) equilibrium point  E2= ( x
* 

,y
*
, z

*
 ,w

* 
)  exists in the 

Int.𝑅+
4  , and the following conditions are satisfied: 

p12
2  <  

2

3
  p11  p22                                                                                                                                                                (4.8) 

 

p13
2  <  

2

3
  p11  p33                           (4.9)  

 

p23
2  <  

2

9
  p22  p33                                                                                                                    (4.10)  

 

p24
2  <  

2

3
  p22  p44                                                                                                           (4.11)  

 

p34
2  <  

2

3
  p33  p44                                                                                                                                                                (4.12) 

    

Then   E2   is locally asymptotically stable in the 𝑅+
4  . 

proof: The Jacobian matrix  J (E2) of system (2)  is computed as follows: 

J2 = J (E2) = [bij]4x4                                                                                                                (4.13) 

Where: 

         b11 = 1- ( u2+2x
*
+(1+u1) y

*
+z

*
 ) ; b12 = u3 - (1+ u1) x

*
 ; b13 = - x

*
 ; b14 = 0 ; 

 

        b21 = u2+ u1y
*
 ; b22 =  u1x

*
- ( u3 + u5+ u4z

* 
) ; b23 = - u4y

*
 ; b24 = 0 ; b31 = u8z

*
 ; 

              

        b32 = u9(1-m) z
*
; b33 =  u8x

*
+ u9(1-m) y

*
 - ( u7+ u10+ u6w

*
 ) ; b34 =  u11-u6z

* 
; 

 

        b41 = 0 ; b42 = u9mz
*
 ; b43 =  u7+ u9my

*
+ u6w

*
 ; b44 = u6z

*
 - (u10+u11+u12) . 

  
It is easy to verify that, the linearized system of system (2) can be written as: 

dw

dt
 = J (E2) w , where  w = ( w1,w2,w3,w4 )

t  and  wi = xi - xi
∗ .  

                                         
Now, consider the following function 

V2( w1,w2,w3,w4 ) = 
w1

2

2
 + 

w2
2

2
 + 

w3
2

2
 + 

w4
2

2
  

 

Clearly, V2: 𝑅+
4  → R   is C

1
  positive definite function. Now, by differentiating  V2  with respect to time t and 

doing some algebraic manipulation, gives that: 

dv2

dt
 = - p11 w1

2 + p12 w1w2 – p22 w2
2 - p33 w3

2 + p13 w1w3 + p23 w2w3 – p44 w4
2 + p24 w2w4 +        

           p34 w3w4 
Here: 

       p11 = u2 + 2x
*
+ (1+u1) y

*
 + z

*
 - 1;  p12 = u2 + u3 +u1y

*
 - ( 1+u1 ) x

*
;  p13 = u8z

*
 - x

*
 ;      
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       p22 = u3+u5 + u4z
*
- u1x

*
;  p23 = u9(1-m) z

*
- u4y

*
;  p33 = u7+u10+u6w

*
- (u8x

*
+ u9(1-m) y

*
);     

       p34 = u7 + u11 + u9my
*
+ u6w

*
 - u6z

*
;  p44 = (u10+ u11+ u12) – u6z

*
;  p24 = u9mz

*
 .  

 

 According, to conditions (4.8 – 4.12) we get: 

𝑑𝑣2

𝑑𝑡
 ≤ - [√𝑝11

√2
 𝑤1 −  √𝑝22

√3
  𝑤2]

2

 - [√𝑝11

√2
 𝑤1 −  

√𝑝33

√3
  𝑤3]

2

 - [√𝑝22

√3
 𝑤2 − 

√𝑝33

√3
  𝑤3]

2
 

   

𝑝22√] ــ           

√3
 𝑤2 −  √𝑝44

√2
  𝑤4]

2

 - [
√𝑝33

√3
 𝑤3 −  √𝑝44

√2
  𝑤4]

2

 

Then 
𝑑𝑣2

𝑑𝑡
 < 0 under the given conditions and hence V2 is strictly Lyapunov function. Thus E2 is   a locally 

asymptotically stable in the 𝑅+
4  . And hence the proof is complete.                                                       ■                                                      

 
5. Global stability analysis of system (2): 
           In this section the global stability analysis of the equilibrium points, which are locally asymptotically stable 

of system (2) is studied analytically by use the suitable of Lyapunov   function as shown in the following 

theorems. 

