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Abstract  
 In this paper we using an accelerated genetic algorithm to find the numerical solution of the nonlinear versions 

of the standard Black–Scholes partial differential equation  with stochastic volatility (transaction coast) for 

European call option .  We study this equation with different models of volatility and comparison these solutions 

with the solution of linear model of Black-Scholes equation without transaction coast .   
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1.Introduction  

 An option is the right to buy or sell a risky asset at a pre specified fixed price within a 

specified period. An option is a financial instrument that allows to make a bet on rising or 

falling values of an underlying asset. An option is a contract between two parties about 

trading the asset at a certain future time , [1 , 2 ]. One party is the writer, often a bank, who 

fixes the terms of the option contract and sells the option. The other party is the holder, who 

purchases the option, paying the market price, which is called premium .There are numerous 

different types of options, which are not all of interest to this paper. we concentrate on 

standard options, also known as vanilla options. Options have a limited life time. The 

maturity date T fixes the time horizon. At this date the rights of the holder expire, and for later 

times (t > T) the option is worthless. There are two basic types of option: The call option 

gives the holder the right to buy the underlying for an agreed price K  by the date T. The put 

option gives the holder the right to sell the underlying for the price K  by the date T. The 

previously agreed price K of the contract is called strike or exercise price. Not every option 

can be exercised at any time t ≤ T. For European options exercise is only permitted at 

expiration T. American options can be exercised at any time up to and including the 

expiration date. Both types are traded in each continent. The value of the option will be 

denoted by V . The value V depends on the price per share of the underlying, which is denoted 

S. This letter S symbolizes stocks. The variation of the asset price S with time t is expressed 

by St  or S(t). The value of the option also depends on the remaining time to expiry T − t. That 

is, V depends on time t. The dependence of V on S and t is written V (S, t). The value V (S, T) 

of a call option at expiration date T is given by : 

 

𝑉 (𝑆𝑇 , 𝑇)  = {
        0                 incase𝑆𝑇  ≤  𝐾 (option expires worthless)

𝑆𝑇 –  𝐾      in case 𝑆𝑇  >  𝐾 (option is exercised) 
 

 

Hence 

                     V (ST , T) = max{ST − K, 0} . 

For a European put, exercising only makes sense in case S < K. The 

payoff V (S, T) of a put at expiration time T is  

𝑉 (𝑆𝑇 , 𝑇)  = {
K − ST                incase𝑆𝑇 <  𝐾 (option is exercised)
0         in case 𝑆𝑇  ≥  𝐾 ( option expires worthless) 

  

Hence 

                    V (ST , T) = max{K − ST , 0} , 
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or 

                   V (ST , T) = (K − ST )
+
  

 
 Option pricing theory: the Black–Scholes option pricing model was made by [2] and [4]. 

The solution of the famous (linear) Black–Scholes equation [3]. 

0 = 𝑉𝑡 +
1

2
𝜎2𝑉𝑆𝑆 + 𝑟𝑆𝑉𝑆 − 𝑟𝑉                                 (1) 

where S := S(t) > 0 and t є (0, T ), provides both the price for a European option and a 

hedging portfolio that replicates the option assuming that  [1] : 

The price of the asset price or underlying derivative S(t) follows a Geometric Brownian 

motion W(t), meaning that S satisfies the following stochastic differential equation (SDE): 

dS(t) = μS(t)dt + σ S(t)dW(t). 

where the trend or drift μ (measures the average rate of growth of the asset price), the 

volatility  σ  (measures the standard deviation of the returns) and the riskless interest rate r are 

constant for 0 ≤ t ≤ T and no dividends are paid in that time period. Due to transaction costs [5 

, 6] , where both the volatility σ and the drift μ can depend on the time t, the stock price S or 

the derivatives of the option price V itself. In this paper we will be concerned with several 

transaction cost models from the most relevant class of nonlinear Black–Scholes equations for 

European and American options with a constant drift μ and a non constant volatility  �̃�2 =
�̃�2(𝑡, 𝑆, 𝑉𝑆, 𝑉𝑆𝑆)   . Under these assumption (1) becomes the following nonlinear Black–

Scholes equation, which we will consider for European options: 

0 = 𝑉𝑡 +
1

2
�̃�2𝑆2𝑉𝑆𝑆 + 𝑟𝑆𝑉𝑆 − 𝑟𝑉                                   (2) 

where S > 0 and t є (0, T ). 

