Topological Manifolds With Smooth Fibre Bundles

Md. Shafiul Alam¹, S. M. Chapal Hossain², Bijan Krishna Saha¹
1 Department of Mathematics, University of Barisal, Barisal, Bangladesh.
2 Department of Mathematics, Jagannath University, Dhaka, Bangladesh.

ABSTRACT
The purpose of this paper is to develop the basic properties of topological manifolds and smooth fibre bundles. If \(O \) is an open covering of a topological manifold \(M \), then we prove that there exists a refinement \(\{V_{ij}\} \), where \(j \in \mathbb{N} \) and \(i \) runs through a finite set, such that \(V_{ij} \cap V_{ik} = \emptyset \), for each \(i \) and \(j \neq k \). Finally, smooth fibre bundle \((E, \pi, B, F)\) is defined; the projection \(\pi \) is a smooth map from the total space \(E \) to the base space \(B \) and it is shown that every smooth fibre bundle has a finite coordinate representation.

Keywords: Topological manifold, smooth manifold, smooth path, chart, atlas, smooth fibre bundle.

1. INTRODUCTION
The idea of topological manifold with smooth fibre bundle was introduced by H. Whitney [5, 6] and then it was generalized by A. Dold [1] and P. Olum [2]. A number of significant properties of smooth fibre bundle \((E, \pi, B, F)\) were obtained by E. H. Spanier [4], G. Wu [7], M. M. Postnikov [3] and others. We begin with the following definition:

An \(n \)-dimensional topological manifold \(M \) is a Hausdorff space with a countable basis which satisfies the following condition:

- Every point \(a \in M \) has a neighbourhood \(U_a \) which is homomorphic to an open subset of an \(n \)-dimensional real vector space \(E \).

A chart for a topological \(n \)-manifold \(M \) is a triple \((U, u, V)\) where \(U \) is an open subset of \(M \), \(V \) is an open subset of an \(n \)-dimensional real vector space \(E \) and \(u : U \to V \) is a homeomorphism. Because the chart \((U, u, V)\) is determined by the pair \((U, u)\), we will denote a chart by \((U, u)\). An atlas on an \(n \)-manifold \(M \) is a family of charts \(\{(U_a, u_a) : a \in \mathcal{I}\} \), where \(\mathcal{I} \) is an arbitrary indexing set, such that the sets \(U_a \) form a covering of \(M \):

\[
M = \bigcup_{a \in \mathcal{I}} U_a.
\]

An open covering of a topological space \(X \) is said to have order \(\leq p \) if the intersection of every \(p + 1 \) elements of the cover is empty.

Definition 1.1 A topological space \(X \) is said to have Lebesgue dimension \(\leq p \) if every open cover has a locally finite refinement of order \(\leq p + 1 \).

Lemma 1.1 If \(\dim X \leq m \) (\(m \geq 1 \)), then \(\dim(X \times \mathbb{R}) \leq 7m \).

Proof. Let \(\mathcal{O} \) be any open cover of \(X \times \mathbb{R} \). For each \(n \in \mathbb{Z} \), choose an open cover \(\mathcal{W}_n \) of \(X \) with the following property:

If \(W \in \mathcal{W}_n \) and \(t \in [n, n + 2] \), then for some \(\varepsilon > 0 \) and \(\mathcal{O} \in \mathcal{O}, W \times (t - \varepsilon, t + \varepsilon) \subset O \).

We may assume that each \(\mathcal{W}_n \) is locally finite and of order \(\leq m + 1 \) since \(\dim X \leq m \). By considering open sets of the form \(W \times (t - \varepsilon, t + \varepsilon) \) \((W \in \mathcal{W}_n)\), we obtain a locally finite open covering of \(X \times (n, n + 2) \) of order \(\leq 2(m + 1) \). These open coverings together provide an open covering of \(X \times \mathbb{R} \) of order \(\leq 4(m + 1) \leq 7m + 1 \).

Theorem 1.1 Let \(X \) be a normal space with a countable basis. Suppose \(U \) and \(V \) are open sets such that \(\dim U \leq n, \dim V \leq n \) and \(X = U \cup V \). Then \(\dim X \leq n \).
Proof. We choose disjoint open sets $U', V' \subset X$ such that

$$(X - V) \subset U' \subset U \quad \text{and} \quad (X - U) \subset V' \subset V.$$

Let \mathcal{O} be an open covering of X. By refining \mathcal{O} if necessary we may assume that \mathcal{O} is of the form $\mathcal{O} = \mathcal{O}_U \cup \mathcal{O}_{U'}$, where $\mathcal{O}_U = \{ O_k : k \in \mathbb{N} \}$ is a locally finite open covering of X of order $\leq n + 1$ and $\mathcal{O}_{U'}$ is an open covering of V'.