 

Theorem (4): Assume that the vanishing equilibrium point E0 of system (2) is locally asymptotically stable in 

the  𝑅+
4 , and the following condition is satisfied: 

u4 >  
u9

u8
                                                                                                          (5.1)    

Then  E0  is globally asymptotically stable on the region  Ω  R+
4  , where Ω = { (x,y,z,w) : x > 1 }. 

proof: Consider the following function: 

              V0 (x,y,z,w) = c1
 
x + c2y + c3 z + c4 w  

Clearly, V0: 𝑅+
4  → R is C

1
  positive definite function, where ci; i = 1,2,3,4  are positive constants to be 

determined. Now, by differentiating  V0  with respect to time t and doing some algebraic manipulation, gives 

that: 

dv0

dt
 = - c1 x

2
 +(c1(1-u2) + c2u2) x –(c1(1+u1) – c2u1) xy –(c1 – c3u8) xz +(c1u3 – c2(u3+ u5 )) y (c2u4 –

c3u9(1-m) – c4u9m)yz – (c3 –c4) u6zw –(c3( u7+u10) – c4u7)z+(  c3u11 – c1( u10+u11+u12 )) w  

 
So, by choosing the positive constants as:   

c1 = c2 = 1  and  c3 = c4 =  
1

𝑢8
  , it is obtain that:  

dv0

dt
 = - x2

 + x – xy – u5y – ( u4 - 
u9

u8
 ) yz – ( 

u10

u8
 ) z – ( 

u10+u12

u8
 ) w  

Therefore, according to condition (5.1) we obtain that:   
dv0

dt
 ≤ x (1 – x), then  

dv0

dt
 < 0,  when  x > 1 and 

hence V0 is strictly Lyapunov  function.  

Therefore, E0   is a globally asymptotically stable on the region   Ω  R+
4  , and the proof is complete. ■ 

 
According to the above theorem  its easy to concludes that, the basin of attraction of the vanishing equilibrium 

point is   B(E0) = Ω = {(x, y, z, w) ⋹ R+
4 : x > 1} . 

 

Theorem (5): Assume that the predator free equilibrium point E1 of system (2) is locally asymptotically stable in  the  

𝑅+
4 , in addition to condition (5.1) the following conditions are satisfied: 

(-1 + 
u3

x
 + 

u2

y
 )2

 < 4 ( 1 + 
u3 ŷ

x x̂
  ) ( 

u2 x̂

y ŷ
 )                                                                    (5. 2) 

x̂ + u4 ŷ < 
u10

u8
                                                                                                           (5. 3)  

Then  E1  is globally asymptotically stable in the 𝑅+
4  . 

proof: Consider the following function: 
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V1 (x,y,z,w) = c1 ( x - x̂ - x̂ ln 
x

x̂ 
 ) + c2 ( y -ŷ - ln 

y

ŷ
 ) + c3 z + c4 w  

Clearly, V1: 𝑅+
4  → R is C

1
  positive definite function, where  ci ; i = 1,2,3,4  are positive constants     to be 

determined. Now, by differentiating V1  with respect to time t and doing some algebraic manipulation, gives 

that: 

dv1

dt
 = - c1 ( 1 + 

u3 ŷ

x x̂
 ) (x - x̂ )

2
 – c2 (  

u2 x̂

y ŷ
 ) ( y -ŷ )

2
 +( - c1 ( 1 + u1 - 

u3

x
 ) + c2 ( u1 +

u2

y
 )) (x - x̂)    ( y -

ŷ ) + ( c1x̂ + c2u4ŷ - c3 ( u7+u10) + c4u7 ) z – ( c1 – c3u8 ) xz – ( c2u4 – c3u9(1-m) – c4u9m ) yz + ( c3u11 

– c4(u10+u11+u12) ) w – ( c3 – c4 ) u6zw. 