In order to make the model more realistic, we will consider a modification of (2) for 

American options, where S pays out a dividend  qSdt  in a time step dt: 

0 = 𝑉𝑡 +
1

2
�̃�2𝑆2𝑉𝑆𝑆 + (𝑟 − 𝑞)𝑆𝑉𝑆 − 𝑟𝑉                        (3) 

 

where S > 0 , t є (0, T ) and the dividend yield  q  is constant. 

 
2. Volatility models with transaction costs 

2.1. Leland’s model 

 Leland’s idea of relaxing the hedging conditions is to trade at discrete times [5], which refer 

to reduce the expenses of the portfolio adjustment. He assumes that the transaction cost, 
𝜅

2
|Δ|𝑆  , is proportional to the monetary value of the assets bought or sold. Here, 𝜅 denotes the 

round trip transaction cost per unit dollar of the transaction and  Δ the number of assets 

bought (Δ > 0) or sold (Δ < 0) at price S. Leland then deduces that the option price is the 

solution of the nonlinear Black–Scholes equation (2) with the modified volatility 

�̃�2 = 𝜎2(1 + 𝐿𝑒 𝑠𝑖𝑔𝑛(𝑉𝑆𝑆))                                           (4 ) 

where  σ represents the original volatility and Le the Leland number given by:   

𝐿𝑒 = √
2

𝜋

𝜅

𝜎√𝛿𝑡
 

where  t denotes the transaction frequency. The price of the discrete option converges to a 

Black–Scholes price with the modified volatility of the form,[6]. 

�̃�2 = 𝜎2 (1 + 𝐿𝑒 √
𝜋

2
𝑠𝑖𝑔𝑛(𝑉𝑆𝑆))                                    (5) 
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Just like Leland, Boyle and Vorst assume convexity of V, so that   �̃�2 = 𝜎2 (1 + 𝐿𝑒 √
𝜋

2
) 

and (2) turns into a linear equation. 

 

2.2  Barle's and Soner’s model 
Barles and Soner derived a more complicated model by following the utility function 

approach of Hodges and Neuberger [7], that was further developed by Davis et al. in [8]. 

They use an exponential utility function and prove – using the theory of stochastic optimal 

control [9] that as є and 𝜅  go to 0, V is the unique (viscosity) solution of (2) where  

�̃�2 = 𝜎2 (1 + 𝜓(𝑒𝑟(𝑇−𝑡)𝑎2𝑆2𝑉𝑆𝑆))                                  (6) 

With 𝑎 =
𝜅

√𝜖
     and  𝜓(𝑥)  denotes the solution to the following nonlinear ordinary differential 

equation 

𝜓′(𝑥) =
𝜓(𝑥) + 1

2√𝑥𝜓(𝑥) − 𝑥
    , 𝑥 ≠ 0                                     (7𝑎) 

with the initial condition 

𝜓(0) = 0                                                                            (7𝑏) 
The analysis of this ordinary differential equation by Barles and Soner in [8] implies that 

lim
𝑥→∞

𝜓(𝑥)

𝑥
= 1        𝑎𝑛𝑑    lim

𝑥→−∞
𝜓(𝑥) = −1                  (8) 

This property allows the treatment of the function  𝜓(. ) as the identity for large arguments 

and therefore the volatility becomes 

�̃�2 = 𝜎2(1 + 𝑒𝑟(𝑇−𝑡)𝑎2𝑆2𝑉𝑆𝑆)                                      (9) 