Set $\mathcal{O}_V = \{ O_k \cap V : k \in \mathbb{N} \}$. Then $\mathcal{O}_V \cup \mathcal{O}_{U'}$ is an open covering of V. Let \mathcal{W} be a locally finite refinement of this covering of order $\leq n + 1$. Then \mathcal{W} is the disjoint union of $\mathcal{W}^{(1)}$ and $\mathcal{W}^{(2)}$, where $\mathcal{W}^{(1)}$ consists of those open sets contained in V' and $\mathcal{W}^{(2)}$ consists of the others.

We denote the elements of $\mathcal{W}^{(1)}$ and $\mathcal{W}^{(2)}$ by W_α and W_β respectively. Thus each W_β is contained in some O_k. Hence $\mathcal{W}^{(2)}$ is the disjoint union of the subcollections $\mathcal{W}_k^{(2)}$ given by

$$\mathcal{W}_k^{(2)} = \{ W_\beta : W_\beta \subset O_k, \quad W_\beta \notin O_i, \quad i < k \}.$$

Now we define open sets Y_k by

$$Y_k = (O_k \cap U') \cup \bigcup_{\beta_j} W_{\beta_j},$$

where the union is taken over those β, such that $W_{\beta_j} \in \mathcal{W}_k^{(2)}$.

Set $\mathcal{Y} = \{ Y_k : k \in \mathbb{N} \}$. We show that $\mathcal{Y}^{(1)} = \mathcal{Y} \cup \mathcal{W}^{(1)}$ is a locally finite refinement and has order $\leq n + 1$.

First note that since the sets $O_k (k \in \mathbb{N})$ cover U, the sets $Y_k (k \in \mathbb{N})$ cover U'. On the other hand, the Y_k contain all the W_β and so the W_α together with the Y_k cover V since \mathcal{W} covers V. Since $X = U' \cup V$, it follows that $\mathcal{Y}^{(1)}$ is a cover of X.

Next observe that $Y_k \subset O_k$ and so \mathcal{Y} refines \mathcal{O}. But \mathcal{W} refines \mathcal{O} and hence $\mathcal{W}^{(1)}$ also refines \mathcal{O}. Thus $\mathcal{Y}^{(1)}$ refines \mathcal{O}. To show that $\mathcal{Y}^{(1)}$ has order $\leq n + 1$, let

$$x \in Y_{k_1} \cap \cdots \cap Y_{k_p} \cap W_{\alpha_1} \cap \cdots \cap W_{\alpha_q}.$$

We distinguish two cases.

Case 1: When $x \in U'$. Since $x \in U'$, so $q = 0$ and $x \in Y_{k_1} \cap \cdots \cap Y_{k_p} \subset O_{k_1} \cap \cdots \cap O_{k_p}$. Hence $p \leq n + 1$ and so $p + q \leq n + 1$.

Case 2: When $x \notin U'$. For each k_i there is an element $W_{\beta_i} \subset \mathcal{W}_k^{(2)}$ such that $x \in W_{\beta_i}$. Moreover, the W_{β_i} are necessarily distinct. Thus

$$x \in W_{\beta_1} \cap \cdots \cap W_{\beta_p} \cap W_{\alpha_1} \cap \cdots \cap W_{\alpha_q}.$$

77
i.e., \(x \) is in \(p + q \) distinct elements of \(\mathcal{W} \). It follows that \(p + q \leq n + 1 \). Distinguishing between the same two cases and using the fact that \(\mathcal{O}_\alpha \) and \(\mathcal{W} \) are locally finite, we see that \(\mathcal{Y}^{(1)} \) is locally finite.

Lemma 1.2 If a manifold \(M \) has a basis \(\mathcal{O}_\alpha \) such that for each \(\alpha \), \(\dim \mathcal{O}_\alpha \leq p \), then \(\dim M \leq p \) for every open subset \(\mathcal{O} \) of \(M \).

Proof. Clearly, if a space \(X \) is the disjoint union of open subsets with \(\text{dimension} \leq p \) then \(\dim X \leq p \). On the other hand, Theorem 1.1 implies that if a manifold \(Q \) is a finite union with \(\text{dimension} \leq p \), then \(\dim Q \leq p \). Hence the lemma is proved.

Corollary 1.1 If \(\mathcal{O} \) is an open subset of \(\mathbb{R}^n \), then \(\dim \mathcal{O} \leq 7^n \).

Proposition 1.1 Every topological \(n \)-manifold \(M \) satisfies \(\dim M \leq 7^n \).