  
So, by choosing the positive constants as:   

c1 = c2 = 1   and   c3 = c4 =  
1

u8
  , it is  obtain   that:  

         
dv1

dt
 = - q11(x - x̂) 

2
 + q12(x - x̂) ( y -ŷ ) – q22( y -ŷ ) 

2
 – q23yz + B1 z – B2 w 

Here:  

          q11 =( 1 + 
u3 ŷ

x x̂
 ); q12 =( -1 + 

u3

x
 + 

u2

y
 ); q22= ( 

u2 x̂

y ŷ
 ); q23  = ( u4 - 

u9

u8
 ); B1= ( x̂ + u4ŷ - 

u10

u8
 ); 

          B2= (  
u10 + u12

u8
 ). 

Note that,  B1 is negative provided that condition (5.3) is satisfied, while q23  is positive provided that condition 

(5.1) hold. Therefore, by using  the given conditions. We obtain that: 

 
dv1

dt
 ≤ - ( √q11 (x - x̂) - √q22 ( y -ŷ ) )

2
  

Then  
𝑑𝑣1

𝑑𝑡
 < 0 under the given conditions and hence V1 is strictly Lyapunov function. Thus E1   is globally 

asymptotically stable in the  𝑅+
4  . And hence the proof is complete.                            ■                                                        

 
            In the following theorem, the conditions of the globally asymptotically stable of the positive equilibrium 

point   E2 are established. 

Theorem (6): Assume that the positive (coexistence) equilibrium point E2 of system (2) is locally 
asymptotically stable in the  𝑅+

4 , and the following conditions are satisfied: 
 

p12
2  < p11 p22                                                                                                               (5.4) 

 

p13
2  < 

2

3
  p11 p33                                                                                                           (5.5) 

 

p23
2  < 

 2

3
  p22 p33                                                                                                          (5.6) 

 

p34 
2 < 

 4

3
  p33 p44                                                                                                           (5.7) 

 

m <  
u4

u9
                                                                                                      (5.8) 

 

R1 z + R2 < µ1 + µ2 + µ3 +  µ4                                                                                     (5.9) 

 

Where:     

 p11= ( 1 + 
u3 y∗

x x∗  );  p12= ( -1 + 
u3

x
 + 

u2

y
 );  p22 = ( 

u2 x∗

y y∗  );  p33= ( 
u11 w∗

z z∗  );  p13= u8 ;               p23= u9 

(1-m);  p44= ( 
z∗ (  u7+ u9my∗ )

w w∗ 
 );  p34= (  

u11

z
 + 

u7

w
 );  R1= ( x∗ + u4y∗);                     R2= ( 

u9 m 

w
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y
*
z

*
w

*
 )  and                                                                                                                     µ1= 

[
√p11

√2
( x –  x ∗ )  −  

√p22

√2
  ( y –  y ∗ )]

2

;  µ2= [
√p11

√2
( x –  x ∗ )  −  

√p33

√3
  ( z–  z ∗ )]

2

; 

µ3=[
√p22

√2
( y –  y ∗ )  − 

√p33

√3
  ( z–  z ∗ )]

2

;  µ4= [
√p33

√3
( z –  z ∗ )  −  √p44  ( w–  w ∗ )]

2

; 

 

Then, E2   is globally asymptotically stable in the 𝑅+
4  . 

proof: Consider the following function: 

V2 (x,y,z,w) = k1 ( x - x
* 
- x

* 
ln 

x

  x∗
 ) + k2 ( y – y

* 
- y

*
 ln 

y

y∗
 ) + k3 ( z – z

*
 - z

*
 ln 

z

z∗
 ) +                          

                      k4 ( w – w – w
*
 ln 

w

  w∗ )  

Clearly, V2: 𝑅+
4  → R  is C

1
  positive definite function, where  ki ; i = 1,2,3,4  are positive constants to be 

determined. Now, by differentiating  V2  with respect to time t and doing some algebraic manipulation, gives 

that: 
dv2

dt
 = - k1( 1 + 

u3 y∗

x x∗
 ) (x - x

*
) 