The ODE (7) is solved with function ode45 in Matlab and the solution was shown in Fig.1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
2.3  Risk adjusted pricing methodology 

 
This model proposed in [10], the optimal time-lag  t between the transactions is found to 

minimize the sum of the rate of the transaction costs and the rate of the risk from an 

unprotected portfolio. That way the portfolio is still well protected and the modified volatility 

is now of the form 

�̃�2 = 𝜎2 (1 + 3 (
𝐶2𝑀

2𝜋
𝑆𝑉𝑆𝑆)

1
3

)                           (10) 

 

Fig.1 Solution of equ. (7) and the identity equ. (9) 

identity 

Solution of (7) 

 
  (x)ψ 
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where  𝑀 ≥ 0  is the transaction cost measure and  𝐶 ≥ 0  the risk premium measure.  

 

Note that these nonlinear models are all consistent with the linear model if the additional 

parameters for transaction costs vanish (𝐿𝑒 , 𝜓(. ), 𝑀) . We will study these models  that is  

equations  (2) and (3) where the volatility is given by the equations  (4), (6), (9) and (10) , for 

both European and American Call options. The European Call option is the solution to (2) on  

0 ≤ 𝑆 < ∞  , 0 ≤ 𝑡 ≤ 𝑇 ,  with the following terminal and boundary conditions: 

 

V(S, T ) = (S − K)
+
  for 0 ≤ 𝑆 < ∞   

V(0, t) = 0 for 0 ≤ 𝑡 ≤ 𝑇                                                                               (11) 

𝑉(𝑆, 𝑡)~𝑆 − 𝐾𝑒𝑟(𝑇−𝑡)  
 

For the American Call option the domain is divided into two regions by the free boundary S f 

(t), the stopping region 𝑆𝑓(𝑡) < 𝑆 < ∞  , 0 ≤ 𝑡 ≤ 𝑇 , where the option is exercised or dead 

with V(S, t) = S − K and the continuation region  0 ≤ 𝑆 ≤ 𝑆𝑓(𝑡)   , 0 ≤ 𝑡 ≤ 𝑇 , where the 

option stays alive and (2) is valid under the following terminal and boundary conditions ,[13]: 

 

V(S, T ) = (S − K)
+
             for  0 ≤ 𝑆 ≤ 𝑆𝑓(𝑡)  

V(0, t) = 0                          for   0 ≤ 𝑡 ≤ 𝑇 

V(S f (t), t) = S f (t) − K     for  0 ≤ 𝑡 ≤ 𝑇                                                     (12) 

VS(S f (t), t) = 1                 for  0 ≤ 𝑡 ≤ 𝑇 

S f (T ) = max(K , rK /q). 

 

   The general an exact analytical solution leading to a closed expression is not known neither 

for European nor for American options in a market with transaction costs [3]. The focus of 

this paper is the numerical solution of the problem. Therefore  an accelerated Genetic 

Algorithm  will be specified and used to solved this problem. The different volatility models 

will be compared to each other.  

 

3. Numerical Solutions of Nonlinear Black-Scholes  Equation  

In this section we solve the nonlinear Black-Scholes model numerically without 

transformation . We used an accelerated genetic algorithm to solved it.  

 
3.1 Genetic Algorithm and grammatical evaluations 

 Genetic algorithms are simulations of evolution process based on sexual and asexual 

reproduction, natural selection, mutation, and so on. However ,genetic algorithms are 

probabilistic optimization methods which are based on the principles of evolution. 
Grammatical evolution is an evolutionary algorithm that can produce code in any 

programming language[11 ,12 , 13]. The algorithm requires as inputs the Backus–Naur 

Form (BNF) grammar definition of the target language and evaluate fitness function. We 

applied the grammar developed in [19] with adding the function (square root (sqrt)) to the 

set of functions in this grammar to find the numerical solutions of nonlinear Black-

Scholes equation with different models of volatility.  Further details about grammatical 

evolution can be found in [14, 15, 16, 17,18]. 

