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Abstract   

  In this paper, we study the boundedness property in probabilistic normed   spaces and also 

we consider the probabilistic radius RA  in Probabilistic  normed spaces.       

 

Introduction 

    Probabilistic normed spaces (PN spaces henceforth) were introduced by Šerstnev  in [5] by 

means of a definition that was closely modeled onthe theory of normed spaces.  Here we 

consistently adopt the now, andin our opinion convincing, definition of PN space given in the 

paperby Alsina, Schweizer, and Sklar [1] .We recall it. The notation and the 

concepts used are those of [4,1 and 2]. 

 

Definition 1.1. A Probabilistic normed space ( briefly a PN space) is a quadruple (V, ν, τ, τ ∗), 

Where V is a real vector space, τ and τ
 ∗ are continuous triangle functions with τ ≤ τ ∗ and ν is a 

mapping (the probabilistic norm) ν : V → ∆
+
 such that for every choice of p and q in V the 

following conditions hold:  

 

(N1 ) νp = ε0 if, and only if, p = θ (θ is the null vector in V );  

 

(N2 ) ν−p = νp ; 

 

(N3 ) νp+q ≥ τ (νp , νq ); 

 

(N4 ) νp ≤ τ ∗ (νλp , ν(1−λ)p ) for every λ ∈ [0, 1]. 

 

A Menger PN space under T is a PN space (V, ν, τ, τ ∗ ) in which τ = τT  and τ ∗ = τT ∗ , for 

some continuous t-norm T and its t-conorm T ∗ ; it is denoted by (V, ν, T ).  
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A PN space is called a Šerstnev space if it satisfies (N1 ) and (N3 ) and the following 

condition, ναp (x) = νp (x/|α|), for every α ∈ R − {0} and for every x > 0, (Š) which clearly 

implies (N2 ) and also (see [1]) (N4 ) in the strengthened form, νp = τM (νλp , ν (1−λ)p), for every 

λ in [0, 1]. 

 

  There is a natural topology in a PN space (V, ν, τ, τ
 ∗ ), called the strong topology; it is 

defined by the neighbourhoods, 

 

Np (t) := {q ∈ V : νq−p (t) > 1 − t} = {q ∈ V : ds (νq−p , ε0 ) < t}, 

 

Where   t > 0. Here ds is the modified Sibly metric [6]. 

 

Given a nonempty set A in a PN space (V, ν, τ, τ ∗ ) its Probabilistic radius RA is defined by 
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                      RA (x) : =  

 

 

 

 

Where  L
−
 f (x) denotes the left limit of the function  f  at the point x and  

ΦA (x) := inf {νp (x): p ∈ A}. 

 

The following definition sharpens that of [4, section 4.4] as we detail in section 4. 

 

Definition 1.2. A nonempty set A in a PN space (V, ν, τ, τ ∗ ) is said to be: 

 

(a) certainly bounded, if RA (x0 ) = 1 for some x0 ∈]0, +∞[; 

 

(b) perhaps bounded, if one has RA (x) < 1, for every x ∈]0, +∞[, and L
−
 RA (+∞) = 1; 

 

(c) perhaps unbounded, if RA (x0 ) > 0 for some x0 ∈]0, +∞[  and  L
−
 RA (+∞) ∈]0, 1[; 

 

(d) certainly unbounded, if L
−
 RA (+∞) = 0, i.e., if RA = ε∞ . 

 

Moreover, A will be said to be D-bounded if either (a) or (b) holds, i.e., if RA ∈ D
+
 ; 

otherwise, i.e., if RA ∈ ∆
+
 \ D

+
 , A will said to be D-unbounded. 

 

Theorem 1.3. In a PN space (V, ν, τ, τ ∗ ), the probabilistic radius has the following 

properties: 

 

(a) for every nonempty set A,  RA = R A
−
  where A

−
   denotes the closure of A  in the strong 

topology; 

 

(b) RA ∪ B ≥ τ (RA , RB ), if A and B are nonempty. 