2
 + ( - k1( 1 + u1 - 

u3

x
 ) + k2( u1 +

u2

y
 ) ) (x – x

*
) (y – y

*
) –           

k2( 
u2 x∗

y y∗ ) (y – y
*
)
2
 – k3 ( 

u11 w∗

z z∗  ) (z – z
*
)
2
 + k3u8 (x - x

*
) (z – z

*
) + k3u9 (1-m) (y – y

*
)(z – z

*
 k4 ــ (

(
z∗ (  u7+ u9my∗ )

w w∗ 
)(w –w

*
)
2 

+ (- k3(u6 - 
u11

z
 ) + k4(u6 - 

u7

w
 )) (z – z

*
) (w –w

*
) +                     (k1 

x
*
+k2u4y

*
)z + k4( 

u9 m 

w
 y*

z
*
w

*
) – ( k2u4 – k4u9m ) yz – k1xz – k4 

u9 m 

w
 w*

yz – k4u9m y
*
z

*  

So, by choosing the positive constants as:  
k1 = k2 = k3 = k4 = 1 , it is obtain that:  
dv2

dt
p11 (x - x ــ = 

*
) 

2
 + p12 (x – x

*
) (y – y

*
) – p22 (y – y

*
)
2
 – p33 (z – z

*
)
2
 + p13 (x - x

*
)(z – z

*
)      

        +   p23 (y – y
*
) (z – z

*
) – p44 (w –w

*
)
2 

+ p34 (z – z
*
)(w –w

*
) + R1 z + R2  

Therefore, according to the conditions (5.5 - 5.8) we obtain that:    
dv2

dt
 ≤ - ( µ1 + µ2 + µ3 +  µ4 ) + R1 z + R2    

Then  
𝑑𝑣2

𝑑𝑡
 < 0   under the condition (5.9) and hence V2 is strictly Lyapunov function. Thus  E2  is globally 

asymptotically stable in the 𝑅+
4  . And hence the proof is complete.                                                            ■   

                            

6. Numerical analysis of system (2): 
          In this section the dynamical behavior of system (2) is studied numerically for different sets of parameters 

and different sets of initial points. The objectives of this study are: first investigate the effect of varying the 

value of each parameter on the dynamical behavior of system (2) and second confirm our obtained analytical 

results. It is observed that, for the following set of hypothetical parameters that satisfies stability conditions of 

the positive equilibrium point, system (2) has a globally asymptotically stable positive equilibrium point as 

shown in Fig. (1). 

Note that, from now onward the  red , blue , sky blue and green colors are used to describing the trajectories   of 

the susceptible prey  x , infected prey  y , susceptible predator  z and  infected   predator  w  respectively . 

u1 = 0.5 , u2 = 0.1 , u3 = 0.1 , u4 = 0.5 , u5 = 0.5 , u6 = 0.3 , u7 = 0.2 , u8 = 0.5 ,                                      

u9 = 0.5, u10 = 0.1 , u11 = 0.3 , u12 = 0.2 , m = 0.6 .                                                             (6.1)   
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Fig (1): Time series of the solution of system (2) that started from four different initial points (1.5, 0.8, 0.9, 

0.9) , (0.5, 0.4, 0.8, 0.9) , (0.4, 0.4, 0.7, 0.7) and (0.3, 0.3, 0.5, 0.5) for the data given by Eq. (6.1). (a) 

trajectories of  x as a function of time, (b) trajectories of y as a function of time, (c) trajectories of z as a 

function of time, (d) trajectories of  w as a function of time. 

 

Clearly, figure (1) shows that system (2) has a globally asymptotically stable as the solution of  system (2) 

approaches asymptotically to the positive equilibrium point  E2= (0.41, 0.4, 0.18, 0.06) starting from four 

different initial points and this is confirming our obtained analytical results. 

 
             Now in order to discuss the effect of the parameters values of system (2) on the dynamical behavior of 

the system, the system is solved numerically for the data given in Eq. (6.1) with varying one parameter each 

time. It is observed that varying the parameters values ui ; i = 1,3,4,5,6,9,11,12 and  m, do not  have any effect 

on the dynamical behavior of system (2) and the solution of the system still approaches to positive equilibrium 

point E2= (x
*
,y

*
,z

*
,w

*
). However, varying the infection rates of susceptible prey and predator  u2 and  u7, 

respectively keeping other parameters fixed as given in equation (6.1), leads to extinction in  predator species as 

shown in Fig. (2), for the parameters given by Eq. (6.1) with  u2 = u7 = 0.001 . 
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  Fig. (2): Time series of the solution of system (2) for the data given by Eq. (6.1) with u2 = u7 = 0.001.   
From the above figure it is clear that as the predation process of predator decrease, the trajectory of the 

system (2) approaches asymptotically to the predator free equilibrium point  E1= ( 0.79 , 0.2 , 0 , 0 ). Also when 

0.001 < u2 ≤ 0.0099 and 0.001 < u7 < 0.0036, then the solution of the system still approaches to the predator 

free equilibrium point  E1= (x
*
,y

*
,0,0). 

