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Abstract

In this paper, we compare the modification of He’s variational iteration method (MVIM), and He’s
homotopy perturbation method (HPM), in order to obtain the approximate solution of nonlinear frac-
tional integro-differential equations of Volterra and Fredholm integro-differential equations, we present
some examples to find out accuracy of the methods.
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1. Introduction

The fractional integro-differential equations is a special kind of equations collecting integro-differential
equations and calculus,([17],[18]). In recent years, there has been a growing mathematical formulations of
physical phenomena, such as nonlinear fractional analysis and their applications in the theory of Engineering,
Mechanics, Physics, Chemical kinetics, Astronomy, Biology Economics, potential theory and Electrostatics
contain integro-differential equations, ([3],[6],[15],[16]).

The variational iteration method was first proposed by He, ([1],[2],[13]), and was been worked out over a
number of years by many authors. This method has been shown to effectively, easily and accurately solve a
large class of nonlinear problems.In this paper our propose the reliable modification of He’s VIM (MVIM),
that was introduced by Gharbani,[1], for solving the nonlinear fractional integro-differential equations by
constructing an initial trial-function without unknown parameters so that one iteration leads to exact solu-
tion.
The other propose of this paper we study He’s perturbation method,[7], for approximating the solution of
nonlinear fractional integro-differential equations.We well consider fractional order integro-differential equa-
tions of the form:

Dαy(x) = g(x) + λ

∫ x

0

k(x, t)F (y(t)) dt, (1.1)

and

Dαy(x) = g(x) + λ

∫ 1

0

k(x, t)F (y(t)) dt, (1.2)

for x, t ∈ [0, 1], λ is a numerical parameter, where the function g(x), k(x, t) are known and y(x) is the
unknown function, Dα is Caputo’s fractional derivative and α is a parameter describing the order of the
fractional derivative and F (y(x)) = f(y(t))q, q > 1, is a nonlinear continuous function.
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2. Basic definitions

In this section we present some basic definitions and properties of the fractional calculus theory, which
are used in this paper,([5],[9],[14]).

Definition: 2.1

A real function y(x), x > 0, is said to be in the space Cµ, µ ∈ R, if there exists a real number p > µ, such
that y(x) = xpy1(x), where y1(x) ∈ C[0, 1). Clearly Cµ ⊂ Cβ if β ≤ µ.

Definition: 2.2

A function y(x), x > 0, is said to be in the space Cmµ , m ∈ N ∪ {0}, if y(m) ∈ Cµ.

Definition: 2.3

The left sided Riemann-Liouville fractional integral operator α ≥ 0, of a function, y ∈ Cµ, µ ≥ −1, is defined
as:

Iαy(x) =
1

Γ(α)

∫ x

0

(x− t)α−1y(t) dt, α > 0, x > 0 . (2.1)

I0y(x) = y(x) , (I0 = I idendity operator) . (2.2)

Definition: 2.4

Let y ∈ Cm−1, m ∈ N ∪ 0, then the Caputo’s fractional derivative of y(x) is defined as.

Dαy(x) =


Jm−αym(x), m− 1 < α ≤ m , m ∈ N ,

Dmy(x)
Dxm , α = m.

(2.3)

Hence, we have the following properties:

Iαy(x)Iβy(x) = Iα+βy(x), for all α, β ≥ 0, y ∈ Cµ, µ > 0 . (2.4)

Iαxγ =
Γ(γ + 1)

Γ(γ + 1− α)
xγ−α , (2.5)

for x > 0 , α ≥ 0 , γ > −1 .

IαDαy(x) = y(x)−
m−1∑
k=0

y(k)(0+)
xk

k!
, x > 0 . (2.6)

And Caputo fractional differentiation is a linear operation, similar to inter order differentiation.
Dα[λy(x) + µg(x)] = λDαy(x) + µDαg(x), whereλ and µ are constants.
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3. Numerical solution of nonlinear Volterra and Fredholm frac-
tional integro-differential equations

In this section the Modified of He’s Variational iteration Method and He’s Homotopy Perturbation
method are applied for solving nonlinear fractional integro-differential equations.

