Coupled Fixed Point Results In G-Metric Spaces For W*-Compatible Mappings

R. Arab*, H. Meghdade
Department Of Mathematics, Sari Branch, Islamic Azad University, Sari, Iran
* E-mail of the corresponding author: mathreza.arab @iausari.ac.ir, mathreza.arab @yahoo.com

Abstract

In this paper, we consider a new class of pairs of generalized contractive type mappings defined in G - metric spaces. Some coincidence and common fixed point results for these mapping are presented. Keywords: Coincidence Point, Coupled Fixed Point, Common Coupled Fixed Point, Common Fixed Point, Generalized Metric Space, w^{*}-Compatible Mappings.

1. Introduction and Preliminaries

Mustafa and Sims [5] introduced the notion of complete G-metric spaces as a generalization of complete metric spaces. For details on G-metric spaces, we refer to [5, 6, 7, 8]. The notion of a coupled fixed point in partially ordered metric spaces has been introduced by Bhaskar and Lakshmikantham in (2006)[9]. In this paper , we prove a common coupled fixed point theorem for two mappings in G-metric spaces.

Definition 1.1 [5] Let X be a nonempty set and $G: X \times X \times X \rightarrow \mathbb{R}^{+}$a function satisfying the following properties:
(G_{1}) $G(x, y, z)=0$ if $x=y=z=0$,
$\left(G_{2}\right) 0<G(x, x, y)$, for all $x, y \in X$ with $x \neq y$,
($\left.G_{3}\right) G(x, x, y) \leq G(x, y, z)$ for all $x, y, z \in X$ with $z \neq y$,
(G_{4}) $G(x, y, z)=G(x, z, y)=G(y, z, x)=\ldots$, symmetry in all three variables,
(G_{5}) $G(x, y, z) \leq G(x, a, a)+G(a, y, z)$ for all $x, y, z, a \in X$

Then the function G is called a generalized metric, or, more specifically, a G-metric on X, and the pair (X, G) is called a G-metric space.

Definition 1.2[5] Let (X, G) be a G-metric space and $\left(x_{n}\right)$ a sequence of points of X. A point $x \in X$ is said to be the limit of the sequence $\left(x_{n}\right)$, if $\lim _{m, n \rightarrow \infty} G\left(x, x_{n}, x_{m}\right)=0$, and we say that the sequence $\left(x_{n}\right)$ is G-convergent to x or that $\left(x_{n}\right) \quad G$-converges to x.

Thus, $x_{n} \rightarrow x$ in a G-metric space (X, G) if for any $\varepsilon>0$, there exists $k \in \mathbb{N}$ such that
$G\left(x, x_{n}, x_{m}\right)<\varepsilon$ for all $m, n \geq k$.
Proposition 1.1. [5] Let (X, G) be a G-metric space. Then the following are equivalent:
(1) $\left(x_{n}\right)$ is G-convergent to x.
(2) $G\left(x_{n}, x_{n}, x\right) \rightarrow 0$ as $n \rightarrow \infty$.
(3) $G\left(x_{n}, x, x\right) \rightarrow 0$ as $n \rightarrow \infty$.
(4) $G\left(x_{n}, x_{m}, x\right) \rightarrow 0$ as $n, m \rightarrow \infty$.

Definition 1.3 [5] Let (X, G) be a G-metric space, a sequence $\left(x_{n}\right)$ is called G-Cauchy if for every $\varepsilon>0$, there is $k \in \mathbb{N}$ such that $G\left(x_{n}, x_{m}, x_{l}\right)<\varepsilon$, for all $n, m, l \geq k$, that is $G\left(x_{n}, x_{m}, x_{l}\right) \rightarrow 0$ as $n, m, l \rightarrow \infty$.

Proposition 1.2. [5] Let (X, G) be a G-metric space, then the following statements are equivalent:
(1) The sequence $\left(x_{n}\right)$ is G-Cauchy.
(2) For every $\varepsilon>0$ there is $k \in \mathbb{N}$ such that $G\left(x_{n}, x_{m}, x_{m}\right)<\varepsilon$, for all $n, m \geq k$.

Definition 1.4[5] A G-metric space (X, G) is called G-complete if every G-Cauchy sequence in (X, G) is G-convergent in (X, G).

Proposition 1.3. [5] Let (X, G) be a G-metric space. Then, the function $G(x, y, z)$ is jointly continuous in all three of its variables.