Finally, the dynamical behavior at the vanishing equilibrium point   E0 is investigated by choosing the infection 

rate of  susceptible prey   1.2  ≤  u2 < 34.94  and keeping other parameters fixed as given in Eq.(6.1), as shown  

in Fig.(3). 

 
Fig. (3):Time series of the solution of system (2) for the data given by Eq. (6.1) with 1.2  ≤  u2 <  34.94.  

 
Obviously, Fig.(3) shows clearly the convergence of the solution of system (2) to the vanishing equilibrium point  

E0 = (0,0,0,0) when the parameter increase up to a specific values. Clearly the used values in      Fig. (3) satisfy 

the stability conditions of the vanishing equilibrium point . 
 

7. Conclusion and Discussion 

          In this paper, we proposed and analyzed an eco-epidemiological mathematical model that described the 

dynamical behavior of   prey -predator model with Lotka -Volterra type of functional response and linear 

incidence rate for the disease in prey and predator respectively. It is assumed that the disease is transmitted from a 

prey to predator during the predation process, also the disease transmitted within the same species by two ways: 

from an external source as well as through contact with the infected individuals. The model included four non-

linear autonomous differential equations that describe the dynamics of four different  population  namely 

susceptible prey  x, infected prey  y, susceptible predator  z  and infected predator w .The boundedness of the 

system (2) has been discussed. The dynamical behavior of system (2) has been investigated  locally as well as 

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.5

1

1.5

Time

p
o
p
u
la

ti
o
n

infection prey (y)

infection predator (w)

susceptible prey (x)

susceptible predator (z)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.5

1

1.5

Time

po
pu

la
tio

n

infucted prey (y)

infucted predator (w)

susceptible prey (x)

susceptible predator (z)

http://www.iiste.org/


Mathematical Theory and Modeling                                                                                                                                                  www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.5, No.4, 2015 

 

196 

globally. Further, it is observed that the vanishing equilibrium point (E0) always exist, and it is locally 

asymptotically stable point if and only if condition (4.4) hold, in addition to that it is globally on the region Ω 

R+
4   if the condition (5.1) hold. The predator free equilibrium point (E1) exists under the conditions (3.3-3.4), it is 

locally asymptotically stable point  if and only if the condition (4.7) hold  as well as it is globally if the conditions 

(5.1-5.3) hold. The positive equilibrium point (E2) of system (2) exists provided that the conditions (3.14-3.17) 

are hold and the isoclinic g1(x, y) = 0  intersect  the x -axis at the positive value namely x1. It is locally 

asymptotically stable point  if and only if conditions  (4.8-4.12) hold, in addition it is globally if the conditions 

(5.5-5.9) are hold. To understand the effect of varying each parameter on the global dynamics of system (2) and to 

confirm our above analytical results, system (2) has been solved numerically and the following results are 

obtained:  

1- The system (2) does not have periodic dynamic. 

2- For the set of hypothetical parameters values given Eq. (6.1), system (2) approaches asymptotically to a 

globally asymptotically stable point E2= (0.41, 0.4, 0.18, 0.06). Further, with varying one parameter 

each time, it is observed that varying the parameters values ui ,i = 1,3,4,5,6,9,11,12 and  m, do not  

have any effect on the dynamical behavior of system (2) and the solution of the system still approaches 

to positive equilibrium point  E2= (x
*
,y

*
,z

*
,w

*
) . 

3- As the infection rates parameters u2 and u7  for susceptible prey and predator in system (2) decreases 

keeping other parameters fixed as in Eq.(6.1),then the susceptible and infected predator will face 

extinction and the solution of the system (2) still stable and approaches asymptotically  to the predator 

free  equilibrium point  E1= (x*, y*, 0, 0) . 

4- As the infection rate of susceptible prey  u2  increase with  keeping other parameters as in Eq.(6.1) , 

then the solution of system (2) approaches asymptotically to the vanishing equilibrium point     E0 = 

(0,0,0,0) . 
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