The Modified of He’s Variational iteration Method

In the first we will propose the reliable modification of the (VIM),[1], for solving nonlinear fractional
integro-differential equations withe initial conditions by constructing an initial trial-function without un-
known parameters.
Here,we consider the following fractional functional equation,

Ly(x) +Ry(x) +Ny(x) = g(x) , (3.1)

where Lx = Dα, R is a linear differential operator, N represents the nonlinear terms, and g is the source
term. By using (2.6) applying the inverse L−1

x to both sides of (3.1) we obtain:

y(x) = f(x)− L−1
x [Ry(x)]− L−1

x [Ny(x)] , (3.2)

where L−1
x = Iα , and L−1

x [g(x)] = f(x). Can be applied in the above equations (1.1) and (1.2) and using
the basic character of He s method is construction of a correction fractional for (3.1) which reads,

yn+1(x) = yn(x) +

∫ x

0

λ(t)[LyN (t) +RỹN (t) +Nỹn(t)− g(t)] dt , (3.3)

and

yn+1(x) = yn(x) +

∫ 1

0

λ(t)[LyN (t) +RỹN (t) +Nỹn(t)− g(t)] dt , (3.4)

where λ is a Lagrange multiplier which can be identified optimally via Variational theory,[13], yn is the nth
approximate solution of (1.1) or (1.2), and ỹn denotes a restricted Variation, δỹn = 0, to solve equations
(3.3) and (3.4) use a Lagrange multiplier resulting from the integration by parts.
Then the successive approximations yn(x), n ≥ 0 of the solution y(x) can obtain by using a Lagrange
multiplier and by using any selective function y0(x),([10],[11],[12]). The exact solution may be obtain by
using,

lim
x→∞

yn(x) = y(x) . (3.5)

As a result, we have the following Variational iteration formula for (3.2),
y0(x) is an arbitrary initial guess ,

yn+1(x) = f(x)− L−1
x [Ryn(x)]− L−1

x [Nyn(x)],

(3.6)

The MVIM, that was introduced by Ghorbai et al,[1], can be established based on the assumption that the
function f(x) of the iterative relation (3.6) can be divided into two parts, namely f0(x) and f1(x), then we
set,

f(x) = f0(x) + f1(x) . (3.7)

According to the assumption (3.7) and by the relationship (3.6), we construct the following Variational iter-
ation formula, 

y0(x) = f0(x) ,

y1(x) = f(x)− L−1
x [Rf0(x)]− L−1

x [Nf0(x)] ,

yn+1(x) = f(x)− L−1
x [Ryn(x)]− L−1

x [Nyn(x)] .

(3.8)
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He’s Homotopy perturbation method

The basic consider of homotopy perturbation method illustrated by consider the following nonlinear
functional equation,([4],[8]).

A(u) = y(x) , (3.9)

with the following boundary conditions, (U, ∂u∂n ) = 0, x ∈ Γ, where A is a general functional operator, U is a
boundary operator, y(x) is a known analytic function, and Γ is the boundary of domain Ω, the operator A
can be decomposed into two parts L and N , where L is linear and N is a nonlinear operator, equation (3.9)
can by rewritten as the following:

L(U) +N(U)− y(x) = 0 . (3.10)

We construct a homotopy V (x, p) : Ω× [0, 1] −→ R, which satisfies:

H(V, p) = (1− p)[L(V )− L(U0)] + p[A(V )− y(x)] = 0 , (3.11)

where p ∈ [0, 1] , x ∈ Ω,

or
H(V, p) = L(V )− L(U0) + pL(U0) + p[N(V )− y(x)] = 0 , (3.12)

where y0 is an initial approximation for the solution of equation (3.9). In this method, we use the homotopy
parameter p to expand:

V = V0 + pV1 + p2V2 + ... . (3.13)

The approximate will be obtained by taking the limit as p tends to 1,

U = lim
p→1

V = V0 + V1 + V2 + ... . (3.14)

To illustrate for equations (1.1) or (1.2) substituting (3.11) into (1.1) or (1.2) we obtain:

Dαyi(x) = p(gi(x) + λ

∫ x

0

k(x, t)F (y(t)) dt, (3.15)

or

Dαyi(x) = p(gi(x) + λ

∫ 1

0

k(x, t)F (y(t)) dt . (3.16)

We expand the solution of equations (1.1) or (1.2) in the following form:

yi(x) =

∞∑
i=0

piyi(x) = y0(x) + py1(x) + p2y2(x) + ... . (3.17)

Substituting (3.17) into (3.15) or (3.16) and collecting the terms with the same powers of p, we obtain a
series of equations of the form:

p0 : Dαy0(x) = 0,

p1 : Dαy1(x) = g(x) + λ
∫ x

0
k(x, t)F (y(t)) dt,

p2 : Dαy2(x) = λ
∫ x

0
k(x, t)F (y(t)) dt,

.

.

.
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or

p0 : Dαy0(x) = 0,

p1 : Dαy1(x) = g(x) + λ
∫ 1

0
k(x, t)F (y(t)) dt,

p2 : Dαy2(x) = λ
∫ 1

0
k(x, t)F (y(t)) dt,

.