Proof. Observe that \(M \) admits a basis consisting of open subsets \(\mathcal{O}_\alpha \) homeomorphic to open subsets of \(\mathbb{R}^n \). Hence, by Corollary 1.1, \(\dim \mathcal{O}_\alpha \leq 7^n \). If we replace \(\mathcal{O} \) by \(M \), then Lemma 1.2 yields the proposition.

Theorem 1.2 Let \(\mathcal{O} \) be an open covering of a topological manifold \(M \). Then there exists a refinement \(\{V_{ij}\} \), where \(j \in \mathbb{N} \) and \(i \) runs through a finite set, such that for each \(i \)

\[V_{ij} \cap V_{ik} = \emptyset, \quad j \neq k. \]

Proof. Let \(\mathcal{O} \) be any open covering of \(M \). According to Proposition 1.1 there exists a locally finite refinement of finite order. Thus we may assume that \(\mathcal{O} \) is locally finite and of finite order \(p \). Moreover, we may assume that \(\mathcal{O} \) is indexed by \(\mathbb{N} \), \(\mathcal{O} = \{\mathcal{O}_j : j \in \mathbb{N}\} \).

Now we proceed by induction on \(p \). If \(p = 1 \), there is nothing to prove. Assume that the theorem holds for coverings of order \(p - 1 \) and that \(\mathcal{O} \) has order \(p \). For each distinct set \(\nu_1 < \cdots < \nu_{p+1} \) of \((p+1) \) indices let

\[\mathcal{O}_{\nu_1 \cdots \nu_{p+1}} = \bigcap_{k=1}^{p+1} \mathcal{O}_{\nu_k}. \]

Since \(\mathcal{O} \) has order \(p \) these sets are disjoint. Denote them by \(V_{ij} \) \((i = 1, 2, \cdots)\) and set

\[V_1 = \bigcup V_{1i}. \]

Next choose open sets \(U_j \) so that

\[\bar{U}_j \subset \mathcal{O}_j \text{ and } \bigcup_j U_j = M. \]

Let \(A \) denote the union of all sets of the form

\[\bar{U}_{\nu_1} \cap \cdots \cap \bar{U}_{\nu_{p+1}} \left(\nu_1 < \cdots < \nu_{p+1} \right). \]
Then A is closed because the O_j are locally finite. Now the U_j provide a locally finite covering of $M - A$ of order $p - 1$. Since $M = (M - A) \cup V$, the theorem follows by induction.

2. SMOOTH MANIFOLD

Let M be a topological manifold and let $\{(U_\alpha, u_\alpha) : \alpha \in I \}$ be an atlas for M. Consider two neighbourhoods U_α, U_β such that $U_{\alpha\beta} = U_\alpha \cup U_\beta \neq \emptyset$. Then a homeomorphism

$$u_{\alpha\beta} : u_\alpha(U_{\alpha\beta}) \to u_\alpha(U_{\alpha\beta})$$

is defined by $u_{\alpha\beta} = u_\alpha \circ u^{-1}_\beta$. This map is called the identification map for U_α and U_β. By definition

$$u_{\beta\gamma} \circ u_{\alpha\beta} = u_{\alpha\gamma}$$

in $u_\alpha(U_{\alpha\beta})$ and $u_{\alpha\gamma}(x) = x, x \in u_\alpha(U_\alpha)$. The atlas $\{(U_\alpha, u_\alpha)\}$ is called smooth if all its identification maps are smooth.

Two smooth atlases are equivalent if their union is again a smooth atlas; i.e., $\{(U_\alpha, u_\alpha)\}$ and $\{(V_\alpha, v_\alpha)\}$ are equivalent if all the maps

$$v_\gamma \circ u^{-1}_\alpha : u_\alpha(U_\alpha \cap V_\gamma) \to v_\gamma(U_\alpha \cap V_\gamma)$$

and their inverses are smooth. A smooth structure on M is an equivalence class of smooth atlases on M. A topological manifold endowed with a smooth structure is called a smooth manifold.

Hence we shall use the word "manifold" in the sense of a smooth manifold. An atlas for a manifold will mean a member of its smooth structure and the term chart will refer to a member of an atlas.

Definition 2.1 Let M, N be manifolds and assume that $\varphi: M \to N$ is a continuous map. Let $\{(U_\alpha, u_\alpha)\}$ and $\{(V_\alpha, v_\alpha)\}$ be atlases for M and N respectively. Then φ determines continuous maps

$$\varphi_{i\alpha} : u_\alpha(U_{\alpha} \cap \varphi^{-1}(V_\gamma)) \to v_\gamma(V_\gamma)$$

by

$$\varphi_{i\alpha} = v_\gamma \circ \varphi \circ u^{-1}_\alpha.$$

We say that $\varphi: M \to N$ is smooth if the maps $\varphi_{i\alpha}$ are smooth. This definition is independent of the choice of atlases for M and N. Moreover, if $\varphi: M \to N$ and $\mu: N \to P$ are smooth maps, then $\mu \circ \varphi: M \to P$ is smooth. The set of smooth maps from M to N is denoted by $\mathcal{C}(M; N)$.

