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Abstract: 

        Let M be a -ring and ,  be two endomorphisms of M. 

        In this paper, some result on the centralizing of (,)-derivations on a subset S of  a prime -ring 

M. Also we study the commutativity of M by using the concepts centralizing and commuting of a (,)-

derivations of M. 

If M is a prime -ring of characteristic not equal 2 has a non-zero divisors and satisfying (). Suppose 

there exists a non-zero  (,)-derivation d  of M such that  the  mapping x  [d(xx),x] is 

centralizing and   (x) ∓ (x) = 0 ,    [ (x),x] = [(x),x]= 0  for all x  M and ,   then M is 

commutative. 
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1- Introduction: 

        The study of -rings  was introduced by Nobusawa [1] and further generalized by 

Barnes [2],M. Ashraf, A. Ali and S. Ali was study (,)-derivation on aprime near ring [3], In 

2003,S.M.A.Zaidi ,M. Ashraf and S. Ali gave more properties of (,)-derivations on prime 

rings[4], afterward in 2008,M.A. Ozturk and Y. Ceven [5] defined (,)-derivation on gamma 

near rings, where ,  are endomorphisms . 

In [6] S.M. Salih and A.M. Kamal  in 2012 present the definition of (,)-derivations on a 

prime . 

Note that Bresar[7] , Mayne [8] and J. Luh[9] have developed some remarkable results on 

prime rings with commuting and centralizing mappings. Y. Ceven[10] worked on Jordan left 

derivation on completely prime -ring that make the -ring commutative with an 

assumptions. 

Barens in [2] defined the -ring is a pair (M,) of two additive abelian groups for which there 

exist a map from MM  M , i.e. the image of (x,,y) will be denoted by xy, for all x, 

y  M and    and this map satisfying  

(i)  (x + y)z = xz + yz 

(ii)  x ( + ) y= xy + xy 

(iii) x (y + z) = xy + xz 

(iv) (xy)z = x(yz) 

 holds for all x, y, z  M and ,    . Then M is called a -ring.  

Suppose that M is a -ring. Then  M is called a prime -ring if  xMy = {0} implies x = 0  

or  y = 0, and M is called semi-prime -ring if xMx = {0} implies x = 0.forthermore M is 

said to be commutative -ring if xy= yx hold for all x, y  M and    , moreover the set 

Z(M)={ x  M | xy= yx , for all y  M and   } is called the center of the  -ring 

M[11].  

A -ring M  is called 2-torsion free if 2x = 0 implies x = 0, for all x M, [11]. 

For any x,yM and , the symbol [x,y] will be represent for the commutator xy – yx,. 

We denote the following assumption by (*) 

         xyz = xyz  hold for all x, y , z  M and ,     
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 The above commutator satisfies the following  

              [xy,z] = x[y,z] + [x,z]y  and  

               [x,yz] = y[x,z] + [x,y]z 

Suppose again that M is a -ring, an additive mapping d: M  M is called a derivation if 

             d(xy) = d(x)y + xd(y), and  

it is called Jordan derivation if        d(xx) = d(x)x + xd(x)  

 holds  for all x, y  M and   . 

In [12] the concept of (,)-derivations in rings defined as follow an additive mapping d: M 

 M is called (,)-derivation if  

              d(xy) = d(x) (y)  + (x)d(y)  

 and Jordan (,)-derivation if d(xx) = d(x) (x)  + (x)d(x)  

 holds for all x, y  M and    where ,  are endomorphisms of  M. 

An additive mapping  f  of a prime -ring M is called centralizing on a subset S of M if [x, f 

(x)]  Z(M) for all x  S and    and it called commuting on a subset S of M if [x, f (x)] 

= 0 hold for all x  S and   , [11]. 

        The objective of this paper is to study the centralization of the (,)-derivation on a 

subset S of a prime -ring M and study the commutativity of M. We need the following 

lemma: 

Lemma1.1:[13] let M be a prime  -ring. If a Z(M) and ab Z(M) then either a=0 or b 

Z(M).  

 

2-Centralizing (,)-Derivations  

The main purpose of this section is to study the centralization on asubset S of prime -ring M. 