Example 1.1. [5] Let (\mathbb{R}, d) be the usual metric space. Define G_{s} by

$$
G_{s}(x, y, z)=d(x, y)+d(y, z)+d(x, z)
$$

for all $x, y, z \in \mathbb{R}$. Then it is clear that $\left(\mathbb{R}, G_{s}\right)$ is a G-metric space.
Proposition 1.4. [5] Let (X, G) be a G-metric space. Then $T: X \rightarrow X$ is G-continuous at $x \in X$ if and only if it is G-sequentially continuous at x, that is, whenever $\left(x_{n}\right)$ is G-convergent to $x,\left(f\left(x_{n}\right)\right)$ is G-convergent to $f(x)$.

Definition 1.5 [4] Let (X, G) be a G-metric space. A mapping $F: X \times X \rightarrow X$ is said to be
continuous if for any two G - convergent sequences $\left(x_{n}\right)$ and $\left(y_{n}\right)$ converging to x and y respectively, $\left(F\left(x_{n}, y_{n}\right)\right)$ is G - convergent to $F(x, y)$.

Definition 1.6 [3] An element $(x, y) \in X \times X$ is called a coupled fixed point of the mapping $F: X \times X \rightarrow X$ if $F(x, y)=x, F(y, x)=y$.

Definition 1.7 [9] An element $(x, y) \in X \times X$ is called a coupled coincidence point of a mapping $F: X \times X \rightarrow X$ and a mapping $g: X \rightarrow X$ if $F(x, y)=g x, F(y, x)=g y$.

Note that if g is the identity mapping, then Definition 1.7 reduces to Definition 1.6.
Definition 1.8 [1] An element $x \in X$ is called a common fixed point of a mapping $F: X \times X \rightarrow X$ and $g: X \rightarrow X$ if $F(x, x)=g x=x$.

Abbas et al. [1] introduced the concept of w-compatible and w^{*}-compatible mappings and utilized this concept to prove an interesting uniqueness theorem of a coupled fixed point for mappings F and g in cone metric spaces.

Definition 1.9 [1] Mappings $F: X \times X \rightarrow X$ and $g: X \rightarrow X$ are called
$\left(w_{1}\right) w$-compatible if $g(F(x, y))=F(g x, g y)$ whenever $g x=F(x, y)$ and $g y=F(y, x)$.
$\left(w_{2}\right) w^{*}$ - compatible if $g(F(x, x))=F(g x, g x)$ whenever $g x=F(x, x)$.
Example 1.2. [2] Let $X=\mathbb{R}^{+}$, define $F: X \times X \rightarrow X$ and $g: X \rightarrow X$ by
$F(x, y)=\left\{\begin{array}{ll}8, & x=1, y=0, \\ 10, & x=0, y=1, \\ 4 & \text { other wise },\end{array} \quad\right.$ and $\quad g(x)= \begin{cases}8, & x=1, \\ 10, & x=0, \\ 5, & x=4, \\ 4, & \text { other wise } .\end{cases}$
Then it is clear that F and g are w-compatible but not w^{*} - compatible.

Definition 1.10 [9] Let X be a nonempty set and $F: X \times X \rightarrow X$ and $g: X \rightarrow X$. One says F and g are commutative if for all $x, y \in X, F(g x, g y)=g(F(x, y))$.

2. Main results

Our first result is the following.
Theorem 2.1 Let (X, G) be a G-metric space. Set $T: X \times X \rightarrow X$ and $g: X \rightarrow X$. Assume
there exist $a_{1}, a_{2}, a_{3} \geq 0$ with $2 a_{1}+3 a_{2}+3 a_{3}<2$ such that

$$
\begin{align*}
G(T(x, y), T(u, v), & T(w, z)) \leq \frac{a_{1}}{2}[G(g x, g u, g w)+G(g y, g v, g z)] \tag{2.1}\\
& +\frac{a_{2}}{2}[G(g x, T(x, y), T(x, y))+G(g u, T(u, v), T(u, v))+G(g y, g v, g z)] \\
& +\frac{a_{3}}{2}[G(g x, T(u, v), T(u, v))+G(g u, T(x, y), T(x, y))+G(g y, g v, g z)]
\end{align*}
$$

for all $x, y, u, v, w, z \in X$. If $T(X \times X) \subseteq g(X), \quad g(X)$ is a G-complete subset of X , then T and g have a unique common coupled coincidence point. Moreover, if T is w^{*} - compatible with g, then T and g have a unique common coupled fixed point.