Definition 2.2 A smooth map $\varphi: M \to N$ is called a diffeomorphism if it has a smooth inverse $\varphi^{-1}: N \to M$. Every diffeomorphism is a homeomorphism. Two manifolds M and N are diffeomorphic if there exists a diffeomorphism $\varphi: M \to N$.

Definition 2.3 A smooth function on a manifold M is a smooth map $f: M \to \mathbb{R}$. If f and g are two such functions, then smooth functions $\lambda f + \mu g$ and fg are defined by

$$(\lambda f + \mu g)(x) = \lambda f(x) + \mu g(x), \quad \lambda, \mu \in \mathbb{R}$$

$$(fg)(x) = f(x)g(x), \quad x \in M.$$

These operations make the set of smooth functions on M into an algebra over \mathbb{R}, which we denote by $\mathcal{C}(M)$. The unit element of $\mathcal{C}(M)$ is the constant function $M \mapsto 1$. If M and N are $\mathcal{C}(M)$-modules, we
denote their tensor product over $\mathcal{S}(M)$ by $M \otimes_M N$. The module of $\mathcal{S}(M)$-linear maps of M into N will be denoted by $\text{Hom}_M(M; N)$. Now suppose that $\varphi: M \to N$ is a smooth map. φ determines an algebra homomorphism $\varphi^*: \mathcal{S}(N) \to \mathcal{S}(M)$ given by

$$\varphi^* f = f \circ \varphi, \quad f \in \mathcal{S}(N).$$

If φ is surjective, φ^* is injective. If $\psi: N \to Q$ is a second smooth map, then $(\psi \circ \varphi)^* = \varphi^* \circ \psi^*$.

Definition 2.4 The carrier (or support) of a smooth function f on M is the closure of the set $\{x \in M : f(x) \neq 0\}$. We denote this set by $\text{carr} f$.

If Q is an open subset of M and f is a smooth function on Q whose carrier is closed in M, then f extends to the smooth function g on M, given by

$$g(x) = \begin{cases} f(x), & x \in Q \\ 0, & x \in M - \text{carr} f. \end{cases}$$

In particular, if $f \in \mathcal{S}(M)$ has carrier in Q and $h \in \mathcal{S}(Q)$, a smooth function $f \cdot h \in \mathcal{S}(M)$ is given by

$$(f \cdot h) = f(h(x)), \quad x \in Q \quad \text{and} \quad (f \cdot h)(x) = 0, \quad x \notin \text{carr} f.$$

Next, suppose that $\{U_a\}$ is a locally finite family of open sets of M, and let $f_a \in \mathcal{S}(M)$ satisfy $\text{carr} f_a \subseteq U_a$. Then for each $a \in M$ there is a neighbourhood $V(a)$ which meets only finitely many of the U_a. Thus in this neighbourhood $\sum_a f_a$ is a finite sum. It follows that a smooth function f on M is defined by

$$f(x) = \sum_a f_a(x), \quad x \in M.$$

Lemma 2.1 Let E be a Euclidean space and $\alpha, \beta \in \mathbb{R}$ be such that $0 < \alpha < \beta$. There exists a smooth function $h: E \to [0, 1] \subseteq \mathbb{R}$ such that $h(x) = 1$, for $|x|^2 \leq \alpha$, $h(x) = 0$, for $|x|^2 \geq \beta$.

Proof. Given real numbers α, β with $\alpha < \beta$, there exists a smooth non-decreasing function $g: \mathbb{R} \to [0, 1]$ such that

$$g(t) = \begin{cases} 0, & t \leq \alpha \\ 1, & t \geq \beta. \end{cases}$$

If we define h by $h(x) = 1 - g(|x|^2)$, then $h(x) = 1$, for $|x|^2 \leq \alpha$ and $h(x) = 0$, for $|x|^2 \geq \beta$.

Proposition 2.1 Let K, O be subsets of M such that K is closed, O is open and $K \subseteq O$. There exists a smooth function f such that

1. $\text{carr} f$ is contained in O
2. $0 \leq f(x) \leq 1, x \in M$
3. $f(x) = 1, \ x \in K$.

80
Proof. We choose open sets \(U_a \subseteq M \) and compact sets \(K_a \subseteq U_a \), subject to the following conditions

(a) \(\{U_a\}, M - K \) is a locally finite open cover of \(M \).