 
3.1.1 Technique  of the algorithm  

The algorithm has the following steps : 
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3.1.2  Initialization 

         In the initialization phase the values for mutation rate and selection rate are set.  

 

 

3.1.3 Fitness evaluation 

           We express the PDE's in the following form: 

 

     𝑓 (𝑥, 𝑦,
𝜕𝑢

𝜕𝑥
(𝑥, 𝑦),

𝜕𝑢

𝜕𝑦
(𝑥, 𝑦),

𝜕2𝑢

𝜕𝑥2 (𝑥, 𝑦),
𝜕2𝑢

𝜕𝑦2 (𝑥, 𝑦)) = 0  , 𝑥 ∈ [𝑥0, 𝑥1]   ,   𝑦 ∈ [𝑦0, 𝑦1] 

The associated Dirichlet  boundary conditions are expressed as: 
         𝑢(𝑥0 , 𝑦 ) = 𝑓0(𝑦)    , 𝑢(𝑥1 , 𝑦 ) = 𝑓1(𝑦)    ,    𝑢(𝑥  , 𝑦0) = 𝑔0(𝑦)      ,   𝑢(𝑥  , 𝑦1) = 𝑔1(𝑦) 

The steps for the fitness evaluation of the population are the following: 

 

1. Choose N
2
 equidistant points in the box  [𝑥0, 𝑥1] × [𝑦0, 𝑦1]  , Nx equidistant points on 

the boundary  

at x = x0 and at x = x1 , Ny  equidistant points on the boundary at y = y0 and at  y = y1 

      2. For every chromosome i 

 Construct the corresponding model Mi(x ,y), expressed in the grammar described in 

[19]. 

 Calculate the quantity 

𝐸(𝑀𝑖) = ∑(𝑓(𝑥𝑗 , 𝑦𝑗 ,
𝜕

𝜕𝑥
𝑀𝑖(𝑥𝑗 , 𝑦𝑗),

𝜕

𝜕𝑦
𝑀𝑖(𝑥𝑗 , 𝑦𝑗),

𝜕2

𝜕𝑥2
𝑀𝑖(𝑥𝑗 , 𝑦𝑗),

𝜕2

𝜕𝑦2
𝑀𝑖(𝑥𝑗 , 𝑦𝑗))2

𝑁2

𝑗=0

 

 

 Calculate an associated penalty Pi(Mi) . The penalty function P depends on the 

boundary conditions and it has the form: 

𝑃1(𝑀𝑖) = ∑ (𝑀𝑖(𝑥0, 𝑦𝑗) − 𝑓0(𝑦𝑗))2𝑁𝑥
𝑗=1    

𝑃2(𝑀𝑖) = ∑ (𝑀𝑖(𝑥1, 𝑦𝑗) − 𝑓1(𝑦𝑗))2𝑁𝑥
𝑗=1   

𝑃3(𝑀𝑖) = ∑ (𝑀𝑖(𝑥𝑗 , 𝑦0) − 𝑔0(𝑥𝑗))2𝑁𝑦

𝑗=1
  

𝑃4(𝑀𝑖) = ∑ (𝑀𝑖(𝑥𝑗 , 𝑦1) − 𝑔1(𝑥𝑗))2𝑁𝑦

𝑗=1
  

 

 Calculate the fitness value of the chromosome as: 

𝑣𝑖 = 𝐸 (𝑀𝑖) + 𝑃1(𝑀𝑖) + 𝑃2(𝑀𝑖) + 𝑃3(𝑀𝑖) + 𝑃4(𝑀𝑖)       

 
3.1.4  Genetic operators 

       The genetic operators that are applied to the genetic population are the initialization, the 

crossover and the mutation as shown in, [ 16 , 19]. The parents are selected via tournament 

selection. 