Proof. Let x_{0} and y_{0} be in X. Since $T(X \times X) \subseteq g(X)$, we can choose $x_{1}, y_{1} \in X$ such that $g x_{1}=T\left(x_{0}, y_{0}\right)$ and $g y_{1}=T\left(y_{0}, x_{0}\right)$. Analogously, there exist $x_{2}, y_{2} \in X$ such that $g x_{2}=T\left(x_{1}, y_{1}\right)$ and $g y_{2}=T\left(y_{1}, x_{1}\right)$. Continuing this process, we can construct two sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ in X such that

$$
\begin{equation*}
g x_{n+1}=T\left(x_{n}, y_{n}\right) \text { and } g y_{n+1}=T\left(y_{n}, x_{n}\right) \text { for all } n \geq 0 \tag{2.2}
\end{equation*}
$$

From by (2.1), we have

$$
\begin{aligned}
& G\left(g x_{n}, g x_{n+1}, g x_{n+1}\right)=G\left(T\left(x_{n-1}, y_{n-1}\right), T\left(x_{n}, y_{n}\right), T\left(x_{n}, y_{n}\right)\right) \\
& \leq \frac{a_{1}}{2}\left[G\left(g x_{n-1}, g x_{n}, g x_{n}\right)+G\left(g y_{n-1}, g y_{n}, g y_{n}\right)\right] \\
& +\frac{a_{2}}{2}\left[G\left(g x_{n-1}, T\left(x_{n-1}, y_{n-1}\right), T\left(x_{n-1}, y_{n-1}\right)\right)+G\left(g x_{n}, T\left(x_{n}, y_{n}\right), T\left(x_{n}, y_{n}\right)\right)+\right. \\
& \left.G\left(g y_{n-1}, g y_{n}, g y_{n}\right)\right]+\frac{a_{3}}{2}\left[G\left(g x_{n-1}, T\left(x_{n}, y_{n}\right), T\left(x_{n}, y_{n}\right)\right)\right. \\
& \left.+G\left(g x_{n}, T\left(x_{n-1}, y_{n-1}\right), T\left(x_{n-1}, y_{n-1}\right)\right)+G\left(g y_{n-1}, g y_{n}, g y_{n}\right)\right] \\
& =\frac{a_{1}}{2}\left[G\left(g x_{n-1}, g x_{n}, g x_{n}\right)+G\left(g y_{n-1}, g y_{n}, g y_{n}\right)\right] \\
& +\frac{a_{2}}{2}\left[G\left(g x_{n-1}, g x_{n}, g x_{n}\right)+G\left(g x_{n}, g x_{n+1}, g x_{n+1}\right)+G\left(g y_{n-1}, g y_{n}, g y_{n}\right)\right] \\
& +\frac{a_{3}}{2}\left[G\left(g x_{n-1}, g x_{n+1}, g x_{n+1}\right)+G\left(g x_{n}, g x_{n}, g x_{n}\right)+G\left(g y_{n-1}, g y_{n}, g y_{n}\right)\right] .
\end{aligned}
$$

Thus, we obtain

$$
\begin{equation*}
G\left(g x_{n}, g x_{n+1}, g x_{n+1}\right) \leq \frac{a_{1}+a_{2}+a_{3}}{2-a_{2}-a_{3}}\left[G\left(g x_{n-1}, g x_{n}, g x_{n}\right)+G\left(g y_{n-2}, g y_{n-1}, g y_{n-1}\right)\right] \tag{2.3}
\end{equation*}
$$