(b) Each \(U_a \) is diffeomorphic to \(\mathbb{R}^n \) and \(\bar{U}_a \subseteq O \).

(c) \(\cup K_a = K \).

It follows from Lemma 2.1 that there are smooth functions \(h_a \) in \(U_a \) such that \(\text{carr} h_a \) is compact and \(h_a(x) = 1 \), \(x \in K_a \). In particular \(\text{carr} h_a \) is closed in \(M \). We extend the \(h_a \) to smooth functions \(f_a \) in \(M \) with \(\text{carr} f_a = \text{carr} h_a \subseteq U_a \). Then we can form \(\sum_a f_a \) in \(S(M) \). Evidently,

\[\text{carr} \sum_a f_a \subseteq \cup \bar{U}_a \subseteq O \quad \text{and} \quad (\sum_a f_a)(x) \geq 1, \quad x \in K. \]

Finally, we choose a smooth map \(g: \mathbb{R} \to [0, 1] \) so that \(g(0) = 0 \) and \(g(t) = 1, \ t \geq 1 \). Then the function \(f = g \circ (\sum_a f_a) \) satisfies the desired conditions. Hence the proposition is proved.

Definition 2.5 A partition of unity, subordinate to a locally finite open covering \(\{U_a\} \) of \(M \) is a family \(\{f_a\} \) of smooth functions on \(M \) satisfying

(a) \(0 \leq f_a(x) \leq 1, \ x \in M \)

(b) \(\text{carr} f_a \subseteq U_a \)

(c) \(\sum f_a = 1 \).

Theorem 2.1 Every locally finite open covering of a manifold admits a subordinate partition of unity \(\{f_a\} \).

Proof. Let \(\{U_a\} \) be such a covering of \(M \) and let \(\{V_a\} \) be a second covering such that \(\bar{V}_a \subseteq U_a \). In view of Proposition 2.1, there are non-negative smooth functions \(g_a \) on \(M \) which have carriers in \(U_a \) and take the value 1 at points of \(\bar{V}_a \). Thus \(g = \sum g_a \) is smooth and positive. Set \(f_a = g_a/g \) Every locally finite open covering \(\{U_a\} \) of a manifold \(M \) admits a subordinate partition of unity \(\{f_a\} \).

Definition 2.6 Let \(a \) be a fixed point of \(M \). Two members \(f, g \) of \(\mathcal{S}(M) \) will be called \(a \)-equivalent if and only if there is a neighbourhood \(U \) of \(a \) such that \((x) = g(x), \ x \in U \). The equivalence classes so obtained are called function germs at \(a \). We write \([f]_a \) for the germ represented by \(f \in \mathcal{S}(M) \).

Let \(M, N \) be smooth manifolds and \(\varphi, \psi \) be smooth maps of \(M \) into \(N \). We say that \(\varphi \) is homotopic to \(\psi \), and write \(\varphi \sim \psi \), if there exists a smooth map \(H: \mathbb{R} \times M \to N \) such that \(H(0,x) = \varphi(x) \) and \(H(1,x) = \psi(x), \ x \in M \). \(H \) is called a homotopy. Homotopy is an equivalence relation in the set of smooth maps \(M \to N \).

Lemma 2.2 \(\varphi, \psi: M \to N \) are homotopic if and only if there is a smooth map \(K: \mathbb{R} \times M \to N \) such that \(K(t,x) = \varphi(x), \ t \leq 0 \) and \(K(t,x) = \psi(x), \ t \geq 1 \).

Proof. If \(K \) exists, then obviously \(\varphi \sim \psi \). If \(\varphi \sim \psi \), let \(H \) be a homotopy. Choose a smooth function \(g: \mathbb{R} \to \mathbb{R} \) such that

\[g(t) = 0, \ t \leq 0 \quad \text{and} \quad g(t) = 1, \ t \geq 1. \]

Then set \(K(t,x) = H(g(t), x) \). Therefore, \(K(t,x) = \varphi(x), \ t \leq 0 \) and \(K(t,x) = \psi(x), \ t \geq 1 \). Hence \(\varphi, \psi: M \to N \) are homotopic if and only if there is a smooth map \(K: \mathbb{R} \times M \to N \) such that \(K(t,x) = \varphi(x), \ t \leq 0 \) and \(K(t,x) = \psi(x), \ t \geq 1 \).
3. SMOOTH PATHS
A smooth path on M is a smooth map $\varphi: \mathbb{R} \to M$. A manifold is called smoothly path-connected if, for every two points $a, b \in M$, there exists a smooth path φ such that $\varphi(0) = a$ and $\varphi(1) = b$.