 

3.1.5 Termination control 

       The genetic operators are applied to the population creating new generations, until a 

maximum number of generations or the best chromosome in the population has fitness better 

than a preset threshold. 
 
3.2.Technical of the accelerated method   

To make  the method is faster to arrived the approximation solution of the nonlinear Black-

Scholes partial differential equations by the following : 
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1- insert the boundary conditions of the problem as a part of chromosomes in the our 

population of the problem, the algorithm gives the best approximation solution in a few 

generations.  

2- insert a part of exact solution of the linear model of Black-Scholes as a part of a 

chromosome in the population.  

3- insert the vector of numerical solution of the linear model of Black-Scholes where 

obtained by the above algorithm in [19 ]  as a chromosome  in the our population of the 

problem.  

 

3.3. Applications of the Algorithm 

 

We applied the our method to find numerical solution for nonlinear Black-Scholes partial 

differential equation (2) with different volatility models (4) , (6) , (9) , (10) for European call 

option. We used 20% for the replication rate (hence the crossover probability is set to 80%) 

and 2% for the mutation rate. We investigated the importance of these two parameters by 

performing experiments using sets of different values. Each experiment was performed 30 

times . As one can see the performance is somewhat dependent on these parameters, but not 

critically. The population size was set to 200 and the length of each chromosome to 64. The 

size of the population is a critical parameter. Too small a size weakens the method's 

effectiveness. Too big a size renders the method slow. Hence since there is no first principals 

estimation for the the population size, we resorted to an experimental approach to obtain a 

realistic determination of its range. It turns out that values in the interval [0 , 250] are proper. 

We used fixed  length chromosomes instead of variable - length to avoid creation of 

unnecessary large chromosomes which will render the method inefficient. The length of the 

chromosomes is usually depended on the problem to be solved. The maximum number of 

generations allowed was set to 100 and the preset fitness target for the termination criteria 

was 0.01. From the conducted experiments, we have observed that the maximum number of 

generations allowed must be greater for difficult problems . The value of N was set 64. 

depending on the problem. In all experiments we use Mat lab R2010a ,And use the function 

(randi) to generate the random integers with normal distribution where used to generation  the 

population .  

 
3.3.1 European Call Option  

 

 Appling accelerated genetic algorithm method to find approximation solution for nonlinear 

Black-Schole equation (2) with terminal and boundary conditions (11) and volatilities models 

(4), (6) , (9) , (10) . We found the following approximations solutions as the best 

approximations after 30 runs for each model. For all calculations we used the following 

parameters: 

r = 0.1 , σ = 0.2 ,  K = 100 ,  T = 1 (one year) ,C = 30     , M = 0.01  , a = 0.02 , κ = 0.001  

With volatility model (4) (Leland's model) we found the best  numerical solution at generation 

20 : 

𝐺𝑝20(𝑆, 𝑡) = 𝑆 − 10√𝑆/𝑒
2𝑡

9                                      (13) 

With volatility model (6) (Barle's and Soner's) we found the best numerical solution at 

generation 27  : 

                        𝐺𝑝27(𝑆, 𝑡) =
𝑆𝑙𝑜𝑔𝑆

10
+ 5𝑆 (

0.4𝑡

16
) − 440 (

1

√𝑆
𝑒−

0.05𝑡

40 ) + 6𝑡            (14)   

With volatility model (9) (identity model) we found the best numerical solution at generation 

15 : 

𝐺𝑝15(𝑆, 𝑡) = 𝑆 − 5(4𝑒−
2𝑡

11𝑙𝑜𝑔𝑆 + 1)                      (15) 
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With volatility model (10) (RAPM model) we found the best numerical solution at generation 

10 : 

𝐺𝑝10(𝑆, 𝑡) = 𝑆 − 𝑒
−𝑆

75 − 100𝑒−0.4𝑡 − 𝑡                  (16)             

 

These solutions are shown in Fig.2 blow . 