and

$$
\begin{aligned}
G\left(g y_{n}, g y_{n+1}, g y_{n+1}\right)= & G\left(T\left(y_{n-1}, x_{n-1}\right), T\left(y_{n}, x_{n}\right), T\left(y_{n}, x_{n}\right)\right) \\
& \leq \frac{a_{1}}{2}\left[G\left(g y_{n-1}, g y_{n}, g y_{n}\right)+G\left(g x_{n-1}, g x_{n}, g x_{n}\right)\right] \\
+ & \frac{a_{2}}{2}\left[G\left(g y_{n-1}, T\left(y_{n-1}, x_{n-1}\right), T\left(y_{n-1}, x_{n-1}\right)\right)+G\left(g y_{n}, T\left(y_{n}, x_{n}\right), T\left(y_{n}, x_{n}\right)\right)\right. \\
& \left.+G\left(g x_{n-1}, g x_{n}, g x_{n}\right)\right]+\frac{a_{3}}{2}\left[G\left(g y_{n-1}, T\left(y_{n}, x_{n}\right), T\left(y_{n}, x_{n}\right)\right)\right. \\
& \left.+G\left(g y_{n}, T\left(y_{n-1}, x_{n-1}\right), T\left(y_{n-1}, x_{n-1}\right)\right)+G\left(g x_{n-1}, g x_{n}, g x_{n}\right)\right] \\
= & \frac{a_{1}}{2}\left[G\left(g y_{n-1}, g y_{n}, g y_{n}\right)+G\left(g x_{n-1}, g x_{n}, g x_{n}\right)\right] \\
& +\frac{a_{2}}{2}\left[G\left(g y_{n-1}, g y_{n}, g y_{n}\right)+G\left(g y_{n}, g y_{n+1}, g y_{n+1}\right)+G\left(g x_{n-1}, g x_{n}, g x_{n}\right)\right] \\
& +\frac{a_{3}}{2}\left[G\left(g y_{n-1}, g y_{n+1}, g y_{n+1}\right)+G\left(g y_{n}, g y_{n}, g y_{n}\right)+G\left(g x_{n-1}, g x_{n}, g x_{n}\right)\right] .
\end{aligned}
$$

Thus, we obtain

$$
\begin{equation*}
G\left(g y_{n}, g y_{n+1}, g y_{n+1}\right) \leq \frac{a_{1}+a_{2}+a_{3}}{2-a_{2}-a_{3}}\left[G\left(g y_{n-1}, g y_{n}, g y_{n}\right)+G\left(g x_{n-1}, g x_{n}, g x_{n}\right)\right] \tag{2.4}
\end{equation*}
$$

From (2.3) and (2.4), we have
$G\left(g x_{n}, g x_{n+1}, g x_{n+1}\right)+G\left(g y_{n}, g y_{n+1}, g y_{n+1}\right) \leq \frac{2\left(a_{1}+a_{2}+a_{3}\right)}{2-a_{2}-a_{3}}\left[G\left(g y_{n-1}, g y_{n}, g y_{n}\right)+G\left(g x_{n-1}, g x_{n}, g x_{n}\right)\right]$.
Set $a_{n}=G\left(g x_{n}, g x_{n+1}, g x_{n+1}\right)+G\left(g y_{n}, g y_{n+1}, g y_{n+1}\right)$ and $\lambda=\frac{2\left(a_{1}+a_{2}+a_{3}\right)}{2-a_{2}-a_{3}}$, then the
sequence $\left\{a_{n}\right\}$ is decreasing as

$$
0 \leq a_{n} \leq \lambda a_{n-1} \leq \lambda^{2} a_{n-2} \leq \ldots \leq \lambda^{n} a_{0}
$$

which implies

$$
\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty}\left[G\left(g x_{n}, g x_{n+1}, g x_{n+1}\right)+G\left(g y_{n}, g y_{n+1}, g y_{n+1}\right)\right]=0
$$

Thus,

$$
\begin{equation*}
\left.\lim _{n \rightarrow \infty} G\left(g x_{n}, g x_{n+1}, g x_{n+1}\right)=0, \text { and } \lim _{n \rightarrow \infty} G\left(g y_{n}, g y_{n+1}, g y_{n+1}\right)\right]=0 \tag{2.5}
\end{equation*}
$$

Next, let us prove that $\left\{g x_{n}\right\}$ and $\left\{g y_{n}\right\}$ are $G-$ Cauchy sequences. In fact, for $m>n$, we have

$$
\begin{array}{r}
G\left(g x_{n}, g x_{m}, g x_{m}\right)+G\left(g y_{n}, g y_{m}, g y_{m}\right) \leq G\left(g x_{n}, g x_{n+1}, g x_{n+1}\right)+G\left(g y_{n}, g y_{n+1}, g y_{n+1}\right) \\
+G\left(g x_{n+1}, g x_{n+2}, g x_{n+2}\right)+G\left(g y_{n+1}, g y_{n+2}, g y_{n+2}\right)
\end{array}
$$

$$
\begin{aligned}
& \quad+\ldots+G\left(g x_{m-1}, g x_{m}, g x_{m}\right)+G\left(g y_{m-1}, g y_{m}, g y_{m}\right) \\
& = \\
& a_{n}+a_{n+1}+\ldots+a_{m-1} \\
& \leq
\end{aligned}
$$

Letting $n, m \rightarrow \infty$, we have

$$
\lim _{n, m \rightarrow \infty} G\left(g x_{n}, g x_{m}, g x_{m}\right)+G\left(g y_{n}, g y_{m}, g y_{m}\right)=0
$$