Proposition 3.1 If a, b are points of a connected manifold M, there is a smooth path φ on M such that

$$
\varphi(t) = \begin{cases}
 a, & t \leq 0 \\
 b, & t \geq 1
\end{cases}
$$

In particular, M is smoothly path-connected.

Proof. By Lemma 2.2, the smooth path φ exists if and only if the inclusion maps

$$
j_a: \{\text{point}\} \to a \in M \quad \text{and} \quad j_b: \{\text{point}\} \to b \in M
$$

are homotopic. Since homotopy is an equivalence relation, so an equivalence relation is induced on the points of M:

$$
a \sim b \quad \text{if and only if} \quad a \text{ can be joined to } b \text{ by some } \varphi.
$$

If $M = \mathbb{R}^n$, the proposition is obviously true. Thus, in general, if (U, u, \mathbb{R}^n) is a chart in M, then all the points of U are equivalent. Hence the equivalence classes are all open and M is their disjoint union. Since M is connected, there is only one class; i.e., every $a, b \in M$ are equivalent. Hence the proposition is proved.

Lemma 3.2 There is a smooth function f on \mathbb{R} such that

1. $\text{carr } f \subset [-3, 3]
2. 0 \leq f(t) \leq 1, \ t \in \mathbb{R} \quad \text{and} \quad f(0) = 1
3. |f'(t)| < 1, \ t \in \mathbb{R}.

Proof. If we define f by

$$
f(t) = \begin{cases}
 \exp\left(-\frac{t^2}{9-t^2}\right), & t \in (-3, 3) \\
 0, & \text{otherwise}
\end{cases}
$$

then

$$
\text{carr } f \subset [-3, 3]
0 \leq f(t) \leq 1, \ t \in \mathbb{R} \quad \text{and} \quad f(0) = 1.
$$

Differentiating $f(t)$ we get

$$
f'(t) = \begin{cases}
 -\frac{18t}{(9-t^2)^2} \exp\left(-\frac{t^2}{9-t^2}\right), & t \in (-3, 3) \\
 0, & \text{otherwise}
\end{cases}
$$
Hence, $|f'(t)| < 1$, $t \in \mathbb{R}$.

Corollary 3.1 There exists a diffeomorphism φ of \mathbb{R}^n such that

1. $\varphi(0, \ldots, 0) = (1, 0, \ldots, 0)$
2. $\varphi(x) = x$, for every $x = (\xi^1, \ldots, \xi^n)$ such that $\max |\xi^i| > 3$.

Proof. We define φ by

$$\varphi(\xi^1, \ldots, \xi^n) = \left(\xi^1 + \prod_{i=1}^{n} f(\xi^i), \xi^2, \ldots, \xi^n \right)$$

where $f: \mathbb{R} \rightarrow \mathbb{R}$ is the function of Lemma 3.2. Then the Jacobian of φ is given by

$$\det \varphi'(x) = 1 + f'(\xi^1) \prod_{i=1}^{n} f(\xi^i).$$

As $\det \varphi'(x) > 0$, so φ is a local diffeomorphism. To see that φ is a global diffeomorphism, it is only necessary to note that it induces a bijection on each of the lines

$$\xi^2 = \xi_0^2, \xi^3 = \xi_0^3, \ldots, \xi^n = \xi_0^n.$$

Thus φ satisfies conditions (1) and (2) from the properties of f.

Theorem 3.1 Let C be a closed subset of a manifold M such that $M - C$ is nonvoid and connected. Let a, b be arbitrary points of $M - C$. Then there is a diffeomorphism $\varphi: M \rightarrow M$ homotopic to ι_M and such that $\varphi(a) = b$ and $\varphi(x) = x$, $x \in C$.

Proof. Let \sim be the equivalence relation on $M - C$ defined by $x_1 \sim x_2$ if and only if there is a diffeomorphism $\varphi: M \rightarrow M$, homotopic to ι_M, such that $\varphi(x_1) = x_2$ and $\varphi(x) = x$, $x \in C$.

We shall show that the equivalence classes are open. In fact, if $a \in M - C$, let (U, u, \mathbb{R}^n) be a chart of M such that $a \in U \subset M - C$. If $b \in U$ is arbitrary, we can compose u with a transformation of \mathbb{R}^n, if necessary, and assume that $u(a) = 0, u(b) = (1, 0, \ldots, 0)$. Applying Corollary 3.1, we obtain a diffeomorphism $\varphi_0: U \rightarrow U$ such that $\varphi_0(a) = b$ and φ_0 is the identity outside a compact set K such that $b \in K \subset U$. Then $\varphi: M \rightarrow M$ defined by

$$\varphi(x) = \begin{cases} \varphi_0(x), & x \in U \\ x, & x \notin U \end{cases}$$

is a diffeomorphism which establishes the equivalence of a and b; hence all points of U are equivalent to a. Since the equivalence classes are open and $M - C$ is connected, all points of $M - C$ are equivalent, as required. Hence the theorem is proved.