Lemma2.1:  

        Let M be a prime -ring of characteristic not equal 2 satisfying () and let S be a Jordan 

subring of M, if d is a Jordan (,)-derivation of S such that [x,(x)] = [(x),x] = 0, (x) ∓ 

(x) = 0 and [x,d(x)]  Z(M) for all x  S and   .then [x,d(x)]=0 for all x  S and   

 

Proof:  
        By assumption we have 

                                [x + y,d(x + y)]  Z(M)                               ….(1) 

 for all x, y  S and                                           

therefore  

          [x + y,d(x + y)] = [x,d(x)] + [y,d(y)] + [x,d(y)] + [y,d(x)] 

since Z(M) is an additive subgroup of M and by assumption we have 

                            [x,d(y)] + [y,d(x)]  Z(M)                              …(2)                       

for all x, y  S and                                     

In (2) replace  y  by  xx  for    , we get  

[x,d(xx)] + [xx,d(x)] = [x,d(x)(x) + (x)d(x)] +[xx,d(x)] 

                                         = [x,d(x)(x)] + [x,(x)d(x)] +[xx,d(x)] 

                                         = [x,d(x)](x) + (x) [x,d(x)] + x[x,d(x)]  

                                             + [x,d(x)]x 

and since [x,d(x)]Z(M) then the above relation becomes   

[x,d(xx)] + [xx,d(x)] = ((x) + (x)) [x,d(x)] +2 x[x,d(x)]  

   but (x) + (x)=0 so that [x,d(xx)] + [xx,d(x)]= 2 x[x,d(x)] Z(M) 

by lemma 1.1 we have either [x,d(x)]=0 or 2xZ(M) and hence 

                         0=[2x,d(x)]α=2[x,d(x)]α    

 and since  char.M  2 so we have [x,d(x)]=0 holds for all x  S and   .■ 
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Lemma 2.2:  

       Let M be a prime -ring satisfying () and S be a right ideal of M if  d  is (,)-derivation 

of M such that [x,(x)]= [x,(x)]=0 and [x,d(x)]Z(M) for all x, y  S and    then 

[x,d(x)] = 0 for all x  S and   . 

Proof:  

        If char.M  2 then by lemma (2.1) we conclude that [x,d(x)] = 0 for all x  S and   

. 

Now suppose that M is of characteristic equal 2. 

Let x, y  S and  d  be an additive mapping then we have 

[[x,y],d(x)] = [xy – yx,d(x)] 

                      = [xy,d(x)] – [yx,d(x)] 

since char.M = 2  then we have  

[[x,y],d(x)] = [xy,d(x)] + [yx,d(x)] 

                      = x[y,d(x)] + [x,d(x)]y + y[x,d(x)] + [y,d(x)]x 

                      = x[y,d(x)] + [y,d(x)]x + 2y[x,d(x)]  

and since char.M = 2 the above relation becomes 

            [[x,y],d(x)] = x[y,d(x)] + [y,d(x)]x                                     …(1) 

we intend to prove that 

             [[x,y],d(x)]+ [xx,d(y)]=0                                                       …(2) 

from (1) we can write (2) as the following  

[[x,y],d(x)]+ [xx,d(y)]= x[y,d(x)]+[y,d(x)]x+ [xx,d(y)]   

                                          = x[y,d(x)]+[y,d(x)]x+x[x,d(y)]+[x,d(y)]x  

so that and since char.M = 2 we have 

                                     [[x,y],d(x)]+ [xx,d(y)]=0 

in (2)  let z=d(x) so we get 

                             [[x,y],z]+ [xx,d(y)]=0          ….(3) 

 if we put y=x in (3) then 

                                 [[x,y],z]=0         ….(4)    

now for all x  S and   , let y = xz. 

hence from (3) we have 

0 = [[x,xz],z] + [xx,d(xz)]  

   = [x[x,z] + [x,x]z,z] + [xx,d(xz)] 

   = x[[x,z],z] + [x,z][x,z] + [xx,d(xz)] 

but [x,z]  Z(M) which implies that 

0 = [x,z][x,z] + [xx,d(xz)] 

hence 

[x,z][x,z] = – [xx,d(xz)] 

                     = [xx,d(xz)]                                                                      …(5) 

now from (5) we can conclude that 

[x,z][x,z] = – [xx,d(xz)] 

                     = [xx,d(x)(z) + (x)d(z)] 

                     = [xx,d(x)d(z) + [xx,(x)d(z)] 

                     = [xx,z](z) + z[xx,(z)] + [xx,(x)d(z)] 

                     = x[x,z](z) + [x,z]x(z) + zx[x,(z)] +  

                        z[x,(z)]x + (x)[xx,d(z)] + [xx,(x)]d(z) 

                     = x[x,z](z) + [x,z]z(z) + zx[x,(z)] +  

                        z[x,(z)]x + (x)x[x,d(z)] + (x)[x,d(z)]x +  
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                        x[x,(x)]d(z) + [x,(x)]xd(z) 

so that 

[x,z][x,z] = 2x(z)[x,z] + (x)x[x,d(z)] + (x)[x,d(z)]x      …(6) 

in (6) replace  x  by  z  we get 

0 = 2x(z)[x,d(z)] + 2(x)x[x,d(z)]  

   = 2(x(z) + (x)x)[x,d(x)] 

Since M is a prime ring, we get either [x,d(x)] = 0  or  2x(z) + 2(x)x = 0 

If  2x(z) + 2(x)x = 0  then  2x(z) = – 2(x)x  and since M has no zero divisors and , 

 are non-zero maps then x = 0 which is a contradiction since x is an arbitrary element of S 

and S is a non-zero ideal so that [x,d(x)] = 0    for all x  S, and   . 