This imply that $\left\{g x_{n}\right\}$ and $\left\{g y_{n}\right\}$ are G-Cauchy sequences in $g(X)$. By G-completeness of $g(X)$, there exists $g x, g y \in g(X)$ such that $\left\{g x_{n}\right\}$ and $\left\{g y_{n}\right\}$ converge to $g x$ and $g y$, respectively. We claim that $g(x)=T(x, y)$ and $g(y)=T(y, x)$. Indeed, from (2.1), we have

$$
\begin{aligned}
& G\left(g x_{n+1}, T(x, y), T(x, y)\right)=G\left(T\left(x_{n}, y_{n}\right), T(x, y), T(x, y)\right) \\
& \leq \frac{a_{1}}{2}\left[G\left(g x_{n}, g(x), g(x)\right)+G\left(g y_{n}, g(y), g(y)\right)\right] \\
&+\frac{a_{2}}{2}\left[G\left(g x_{n}, T\left(x_{n}, y_{n}\right), T\left(x_{n}, x_{n}\right)\right)+G(g(x), T(x, y), T(x, y))\right. \\
&+\left.G\left(g y_{n}, g(y), g(y)\right)\right]+\frac{a_{3}}{2}\left[G\left(g x_{n}, T(x, y), T(x, y)\right)\right. \\
&+\left.G\left(g(x), T\left(x_{n}, y_{n}\right), T\left(x_{n}, y_{n}\right)+G\left(g y_{n}, g(y), g(y)\right)\right)\right]
\end{aligned}
$$

Letting $n \rightarrow \infty$, and using the fact that G is continuous on its variables, we get that

$$
G(g(x), T(x, y), T(x, y)) \leq \frac{a_{2}+a_{3}}{2} G(g(x), T(x, y), T(x, y))
$$

Hence $g(x)=T(x, y)$. Similarly, we may show that $g(y)=T(y, x)$. Then, $(g x, g y)$ is a coupled point of coincidence of mappings T and g. Now we prove that $g x=g y$. By (2.1), we have

$$
\begin{aligned}
G(g(x), g(y), g(y)) & =G(T(x, y), T(y, x), T(y, x)) \\
& \leq \frac{a_{1}}{2}[G(g(x), g(y), g(y))+G(g(y), g(x), g(x))] \\
+ & \frac{a_{2}}{2}[G(g(x), T(x, y), T(x, y))+G(g(y), T(y, x), T(y, x))+G(g(y), g(x), g(x))] \\
+ & \frac{a_{3}}{2}[G(g(x), T(y, x), T(y, x))+G(g(y), T(x, y), T(x, y))+G(g(y), g(x), g(x))]
\end{aligned}
$$

$$
=\frac{a_{1}+a_{3}}{2} G(g(x), g(y), g(y))+\frac{a_{1}+a_{2}+2 a_{3}}{2} G(g(y), g(x), g(x)) .
$$

Similarly, we may show that
$G(g(y), g(x), g(x)) \leq \frac{a_{1}+a_{2}+2 a_{3}}{2} G(g(x), g(y), g(y))+\frac{a_{1}+a_{3}}{2} G(g(y), g(x), g(x))$.
Therefore

$$
\begin{aligned}
G(g(x), g(y), g(y))+G(g(y), g(x), g(x)) & \leq \frac{2 a_{1}+a_{2}+3 a_{3}}{2}[G(g(x), g(y), g(y))+G(g(y), g(x), g(x))] \\
& <G(g(x), g(y), g(y))+G(g(y), g(x), g(x))
\end{aligned}
$$

which is a contradiction. So $g(x)=g(y)$. We conclude that $T(x, y)=g(x)=g(y)=T(y, x)$.

Thus, $(g(x), g(x))$ is a coupled point of coincidence of mappings T and g. Now, if there is another $x_{1} \in X$ such that $\left(g\left(x_{1}\right), g\left(x_{1}\right)\right)$ is a coupled point of coincidence of mappings T and g, then