 

 

  

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. Comparison the study 

 In this section we compare the different approximation solutions of the  nonlinear Black-

Scholes equation (2) with  transaction cost models to the model without transaction costs 

(Linear Black-Scholes equation (1)) and to each other to find the effect of transaction costs 

modeled by the volatilities (4), (6), (9) and (10) . Because there is no exact solution of 

equation (2),[3] . In the following sub sections we plot the difference max(Vnonlinear(S, t) − 

Vlinear(S, t),0) between the price of the European Call option with transaction costs and the 

price of the European Call without transaction costs. And the results were compared with 

figures of [3] .As expected the numerical results indicate an economically significant price 

deviation between the standard (linear) Black–Scholes model and the nonlinear models.  
 

 

 

 

 

 

 

 

 

 

(a) Leland  model eq.(13)                               (b) Barle's and Soner's model eq. (14) 

 

 

 

 

 

 

               © identity model eq. (15)                                          (d) RAPM model eq. (16) 

Fig.2  numerical solutions of nonlinear models of Black-Scholes equation 
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4.1 Comparison with the exact solution of linear model (1) 

 

We show the difference between these solutions in previous section and  the exact solution of 

the linear Black-Scholes equation as shown in Fig.3.where the exact solution for European 

call potion is: 

 

 

 

 

𝑉𝑐(𝑆, 𝑡) = 𝑆∅(𝑑1) − 𝐾𝑒−𝑟(𝑇−𝑡)∅(𝑑2) 
Where 

 

                  𝑑1 =
ln(

𝑆

𝐾
)+(𝑟+

𝜎2

2
).(𝑇−𝑡)

𝜎√𝑇−𝑡
     and    𝑑2 =

ln(
𝑆

𝐾
)+(𝑟−

𝜎2

2
).(𝑇−𝑡)

𝜎√𝑇−𝑡
= 𝑑1 − 𝜎√𝑇 − 𝑡  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 (a)  the identity vs. Exact of linear.                        (b) Leland’s model  vs. Exact of linear. 

 

 

 

 

 

 

      © Barle's and Soner’s model  vs. Exact of linear.      (d)  RAPM model vs. Exact of linear. 

Fig.3  The effect of transaction costs (nonlinear model vs linear). 
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Table.1 shows the comparison of the computation between the different solutions of model 

(2)  

with vitalities at  (4) , (6) , (9) and (10) with the exact solution Vc(S,t) of linear model (1) for 

 European call option. 

 

 

Table.1 Comparison of the solutions of nonlinear models vs. exact solution of linear  

S t 
Max(Gp20(S,t)-

Vc(S,t),0) 

Max(Gp27(S,t)-

Vc(S,t),0) 

Max(Gp15(S,t)-

Vc(S,t),0) 
Max(Gp10(S,t)-Vc(S,t),0) 

0 1 0 0 0 0 

13.42105 0.9473 0 0 0 0 

26.84210 0.8947 0 0 0 0 

40.26315 0.8421 0 0 0 0 

53.68421 0.7894 0 0 0 0 

67.10526 0.7368 0 0 0 0 

80.52631 0.6842 1.9979 0 0 1.5589 

93.94736 0.6315 3.7304 1.9437 1.3680 7.5771 

107.3684 0.5789 1.5764 2.8688 2.0368 8.1355 

120.7894 0.5263 0 0.15508 0 4.9544 

134.2105 0.4736 0 0 0 0.2994 

147.6315 0.4210 0 0 0 0 

161.0526 0.3684 0 0 0 0 

174.4736 0.3157 0 0 0 0 

187.8947 0.2631 0 0 0 0 

201.3157 0.2105 0 0 0 0 

214.73684 0.1578 0 0 0 0 

228.1578 0.1052 0 0 0 0 

241.5789 0.0526 0 0 0 0 

255 0 0 0 0 0 

 
4.2 Comparison  with the numerical solution of linear model (1) 

We show the difference between these solutions of nonlinear models in previous section and 

the following numerical solutions of the linear Black-Scholes equation obtained in our  

previous paper [19 ]. 