 

Lemma 2.3:  

       Let M be a prime -ring and S be a non-zero ideal of M if  d  is a non-zero (,)-

derivation of M such that[x,(x)]= [x,(x)]=0 and [x,d(x)]  Z(M) for all x  S,  and   

 then M is commutative. 

Proof:  

        By lemma 2.2 we have  [x,d(x)] = 0  x  S,     

therefore 

0 = [x + y,d(x + y)] 

   = [x,d(x)] + [x,d(y)] + [y,d(x)] + [y,d(y)] 

so that 

0 = [y,d(x)] + [x,d(y)]  x, y  S,                                                …(1) 

since S is an ideal replace  y  by  xy  U, so 

0 = [xy,d(x)] + [x,d(xy)] 

   = x[y,d(x)] + [x,d(x)]y + [x,d(x)(y) + (x)d(y)] 

   = x[y,d(x)] + [x,d(x)]y + [x,d(x)(y)] + [x,(x)d(y)] 

   = x[y,d(x)] + [x,d(x)]y + d(x)[x,(y)] + [x,d(y)](y) + 

      (x)[x,d(y)] + [x,(x)]d(y) 

So that 

0 = d(x)[x,(y)] + (x)[x,d(y)] + [x,(x)]d(y) + x[y,d(x)] 

in the above relation put  x  instead of (x).  

hence, we get 

0 = d(x)[x,(y)]  x, y  S,  ,                                                   …(2) 

in (2) for all a  M, replace (y) by (y)a, so 

0 = d(x)[x,(y)a] 

   = d(x)(y)[x,a] + d(x)[x,(y)]a 

from (2) the above relation becomes 

0 = d(x)(y)[x,a],  x, y  S,  , ,                                          …(3) 

from (3) we can conclude that 

d(x)M[x,a] = 0 

now for all m  M and    we get  

d(x)M[x m , a] = 0 

          0 = d(x)MU[ xm,a] 

             = d(x)M x [m,a]+ d(x)M[x,a] m  

hence  

d(x)Mx[m,a] = 0   for all m, a  M.  

since M is prime -ring and  d  is a non-zero (,)-derivation of M and since x is any arbitrary 

element of S  then we have 
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              [m,a] = 0   for all  m, a  M,    

∴  M is commutative 

 

3-The Main Results   

       In this section we present the main results of this paper. 

Theorem 3.1:  

       Let M be a prime -ring of characteristic not equal 2 which has no zero divisors and 

satisfying (). Suppose there exists a non-zero (,)-derivation d:M  M such that the 

mapping  x  [d(xx),x] is commuting on M, [x,(x)]= [x,(x)]=0 and [(x),(y)]=0 

holds for all x,yM,   then M is commutative. 

Proof:  
        By assumption we have 

[[d(xx),x],x] = 0                                                                                  …(1) 

for all x  M and ,   . 

let us introduce a mapping B(,): MM  M by 

B(x,y) = [d(x),(y)] + [(x),d(y)] + [d(x),(x)] + [(y),d(x)] 

for all x, y  M and   . 

It is clear that B(,) is symmetric (B(x,y) = B(y,x)) and bi-additive. 

a simple calculation show that 

B(xy,z) = [d(xy),(z)] + [(xy),d(z)] + [d(z),(xy)] + [(z),d(xy)] 

                

from the definition of the mapping B(,) and by the assumption we have 

B(xy,z) = B(x,z)(y) + (x)B(y,z) + d(x)[(y),(z)] + [(z),(x)]d(y) 

   …(2) 

 now we introduce a non-zero mapping f : M  M by f (x) = B(x,x). 

so we have 

f (x) = 2{[d(x),(x)] + [(x),d(x)]}                                                          …(3) 

for all x  M and   . 