.

.
that these equations can be easily solved by applying the operator Iα the inverse of the operator Dα, ac-
cording to equation (2.6), that is by setting p = 1, in equations (3.15) or (3.16) we can entirely determine
the (HPM) series solutions,([4],[8]).

y(x) =

∞∑
i=0

yi(x) . (3.18)

4.Numeical Examples

In this section we present some numerical examples of nonlinear fractional integro-differential equations
by the modification of He’s Variational iteration method and He’s Homotopy perturbation method.

Example 4.1

Consider the following nonlinear fractional integro-differential equation:

D0.9y(x) = g(x) +

∫ x

0

(x− t)2[y(t)]3 dt , (4.1)

where g(x) = 1
2

√
π

x2/5Γ(2/5)
− 16

315x
2/5, with the initial condition y(0) = 0, and exact solution y(x) =

√
x.

The solution according to(MVIM)

D0.9y(x) =
1

2

√
π

x2/5Γ(2/5)
− 16

315
x2/5 +

∫ x

0

(x− t)2[y(t)]3 dt . (4.1)

We take the operator I9/10 on both sides of equation (4.1) we obtain:

y(x) = y(0)−
m−1∑
k=0

y(k)(0+)
xk

k!
+ I9/10(

1

2

√
π

x2/5Γ(2/5)
− 16

315
x2/5 +

∫ x

0

(x− t)2[y(t)]3) dt . (4.2)

According to the original VIM (3.3) and corresponding the recursive scheme (3.6), we obtain:

f(x) = f0(x) + f1(x) = I9/10(
1

2

√
π

x2/5Γ(2/5)
− 16

315
) , (4.3)

f(x) =
√
x− 0.01103948449x27/5 , (4.4)

by assuming
f(x) =

√
x, f1(x) = −0.01103948449x27/5 , (4.5)

with starting of the initial approximation, y(x) = f0(x) =
√
x, we obtain,

y0(x) =
√
x , (4.6)
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y1(x) =
√
x− 0.01103948449x27/5 + L−x 1 , (4.7)

y1(x) =
√
x− 0.01103948449x27/5 + I9/10(

∫ x

0

(x− t)2[
√
t]3 dt) ,

y1(x) =
√
x .

yn+1(x) =
√
x− 0.01103948449x27/5 + L−1

x [yn(x)] =
√
x , n ≥ 1 (4.8)

in similarly view equation (4.7) it is obtained y(x) =
√
x, where it is the exact solution of equation (4.1).

The solution according to(HPM)

D9/10y(x) =
1

2

√
π

x2/5Γ(2/5)
− 16

315
x2/5 +

∫ x

0

(x− t)2[y(t)]3 dt . (4.1)

According to (3.16) we construct the following homotopy:

D9/10y(x) = p(g(x) +

∫ x

0

(x− t)2[y(t)]3 dt) , (4.9)

substituting (3.13) into (4.9) we obtain:

p0 : D9/10y0(x) = 0,

p1 : D9/10y1(x) = g(x) +
∫ x

0
(x− t)2[(y0(t)]3 dt

P 2 : D9/10y2(x) =
∫ x

0
(x− t)2[3(y0(t))2y1(t)] dt

p3 : D9/10y3(x) =
∫ x

0
(x− t)2[3(y0(t))2y2(t) + 3y0(x)(y1(t))2] dt

p4 : D9/10y4(x) =
∫ x

0
(x− t)2[3(y0(t))2y3(t) + 6y0(t) + y1(t) + y2(t) + (y − 3(t))2] dt,

.

.

.
by applying the operators I9/10 to the above sets we obtain:

y0(x) = 0

y1(x) = 1
2

√
π

x2/5Γ(2/5)
− 16

315x
2/5 +

∫ x
0

(x− t)2[y0(t)]3 dt ,

y1(x) =
√
x− 0.01103948449x27/5

y2(x) = 0, y3(x) = 0, . . .

y(x) =

∞∑
i=0

yi(x) = y0(x) + y1(x) + y2(x) + y3(x) + . . . . .

Therefore the approximate solution of (4.1),

y(x) =
√
x− 0.01103948449x27/5.