1- 𝑉(𝑆, 𝑡) = 𝑆. sin (ln (
𝑆

𝐾
) . 𝑒−

1

2
𝜎2(𝑇−𝑡)

                                          (17) 

2- 𝐺𝑝4(𝑆, 𝑡) = 0.5𝑆(ln (
𝑆

𝐾
) + ln (

𝑆

𝐾
) 𝑒−

1

2
𝜎2(𝑇−𝑡)

)                         (18)      

3- 𝐺𝑝5(𝑆, 𝑡) = 𝑉(𝑆, 𝑡) = 𝑆 − 100𝑒−
1

9
(𝑇−𝑡)

                                   (19) 

 

4.2.1 Comparison  of solutions in equations  (13) , (14) , (15) , (16) with solution in 

equation (17).      
        Fig.4 show the difference between these solutions.    
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Table.2 shows the comparison of the computation between the different solutions of model 

(2) with vitalities (4) , (6) , (9) and (10) with the numerical solution (17) of linear model (1) 

for European call option. 
 
Table.2 Comparison of the solutions of nonlinear models vs. numerical solution V(S,t) of 

linear  

S t 
Max(Gp20(S,t)-

V(S,t),0) 

Max(Gp27(S,t)-

V(S,t),0) 

Max(Gp15(S,t)-

V(S,t),0) 
Max(Gp10(S,t)-V(S,t),0) 

0 1 0 0 0 0 

13.42105 0.9473 0 0 0 0 

26.84210 0.8947 0 0 0 0 

40.26315 0.8421 0 0 0 0 

53.68421 0.7894 0 0 0 0 

67.10526 0.7368 0 0 0 0 

80.52631 0.6842 3.4473 0 0 3.4431 

93.94736 0.6315 9.7131 8.5247 7.9490 15.354 

107.3684 0.5789 8.6359 11.3966 10.5646 15.788 

120.7894 0.5263 1.9954 7.9823 7.6375 7.5164 

134.2105 0.4736 0 4.1673 4.8895 0 

147.6315 0.4210 0 0.0237 2.2825 0 

161.0526 0.3684 0 0 0 0 

174.4736 0.3157 0 0 0 0 

187.8947 0.2631 0 0 0 0 

201.3157 0.2105 0 0 0 0 

214.73684 0.1578 0 0 0 0 

228.1578 0.1052 0 0 0 0 

241.5789 0.0526 0 0 0 0 

255 0 0 0 0 0 

 

4.2.2 Comparison  of solutions in equations  (13) , (14) , (15) , (16) with solution in 

equation (18).      

  

 

 

 

 

 

      (a)  the identity vs. linear model.                                     (b) Leland’s model  vs. linear model. 

 

 

 

 

        © Barle's and Soner’s model  vs. linear model                             d)  RAPM model vs. linear model. 

Fig.4  The effect of transaction costs (nonlinear models vs. linear (17)). 
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        Fig.5 show the difference between these solutions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table.3 shows the comparison of the computation between the different solutions of model 

(2) with vitalities (4) , (6) , (9) and (10) with the numerical solution (18) of linear model (1) 

for European call option. 