$$
\begin{aligned}
G\left(g(x), g\left(x_{1}\right), g\left(x_{1}\right)\right) & =G\left(T(x, x), T\left(x_{1}, x_{1}\right), T\left(x_{1}, x_{1}\right)\right) \\
& \leq \frac{a_{1}}{2}\left[G\left(g(x), g\left(x_{1}\right), g\left(x_{1}\right)\right)+G\left(g(x), g\left(x_{1}\right), g\left(x_{1}\right)\right)\right] \\
+ & \frac{a_{2}}{2}\left[G(g(x), T(x, x), T(x, x))+G\left(g(x), T\left(x_{1}, x_{1}\right), T\left(x_{1}, x_{1}\right)\right)+G\left(g(x), g\left(x_{1}\right), g\left(x_{1}\right)\right)\right] \\
+ & \frac{a_{3}}{2}\left[G\left(g(x), T\left(x_{1}, x_{1}\right), T\left(x_{1}, x_{1}\right)\right)+G\left(g\left(x_{1}\right), T(x, x), T(x, x)\right)+G\left(g(x), g\left(x_{1}\right), g\left(x_{1}\right)\right)\right] \\
& =\left(a_{1}+a_{2}+a_{3}\right) G\left(g(x), g\left(x_{1}\right), g\left(x_{1}\right)\right)+\frac{a_{3}}{2} G\left(g\left(x_{1}\right), g(x), g(x)\right)
\end{aligned}
$$

Similarly, we may show that
$G\left(g\left(x_{1}\right), g(x), g(x)\right) \leq\left(a_{1}+a_{2}+a_{3}\right) G\left(g\left(x_{1}\right), g(x), g(x)\right)+\frac{a_{3}}{2} G\left(g(x), g\left(x_{1}\right), g\left(x_{1}\right)\right)$.
Therefore
$G\left(g(x), g\left(x_{1}\right), g\left(x_{1}\right)\right)+G\left(g\left(x_{1}\right), g(x), g(x)\right) \leq \frac{2 a_{1}+2 a_{2}+3 a_{3}}{2}\left[G\left(g(x), g\left(x_{1}\right), g\left(x_{1}\right)\right)+G\left(g\left(x_{1}\right), g(x), g(x)\right)\right]$.
It implies that $G\left(g(x), g\left(x_{1}\right), g\left(x_{1}\right)\right)=G\left(g\left(x_{1}\right), g(x), g(x)\right)=0$ and so $g(x)=g\left(x_{1}\right)$. Hence, $(g(x), g(x))$ is a unique coupled point of coincidence of mappings T and g. Now, we show that T and g have common coupled fixed point. For this, let $u=g(x)$. Then, we have $u=g(x)=T(x, x)$.

By $w^{*}-$ compatibility of T and g, we have

$$
g(u)=g(g(x))=g(T(x, x))=T(g(x), g(x))=T(u, u)
$$

Then, $(g(u), g(u))$ is a coupled point of coincidence of mappings T and g. By the uniqueness of
coupled point of coincidence, we have $g(x)=g(u)$. Therefore, (u, u) is the common coupled fixed point of T and g. To prove the uniqueness, let $v \in X$ with $v \neq u$ such that (v, v) is the common coupled fixed point of T and g. Then, using (2.1),

$$
\begin{aligned}
G(u, v, v)= & G(T(u, u), T(v, v), T(v, v)) \leq \frac{a_{1}}{2}[G(g u, g v, g v)+G(g u, g v, g v)] \\
& +\frac{a_{2}}{2}[G(g u, T(u, u), T(u, u))+G(g v, T(v, v), T(v, v))+G(g u, g v, g v)] \\
& +\frac{a_{3}}{2}[G(g u, T(v, v), T(v, v))+G(g v, T(u, u), T(u, u))+G(g u, g v, g v)] \\
& =\left(a_{1}+\frac{a_{2}}{2}+a_{3}\right) G(u, v, v)+\frac{a_{3}}{2} G(v, u, u)
\end{aligned}
$$

Similarly, we may show that
$G(v, u, u) \leq\left(a_{1}+\frac{a_{2}}{2}+a_{3}\right) G(v, u, u)+\frac{a_{3}}{2} G(u, v, v)$.
Hence,
$G(u, v, v)+G(v, u, u) \leq \frac{2 a_{1}+a_{2}+3 a_{3}}{2}[G(u, v, v)+G(v, u, u)]$.
Since $\frac{2 a_{1}+a_{2}+3 a_{3}}{2}<1$, so that $G(u, v, v)=G(v, u, u)=0$ and $u=v$. Thus T and g have a unique common coupled fixed point. In Theorem 2.1, take $w=u$ and $z=v$, to obtain the following corollary.