It is obviously, that mapping  f  satisfies the relation 

      f (x,y) = f (x) + f (y) + 2B(x,y)       for all x,y M, and                …(4) 

so the relation (1) becomes 

     [f(x),x]= 0 for all xM and                                                          …(5) 

the linearizing of (5) gives 

0 = [ f (x + y),x + y] 

   = [ f (x),y] + [ f (y),x] + 2[B(x,y),x] + 2[B(x,y),y]                            …(6) 

 for all x, y  M and    

the substitution  – x  for  x  in the above elation get 

0 = [ f (x),y] – [ f (y),x] + 2[B(x,y),x] – 2[B(x,y),y]                             …(7) 

from (6) and (7) we obtain 

         2[ f (x),y] + 4[B(x,y),x] = 0 

but char.M  2 so we get 

           [ f (x),y]  + 2[B(x,y),x] = 0                                                          …(8) 

in (8) replace  y  by  xy  then 

0 = [ f (x),xy] + 2[B(x,xy), x]   

   = x[ f (x),y]+[ f (x),x]+2[B(x,x)(y) + (x)B(y,x) +d(x)[(y),(x)]+ 

      [(x),(x)]d(y),x] 

   = x[ f (x),y]+[ f (x),x]y+2[B(x,x)(y),x] + 2[(x)B(y,x),x] +  

      2[d(x)[(y),(x)],x] + 2[[(x),(x)]d(y),x] 
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so that 

0 = x[ f (x),y]+2 f (x)[(y),x] + 2(x)B(y,x),x]+2[d(x),x][(y),(x)] 

      2d(x)[[(y),(x)],x]                                                                         …(9) 

In the above relation replace  (x)  by  x, we get 

0 = 2 f (x)[(y),x] + 2[d(x),x][(y),(x)] + 2d(x)[[(y),(x)],x] 

             …(10) 

now replace  (x)  by  (x) in (10) 

0 = 2 f (x)[(y),x]                                                                                  …(11) 

put (y) = z  so  (11) becomes 

0 = 2 f (x)[z,x] 

Since char.M  2, so 

0 = f (x)[z,x]                                                                                          …(12) 

Since M is a ring has no zero divisor and since  f  is a non-zero mapping so we get 

0 = [z,x], for all x, z  M and . 

So M is commutative.   

 

Theorem 3.2:  

       Let M be a prime -ring has no-zero divisors of characteristic not equal 2 and satisfying 

(). Suppose that there exists a non-zero (,)-derivation           d:M  M such that the 

mapping  x  [d(xx),x] is centralizing and [(x),x] = [(x),x] = 0,(x) ∓ (x) = 0for 

all x  M then M is commutative. 

Proof:  

        Let B(x,y) = [d(x),(y)] + [(x),d(y)] + [d(x),(x)] + [(y),d(x)] 

and let 

f (x) = B(x,x) 

        = 2{[d(x),(x)] + [(x),d(x)]} 

since the map x  [d(x)(y) + (x)d(y),x] is centralizing on M then we have 

[ f (x),x]  Z(M)                                                                                        …(1) 

by the same steps of theorem 3.1 we can proof that 

[ f (x),y] + 2[B(x,y),x]  Z(M)                                                                …(2) 

in (2) put  xx  instead of  y  to get 

[ f (x),xx] + 2[B(x,xx),x]  Z(M) 

now from step (2) in theorem 3.1  we have 

[ f (x),xx] + 2[B(x,xx),x] 

= x[ f (x),x]+[ f (x),x]x +2[B(x,x)(x)+(x)B(x,x)+d(x)[(x),(x)] +  

   [(x),(x)]d(x),x] 

= 2x[ f (x),x]+ 2B(x,x)[(x),x] + 2[B(x,x),x](x) + 2(x)[B(x,x),x] + 

   2[(x),x]B(x,x) 

= 2x[ f (x),x]+ 2 f (x)[(x),x] + 2[f (x),x](x) + 2(x)[ f (x),x] + 

   2[(x),x] f (x) 

= 2x[ f (x),x]+ 2((x) + (x))[ f (x),x] + 2[ f (x),x][(x),x] +  

   [(x),x] f (x) 

By assumption we have [(x),x] = [(x),x]=0  and  (x) ∓ (x) = 0, for all  

  x  M,  and . 

so that 

[ f (x),xx]+ 2[B(x,xx),x] = 2x[ f (x),x]  Z(M) 

now for all  y  M we have 
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0 = [2x[ f (x),x],y]  

so 

0 = 2[x[ f (x),x],y] 

but char.M  2  so  0 = [x[ f (x),x],y] 

which leads to  

    0 = x[[ f (x),x],y] + [x,y][ f (x),x] 

which implies that 

0 = [x,y][ f (x),x] 

since M has no zero divisor so either [x,y] = 0  or  [ f (x),x] = 0 

if [x,y] = 0 for all x, y  M, and    then M is commutative. 

or if [ f (x),x] = 0 then by the same steps of theorem 3.1 we have that M is commutative. 
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