Table 1, Figure 1 and 2 shown the numerical result of example 4.1 .
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Figure 1: Numerical result of example 4.1

Figure 2: Approximate solution of example 4.1
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x exact = (MV IM) Approximant by(HPM) Error of(HPM)

0.1 0.3162277660 0.3162277221 4.39× 10−8

0.2 0.4472135955 0.4472117398 0.0000018557

0.3 0.5477225575 0.5477059844 0.0000165731

0.4 0.6324555320 0.6323771759 0.0000783561

0.5 0.7071067812 0.7068453323 0.0002614489

0.6 0.7745966692 0.7738968827 0.0006997865

0.7 0.8366600265 0.8350513148 0.0016087117

0.8 0.8944271910 0.8911186637 0.0033085273

0.9 0.9486832981 0.9424336100 0.0062496881

1 1.0 0.9889605155 0.0110394845

Table 1. Indicate the amount of error in Example 4.1

Example 4.2

Consider the following nonlinear fractional integro-differential equation:

D1/3y(x) =
9

5

x5/3

Γ(2/3)
− 7

40
x+

1

4

∫ 1

0

x(1− t)[y(t)]2 dt, (4.10)

with the initial condition y(0) = 1 and exact solution y(x) = 1 + x2.

The solution according to(MVIM)

D1/3y(x) =
9

5

x5/3

Γ(2/3)
− 7

40
x+

1

4

∫ 1

0

x(1− t)[y(t)]2 dt,

we take the operator I1/3 on both sides of equation (4.10) we obtain:

y(x) = y(0)−
m−1∑
k=0

y(k)(0+)
xk

k!
+ I1/3(

9

5

x5/3

Γ(2/3)
− 7

40
x+

1

4

∫ 1

0

x(1− t)[y(t)]2 dt). (4.11)

According to the original VIM (3.3) and corresponding the recursive scheme (3.6) we obtain:

f(x) = f0(x) + f1(x) = 1 + I1/3(
9

5

x5/3

Γ(2/3)
− 7

40
x) , (4.12)

f(x) = 1 + x2 − 0.1469798559x4/3 ,

by assuming,
f0(x) = 1 + x2 , f1(x) = −0.1469798559x4/3 ,

with starting the initial approximation, y0(x) = f0(x) = 1 + x2, we obtain:

y0(x) = 1 + x2,

y1(x) = 1 + x2 − 0.1469798559x4/3 + L−1
x [f0(x)],

y1(x) = 1 + x2 − 0.1469798559x4/3 + I4/3(

∫ 1

0

x(1− t)[y(t)]2 dt),

y1(x) = 1 + x2,

yn+1(x) = 1 + x2 − 0.1469798559x4/3 + L−1
x [yn(x)] = 1 + x2 , n ≥ 1, (4.13)

in similarly view equation (4.14) it is obtained, y(x) = 1 + x2, where it is the exact solution of (4.10).
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The solution according to(HPM)

D1/3y(x) =
9

5

x5/3

Γ(2/3)
− 7

40
x+

1

4

∫ 1

0

x(1− t)[y(t)]2 dt, (4.10)

According to (3.16) we construct the following homotopy:

D1/3 = p(g(x) +
1

4

∫ 1

0

x(1− t)[y(t)]2 dt). (4.14)

Substituting (3.13) into (4.14),

p0 : D1/3y0(x) = 0,

p1 : D1/3y1(x) = g(x) + 1
4

∫ 1

0
x(1− t)[y0(t)]2 dt,

p2 : D1/3y2(x) = 1
4

∫ 1

0
x(1− t)[2y0(t)y1(t)] dt,

p3 : D1/3y3(x) = 1
4

∫ 1

0
x(1− t)[2y0(t)y2(t) + (y1(t))2] dt,

p4 : D1/3y3(x) = 1
4

∫ 1

0
x(1− t)[2y0(t)y3(t) + 2y2(t)y1(t)] dt,

.

.

.
by applying the operators I1/3 to the above sets we obtain:

y0(x) = 1,

y1(x) = x2 − 0.04199424454x4/3,

y2(x) = 0.03272782533x4/3,

y3(x) = 0.008024681284x4/3,

y(x) = 0.0009942270254x4/3,
.
.
.

therefor the approximations to the solution of equation (4.10) will be determined as:

y(x) =

∞∑
i=0

yi(x) = y0(x) + y1(x) + y2(x) + y3(x) + y4(x) + ... ,

Table 2, Figure 3 and 4 shown the numerical result of example 4.2 .

y(x) ∼= 1 + x2 − 0.00024751090x4/3.
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Figure 3: Numerical result of example 4.2

Figure 4: Approximate solution of example 4.2
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x exact = (MV IM) Approximant by(HPM) Error of(HPM)

0 1 1.0 0.