Corollary 2.2 Let (X, G) be a G-metric space. Set $T: X \times X \rightarrow X$ and $g: X \rightarrow X$. Assume there exist $a_{1}, a_{2}, a_{3} \geq 0$ with $2 a_{1}+3 a_{2}+3 a_{3}<2$ such that

$$
\begin{align*}
G(T(x, y), T(u, v), T(u, v)) \leq & \frac{a_{1}}{2}[G(g x, g u, g u)+G(g y, g v, g v)] \tag{2.6}\\
& +\frac{a_{2}}{2}[G(g x, T(x, y), T(x, y))+G(g u, T(u, v), T(u, v))+G(g y, g v, g v)] \\
& +\frac{a_{3}}{2}[G(g x, T(u, v), T(u, v))+G(g u, T(x, y), T(x, y))+G(g y, g v, g v)]
\end{align*}
$$

for all $x, y, u, v, w, z \in X$. If $T(X \times X) \subseteq g(X), \quad g(X)$ is a G-complete subset of X, then T and g have a unique common coupled coincidence point. Moreover, if T is w^{*} - compatible with g, then T and g have a unique common coupled fixed point.

Now, putting $g=I_{X}$ (the identity map of X) in the Theorem 2.1, we obtain

Corollary 2.3 Let (X, G) be a complete G-metric space. Assume $T: X \times X \rightarrow X$ be a function
satisfying (2.1)(with $\left.g=I_{X}\right)$ for all $x, y, u, v, w, z \in X$. Then T has a unique fixed point.

By choosing a_{1}, a_{2} and a_{3} suitably, one can deduce some corollaries from Theorem 2.1.

For example, if $a_{1}=2 k$ and $a_{2}=a_{3}=0$ in Theorem 2.1, then the following corollary is obtained which extends and generalizes the comparable results of [10].

Corollary 2.4 Let (X, G) be a G-metric space. Set $T: X \times X \rightarrow X$ and $g: X \rightarrow X$. Assume there exist $k \in\left[0, \frac{1}{2}\right)$ such that

$$
\begin{equation*}
G(T(x, y), T(u, v), T(w, z)) \leq k[G(g x, g u, g w)+G(g y, g v, g z)] \tag{2.7}
\end{equation*}
$$

for all $x, y, u, v, w, z \in X$. If $T(X \times X) \subseteq g(X), g(X)$ is a G-complete subset of X, then T and g have a unique common coupled coincidence point. Moreover, if T is w^{*} - compatible with g, then T and g have a unique common coupled fixed point.

Now, we introduce an example to support the usability of our results.
Example 2.1. Let $X=[0,1]$. Define $T: X \times X \rightarrow X \quad$ by $\quad T(x, y)=\frac{1}{16} x^{2} y^{2} \quad$ and define $g: X \rightarrow X$ by $g(x)=\frac{1}{2} x^{2}$.

Define a G-metric on X by $G(x, y, z)=|x-y|+|x-z|+|y-z|$ for all $x, y, z \in X$.
By routine calculations, the reader can easily verify that the following assumptions hold:
(1) $T(X \times X) \subseteq g(X)$;
(2) $g(X)$ is a G - complete subset of X;
(3) T is w^{*} - compatible with g.

Here, we show only that T and g are condition (2.1) in Theorem 2.1 is satisfied for all real numbers $a_{1}, a_{2}, a_{3} \quad$ with $\quad 0 \leq 2 a_{1}+3 a_{2}+3 a_{3}<2$. Since $\quad|x y-u v| \leq|x-u|+|y-v|$ holds for all $x, y, u, v \in X$, we have

$$
\begin{aligned}
& G(T(x, y), T(u, v), T(w, z))=G\left(\frac{1}{16} x^{2} y^{2}, \frac{1}{16} u^{2} v^{2}, \frac{1}{16} w^{2} z^{2}\right) \\
& \quad=\frac{1}{16}\left|x^{2} y^{2}-u^{2} v^{2}\right|+\frac{1}{16}\left|x^{2} y^{2}-w^{2} z^{2}\right|+\frac{1}{16}\left|u^{2} v^{2}-w^{2} z^{2}\right|
\end{aligned}
$$