Proposition 3.2 Let M be a connected manifold of dimension $n \geq 2$ and $\{a_1, \ldots, a_k\}, \{b_1, \ldots, b_k\}$ be two finite subsets of M. Then there is a diffeomorphism $\varphi: M \rightarrow M$, homotopic to ι_M, such that $\varphi(a_1) = b_i$ ($i = 1, \ldots, k$).
Proof. If \(k = 1 \), the result follows from Theorem 3.1 with \(C = \emptyset \). Suppose that the result has been proved for \(k - 1 \); i.e. a diffeomorphism \(\varphi_0 \) of \(M \), homotopic to \(t_B \) has been found such that \(\varphi_0(a_i) = b_i, \ i = 1, \cdot \cdot \cdot , k - 1 \). Since \(M - \{ b_1, \cdot \cdot \cdot , b_{k-1} \} \) is nonvoid and connected, we obtain, from Theorem 3.1, a diffeomorphism \(\varphi_1 \) of \(M \), homotopic to \(t_B \) such that \(\varphi_1(\varphi_0(a_k)) = b_k \) and \(\varphi_1(b_i) = b_i \) for \(i = 1, \cdot \cdot \cdot , k \). If we set \(\varphi = \varphi_1 \circ \varphi_0 \), then \(\varphi(a_i) = b_i (i = 1, \cdot \cdot \cdot , k) \).

4. SMOOTH FIBRE BUNDLES

Let \(\pi: E \to B \) be a smooth map between manifolds. The \(\pi \) map will be said to have the local product property with respect to a manifold \(F \) if there is an open covering \(\{ U_a \} \) of \(B \) and a family \(\{ \psi_a \} \) of diffeomorphisms

\[
\psi_a: U_a \times F \to \pi^{-1}(U_a),
\]

such that

\[
\pi \psi_a(x, y) = x, \ x \in U_a, \ y \in F.
\]

Definition 4.1 A smooth fibre bundle is a four-tuple \((E, \pi, B, F) \) where \(\pi: E \to B \) is a smooth map which has the local product property with respect to \(F \). A local decomposition for \(\pi \) is called a coordinate representation for the fibre bundle.

We call \(E \) the total or bundle space, \(B \) the base space, and \(F \) the typical fibre. For each \(x \in B \), the set \(F_x = \pi^{-1}(x) \) will be called the fibre over \(x \). Every fibre is a closed subset of \(E \), and \(E \) is the disjoint union of the fibres.

A smooth cross-section of a fibre bundle \((E, \pi, B, F) \) is a smooth map \(\sigma: B \to E \) such that \(\pi \circ \sigma = t_B \). If \(\{(U_a, \psi_a)\} \) is a coordinate representation for the bundle, we obtain bijections \(\psi_{a,x}: F \to F_x, x \in U_a \), defined by

\[
\psi_{a,x}(y) = \psi_a(x, y), \ y \in F.
\]

In particular, if \(x \in U_{a\beta} \), we obtain maps \(\psi^{-1}_{\beta\alpha} \circ \psi_{a,x}: F \to F \). These are diffeomorphisms. Since \(\psi_a \) and \(\psi_{\beta} \) define diffeomorphisms of \(U_{a\beta} \times F \) onto \(\pi^{-1}(U_{a\beta}) \), they determine a diffeomorphism \(\psi_{\beta a} = \psi^{-1}_{\beta} \circ \psi_a \) of \(U_{a\beta} \) onto itself. But

\[
\psi_{\beta a}(x, y) = \left(x, \psi^{-1}_{\beta x} \psi_{a,x}(y) \right), x \in U_{a\beta}, \ y \in F,
\]

and hence \(\psi^{-1}_{\beta x} \circ \psi_{a,x} \) is a diffeomorphism of \(F \). We now show that \(\varphi_B \) is always smooth. In fact, if \(\{(U_a, \psi_a)\} \) is a local decomposition for \(\pi \) and \(y \in F \) is fixed, then

\[
\varphi_B(x) = (\pi' \circ \varphi \circ \psi_a)(x, y), \ x \in U_a.
\]

Hence \(\varphi_B \) is smooth on each member \(U_a \) of a covering of \(B \).

Let \((E'', \pi'', B'', F'') \) be a third fibre bundle and assume that \(\varphi: E \to E', \ \varphi': E' \to E'' \) are fibre preserving. Then \(\varphi' \circ \varphi: E \to E'' \) is fibre preserving and \((\varphi' \circ \varphi)_B = \varphi'_B \circ \varphi_B \).