0.1 1.01 1.009988512 0.000011488

0.2 1.04 1.039971051 0.000028949

0.3 1.19 1.089950292 0.000049708

0.4 1.16 1.159927053 0.000072947

0.5 1.25 1.249901775 0.000098225

0.6 1.36 1.359874745 0.000125255

0.7 1.49 1.489846164 0.000153836

0.8 1.64 1.639816185 0.000183815

0.9 1.81 1.809784928 0.000215072

1 2.00 1.999752489 0.000247511

Table 2. Indicate the amount of error in Example 4.2

Example 4.3

Consider the following nonlinear fractional integro-differential equation:

D2/3y(x) = y(0)−
m−1∑
k=0

y(k)(0+)
xk

k!
+

81

28

x7/3
√

3Γ(2/3)

π
−
√
x

8
+

∫ 1

0

√
x t [y(t)]2 dt , (4.15)

with the initial condition y(0) = 0 and exact solution y(x) = x3.

The solution according to(MVIM)

Now we take the operator I2/3 on both sides of equation (4.14) we obtain:

y(x) = I2/3(
81

28

x7/3
√

3Γ(2/3)

π
−
√
x

8
+

∫ 1

0

√
x t [y(t)]2 dt), (4.16)

according to the original VIM (3.3) and corresponding the recursive scheme (3.6) we obtain:

f(x) = f0(x) + f1(x) = I2/3( 81
28
x7/3
√

3Γ(2/3)
π −

√
x

8 ), (4.17)

f(x) = x3 − 0.1023508743x7/6,

by assuming

f0(x) = x3, f1(x) = −0.1023508743x7/6, (4.18)

with starting of the initial approximation, y0(x) = f0(x) = x3, we obtain:

y0(x) = x3,

y1(x) = x3−0.1023508743x7/6+L−1
x [f0(x)], (4.19)

y1(x) = x3 − 0.1023508743x7/6 + I2/3(
∫ 1

0

√
xt(t3))2 dt),
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y1(x) = x3

yn+1(x) = 0.1023508743x7/6+L−1
x [yn(x)] = x3, n ≥ 1, (4.20)

in similarly view equation (4.18) it is obtained, y(x) = x3, where it is the exact solution of equation (4.10).

The solution according to(HPM)

D2/3y(x) =
81

28

x7/3
√

3Γ(2/3)

π
−
√
x

8
+

∫ 1

0

√
x t [y(t)]2 dt , (4.14)

According to (3.16) we construct the following homotopy:

D2/3y(x) = p(g(x)+
∫ 1

0

√
xt[y(t)]2 dt). (4.21)

Substituting (3.13) into (4.21),

p0 : D1/3y0(x) = 0,

p1 : D1/3y1(x) = g(x) +
∫ 1

0

√
x t [y0(t)]2 dt,

p2 : D1/3y2(x) =
∫ 1

0

√
x t [2y0(t)y1(t)] dt,

p3 : D1/3y3(x) =
∫ 1

0

√
x t [2y0(t)y2(t) + (y1(t))2] dt,

p4 : D1/3y3(x) =
∫ 1

0

√
x t [2y0(t)y3(t) + 2y2(t)y1(t)] dt,

.

.

.
by applying the operators I2/3 to the above sets we obtain:

y0(x) = 0,

y1(x) = x3 − 0.1023508743x7/6,

y2(x) = 0,

y3(x) = 0.07715011686x7/6,

y4(x) = 0,

.

.

.

therefor the approximations to the solution of equation (4.14) will be determined as:

y(x) =

∞∑
i=0

yi(x) = y0(x) + y1(x) + y2(x) + y3(x) + y4(x) + ... ,

y(x) =∼= x3 − 0.02520075744x7/6.
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Table 3, Figure 5 and 6 shown the numerical result of example 4.3 .

Figure 5: Numerical result of example 4.3

Figure 6: Approximate solution of example 4.3
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x exact = (MV IM) Approximant by(HPM) Error of(HPM)

0.1 0.001 −0.000716907618 0.001716907618

0.2 0.008 0.004145672716 0.003854327284

0.3 0.027 0.02081430658 0.00618569342

0.4 0.064 0.05534732781 0.00865267219

0.5 0.125 0.1137743388 0.0112256612

0.6 0.216 0.2021135878 0.0138864122

0.7 0.343 0.3263775651 0.0166224349

0.8 0.512 0.4925754077 0.0194245923

0.9 0.729 0.7067141165 0.0222858835

1 1.000 0.9747992426 0.0252007574

Table 3. Indicate the amount of error in Example 4.3

5. Conclusion

From the above result we find that the modification of He s variational iteration method (MVIM), is better
than He s homotopy perturbation method (HPM), the results obtain by using Maple 16 .
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