$$
\begin{aligned}
& \leq \frac{1}{16}\left[\left|x^{2}-u^{2}\right|+\left|y^{2}-v^{2}\right|+\left|x^{2}-w^{2}\right|+\left|y^{2}-z^{2}\right|+\left|u^{2}-w^{2}\right|+\left|v^{2}-z^{2}\right|\right] \\
& \leq \frac{1}{8}\left[\left|\frac{1}{2} x^{2}-\frac{1}{2} u^{2}\right|+\left|\frac{1}{2} x^{2}-\frac{1}{2} w^{2}\right|+\left|\frac{1}{2} u^{2}-\frac{1}{2} w^{2}\right|+\left|\frac{1}{2} y^{2}-\frac{1}{2} v^{2}\right|+\left|\frac{1}{2} y^{2}-\frac{1}{2} z^{2}\right|+\right. \\
& \left.\quad\left|\frac{1}{2} v^{2}-\frac{1}{2} z^{2}\right|\right]+\frac{1}{16}\left[\frac{1}{2} x^{2}-\frac{1}{16} x^{2} y^{2}\left|+\left|\frac{1}{2} u^{2}-\frac{1}{16} u^{2} v^{2}\right|+\left|\frac{1}{2} y^{2}-\frac{1}{2} v^{2}\right|+\right.\right. \\
& \left.\quad\left|\frac{1}{2} y^{2}-\frac{1}{2} z^{2}\right|+\left|\frac{1}{2} v^{2}-\frac{1}{2} z^{2}\right|\right]+\frac{1}{16}\left[\frac{1}{2} x^{2}-\frac{1}{16} u^{2} v^{2}\left|+\left|\frac{1}{2} u^{2}-\frac{1}{16} x^{2} y^{2}\right|+\right.\right. \\
& \left.\quad\left|\frac{1}{2} y^{2}-\frac{1}{2} v^{2}\right|+\left|\frac{1}{2} y^{2}-\frac{1}{2} z^{2}\right|+\left|\frac{1}{2} v^{2}-\frac{1}{2} z^{2}\right|\right] \\
& \quad \frac{\frac{1}{4}}{2}[G(g x, g u, g w)+G(g y, g v, g z)] \\
& \\
& \quad+\frac{\frac{1}{2}}{2}[G(g x, T(x, y), T(x, y))+G(g u, T(u, v), T(u, v))+G(g y, g v, g z)] \\
& \\
& \\
& \\
& \frac{1}{2}[G(g x, T(u, v), T(u, v))+G(g u, T(x, y), T(x, y))+G(g y, g v, g z)] .
\end{aligned}
$$

Thus, (2.1) is satisfied with $a_{1}=\frac{1}{4}$ and $a_{2}=a_{3}=\frac{1}{8}$ where $2 a_{1}+3 a_{2}+3 a_{3}<2$. Hence, all the conditions of Theorem 2.1 are satisfied. Moreover, $(0,0)$ is the unique common coupled fixed point of T and g. References

References

[1] M. Abbas, M. Ali Khan, S. Radenovi c^{\prime}, Common coupled fixed point theorems in cone metric spaces for w-compatible mappings. Appl. Math. Comput.217, 195-202 (2010).
[2] M. Abbas, A. R. Khan, T. Nazir, Coupled common fixed point results in two generalized metric spaces. Applied Mathematics and Computation 217 (2011) 6328-6336.
[3] TG. Bhaskar, V. Lakshmikantham , Fixed point theory in partially ordered metric spaces and applications. Nonlinear Anal.65, 1379-1393 (2006).
[4] B.S.Choudhury,P.Maity, Coupled fixed point results in generalized metric spaces, Math.Comput.Modelling54(2011)73-79.
[5] Mustafa, Z, Sims, B: A new approach to generalized metric spaces. Nonlinear Convex Anal. 7(2), 289-297(2006).
[6] z.Mustafa, H. Obiedat, F. Awawdehand, Some fixed point theorem for mapping on complete G -metric spaces, Fixed Point Theory Appl., vol. 2008, Article ID 189870, 12 p.,doi:10.1155/2008/189870.
[7] Z. Mustafa and B. Sims, Fixed point theorems for contractive mapping in complete G-metric spaces, Fixed Point Theory Appl., vol. 2009, Article ID 917175, 10 p., doi:0.1155/2009/917175.
[8] Z. Mustafa, F. Awawdeh, W. Shatanawi, Fixed point theorem for expansive mappings in G-metric spaces, Int. J. Contemp. Math. Sci. 5 (2010) 2463-2472.
[9] V.Lakshmikantham, L,. C^{\prime} irifi c^{\prime}, Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces. Nonlinear Anal: Theorey Methods Appl.70(12), 4341-4349 (2009). doi:10.1016/j.na.2008.09.020.
[10] W. Shatanawi, Coupled fixed point theorems in generalized metric spaces, Hacettepe Journal of Mathematics and Statistics Volume 40 (3) (2011), 441-447.