Proposition 4.1 Let \(M \) be a set which is the union of a countable collection \(\{ W_i \} \) of subsets such that
(a) For each $i \in \mathbb{N}$, there is a bijection $\varphi_i : W_i \to M_i$ where M_i is an n-manifold.

(b) For every pair i, j the subsets $\varphi_i(W_{ij}) \subset M_i$ and $\varphi_j(W_{ij}) \subset M_j$ are open and the map

$$\varphi_{ji} = \varphi_j \circ \varphi_i^{-1} : \varphi_i(W_{ij}) \to \varphi_j(W_{ij})$$

is a diffeomorphism.

(c) For distinct points $a_i \in W_i$ and $a_j \in W_j$, there are disjoint subsets U_i, U_j such that

$$a_i \in U_i \subset W_i, \quad a_j \in U_j \subset W_j$$

and then, by definition, $\varphi_i(U_i), \varphi_j(U_j)$ are open.

Then there is a unique smooth manifold structure on M such that the W_i are open and the φ_i are diffeomorphisms.

Theorem 4.1 Let B, F be manifolds and let E be a set. Assume that a surjective map $\pi : E \to B$ is given with the following properties:

(a) There is an open covering $\{U_a\}$ of B and a family $\{\psi_a\}$ of bijections $\psi_a : U_a \times F \to \pi^{-1}U_a$.

(b) For every $x \in U_a, y \in F$, $\pi \psi_a(x, y) = x$.

(c) The maps $\psi_{a\beta} : U_{a\beta} \times F \to U_{a\beta} \times F$ defined by $\psi_{a\beta}(x, y) = (\psi_{a\beta}^{-1} \circ \psi_a)(x, y)$ are diffeomorphisms.

Then there is exactly one manifold structure on E for which (E, π, B, F) is a fibre bundle with coordinate representation $\{(U_a, \psi_a)\}$.

Proof. We may assume that $\{a\}$ is countable and thus apply Proposition 4.1, with $W_a = \pi^{-1}U_a$, $\varphi_a = \psi_a^{-1}$, and $M_a = U_a \times F$ to obtain a unique manifold structure on E such that the φ_a are diffeomorphisms. Hypothesis (b) then says that the restriction of π to $\pi^{-1}U_a$ is $\psi_a \circ \psi_a^{-1}$ where $\pi_a : U_a \times F \to U_a$ denotes the projection onto the first factor. Since π_a is smooth, π is smooth on $\pi^{-1}U_a$. Hence π is smooth on E and then, by definition, $\{(U_a, \psi_a)\}$ is a local decomposition for π. Hence (E, π, B, F) is a fibre bundle with coordinate representation $\{(U_a, \psi_a)\}$.

Theorem 4.2 Every smooth fibre bundle has a finite coordinate representation.

Proof. Let $\{(U_a, \psi_a)\}$ be any coordinate representation for (E, π, B, F). We choose a refinement $\{V_{ij} : i = 1, \ldots, p; j \in \mathbb{N}\}$ of $\{U_a\}$ such that $V_{ij} \cap V_{ik} = \emptyset$ for $j \neq k$. Let $V_i = \bigcup_j V_{ij}$ and define $\psi_i : V_i \times F \to \pi^{-1}V_i$ by

$$\psi_i(x, y) = \psi_{ij}(x, y) \quad \text{if} \quad x \in V_{ij}, \quad y \in F$$

where ψ_{ij} is the restriction of some ψ_a. Thus every smooth fibre bundle has a finite coordinate representation.
REFERENCES

The IISTE is a pioneer in the Open-Access hosting service and academic event management. The aim of the firm is Accelerating Global Knowledge Sharing.

More information about the firm can be found on the homepage: http://www.iiste.org

CALL FOR JOURNAL PAPERS

There are more than 30 peer-reviewed academic journals hosted under the hosting platform.

Prospective authors of journals can find the submission instruction on the following page: http://www.iiste.org/journals/ All the journals articles are available online to the readers all over the world without financial, legal, or technical barriers other than those inseparable from gaining access to the internet itself. Paper version of the journals is also available upon request of readers and authors.

MORE RESOURCES

Book publication information: http://www.iiste.org/book/

Academic conference: http://www.iiste.org/conference/upcoming-conferences-call-for-paper/

IISTE Knowledge Sharing Partners

EBSCO, Index Copernicus, Ulrich's Periodicals Directory, JournalTOCS, PKP Open Archives Harvester, Bielefeld Academic Search Engine, Elektronische Zeitschriftenbibliothek EZB, Open J-Gate, OCLC WorldCat, Universe Digital Library, NewJour, Google Scholar