 

Table.3 Comparison of the solutions of nonlinear models vs. numerical solution Gp4(S,t) of 

linear  

S t 
Max(Gp20(S,t)-

Gp4(S,t),0) 

Max(Gp27(S,t)-

Gp4(S,t),0) 

Max(Gp15(S,t)-

Gp4(S,t),0) 

Max(Gp10(S,t)-

Gp4(S,t),0) 

0 1 0 0 0 0 

13.42105 0.9473 0 0 0 0 

26.84210 0.8947 0 0 0 0 

40.26315 0.8421 0 0 0 0 

53.68421 0.7894 0 0 0 0 

67.10526 0.7368 0 0 0 0 

80.52631 0.6842 3.4473 0 0 3.4431 

93.94736 0.6315 9.7131 8.5247 7.9490 15.3546 

107.3684 0.5789 8.6693 11.4299 10.5979 17.3561 

120.7894 0.5263 0.3211 6.30798 5.9632 9.5439 

134.2105 0.4736 0 0 0.0044 0 

147.6315 0.4210 0 0 0 0 

161.0526 0.3684 0 0 0 0 

174.4736 0.3157 0 0 0 0 

187.8947 0.2631 0 0 0 0 

201.3157 0.2105 0 0 0 0 

214.73684 0.1578 0 0 0 0 

228.1578 0.1052 0 0 0 0 

241.5789 0.0526 0 0 0 0 

255 0 0 0 0 0 

 

 

 

 

 

 

    (a)  the identity vs. linear model.                                         (b) Leland’s model  vs. linear model. 

 

 

 

 

 

 

        © Barle's and Soner’s model  vs. linear model                              d)  RAPM model vs. linear model. 

Fig.5  The effect of transaction costs ( nonlinear model vs. linear (18)). 
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4.2.1 Comparison  of solutions in equations  (13) , (14) , (15) , (16) with solution in 

equation (19).      
        Fig.6 show the difference between these solutions. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table.4 shows the comparison of the computation between the different solutions of model 

(2) with vitalities (4) , (6) , (9) and (10) with the numerical solution (19) of linear model (1) 

for European call option. 

 

  

 

 

 

 

 

 

       (a)  the identity vs. linear model.                                           (b) Leland’s model  vs. linear model. 

 

 

 

 

 

          © Barle's and Soner’s model  vs. linear model                              d)  RAPM model vs. linear model. 

Fig.6  The effect of transaction costs ( nonlinear model vs. linear (19)). 
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Table.4 Comparison of the solutions of nonlinear models vs. numerical solution Gp5(S,t) of 

linear  

S t 
Max(Gp20(S,t)-

Gp5(S,t),0) 

Max(Gp27(S,t)-

Gp5(S,t),0) 

Max(Gp15(S,t)-

Gp5(S,t),0) 

Max(Gp10(S,t)-

Gp5(S,t),0) 

0 1 0 0 0 0 

13.42105 0.9473 0 0 0 0 

26.84210 0.8947 0 0 0 0 

40.26315 0.8421 0 0 0 0 

53.68421 0.7894 0 0 0 0 

67.10526 0.7368 0 0 0 0 

80.52631 0.6842 3.4473 0 0 3.4431 

93.94736 0.6315 9.7131 8.5247 2.5691 15.354 

107.3684 0.5789 8.6359 9.8720 5.4531 15.7882 

120.7894 0.5263 1.9954 3.7781 2.8409 7.51642 

134.2105 0.4736 0 0 0.4473 0 

147.6315 0.4210 0 0 0 0 

161.0526 0.3684 0 0 0 0 

174.4736 0.3157 0 0 0 0 

187.8947 0.2631 0 0 0 0 

201.3157 0.2105 0 0 0 0 

214.73684 0.1578 0 0 0 0 

228.1578 0.1052 0 0 0 0 

241.5789 0.0526 0 0 0 0 

255 0 0 0 0 0 

 

5. Conclusion 

  In this paper we found and studied properties of numerical solutions to nonlinear Black–

Scholes equation arising in derivative asset analysis in markets with stochastic volatility. 

Using accelerated genetic algorithm method. We find this method was applicable to 

determined the numerical solutions of the nonlinear model of Black-Scholes with different 

models of volatility, and we comparison the results for these solutions with the result for the 

solution of the linear model of Black-Schole obtained  in [ 19], and with the solution of 

nonlinear model obtained in [ 3 , 20 ]. We find our method was excellent for the computation. 
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