 

 

Proof. (a) Because A ⊂ A
−
 , and as a consequence, RA ≥ R A

−
, one has Only to show the 

converse inequality RA ≤ R A
−
  . When (V, ν, τ, τ

 ∗ ) is endowed with the strong topology and 

∆
+
 is endowed with the topology of weak convergence, i.e., the topology of the modified Sibly 

metric ds ,the probabilistic norm ν : V → ∆
+
 is uniformly continuous (see [2]); in other words, 

for every η ∈]0, 1[  there exists δ = δ(η) > 0 such that ds (νp , νq ) < η  whenever 

ds (νp−q , ε0 ) < δ. 

 

Now, for every p ∈ A
−
, there exists q(p) ∈ A such that 

 

                       ds (νp−q(p) , ε0 ) < δ; 

 

therefore  ds (νp , νq(p) ) < η. In particular, for every t ∈]0,1/η [, we have 

 

                       νp (t) ≥ νq(p) (t − η) − η. 

L
−
 ΦA (x),     x ∈ [0, +∞[, 

 

1,                   x = +∞, 

         

http://www.iiste.org/


Mathematical Theory and Modeling                                                                                                                                                  www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.5, No.2, 2015 

 

175 

 

Then, for t ∈]0,1/η [, 

 

                         Φ A− (t) = inf p∈ A
−
  νp (t) ≥ inf p∈ A

−
  νq(p) (t − η) – η 

 

                         = infp∈A  νq(p) (t − η) – η 

 

                          ≥ infp∈A  νq(p)  (t − η) − η = ΦA (t − η) − η. 

 

Therefore, if  t ∈]0,1/η [, then 

 

                                             R A
−
 (t) ≥ RA (t − η) − η. 

 

This latter inequality holds for every η ∈]0, 1[ and for every t ∈]0, 1/η [.Thus, 

 letting η → 0 and using the left-continuity of RA yields that, for every t > 0, 

 

                                           R A
−
 (t) ≥ RA (t). 

 

( b) For every p ∈ A ∪ B and for every q ∈ B we have that  

 

                                 νp = τ (νp , ε0 ) ≥ τ (νp , νq ) ≥ τ (νp , RB ),   

  

because RB ≤ νq for all q ∈ B. Therefore, if p ∈ A we have 

 

                                          νp ≥ τ (RA , RB ). 

 

Repeating the same argument for p ∈ A ∪ B and q ∈ A leads tothe inequality νp ≥ τ (RA , RB ) 

for every p ∈ B. Now the last two inequalities yield the assertion.                                           □ 

 

Definition 1.4. The PN space (V, ν, τ, τ ∗ ) is said to satisfy the DI-condition if the 

probabilistic norm ν is such that, for all α ∈ R\{0}, x ∈ R and p ∈ V, 

 

                                                ναp (x) = νp (Φ(α, x)), 

 

where  Φ : R × [0, +∞[→ [0, +∞[ satisfies 

 

                     limx→+∞ Φ(α, x) = +∞ and limα→0 Φ(α, x) = +∞. 

 

Theorem 1.5. Let (V, ν, τ, τ ∗
 
) be a PN space that satisfies the DI-condition. Then for a subset 

A ⊂ V the following statements are equivalent: 

 

(a) A is D-bounded. 

 

(b) A is bounded, namely, for every n ∈ N and for every p ∈ A, there is k ∈ N such that 

 νp/k (1/n) >1-1/n. 

 

(c) A is topologically bounded. 
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Proof. (a) ⇒ (b). Let A any D-bounded subset of V. By definition of D-boundedness, the 

probabilistic radius RA of A (see[3]) is a distance d.f. such that limx→+∞ RA (x) = 1, therefore, 

for every n ∈ N  there exists xn > 0 such that RA (xn ) > 1 − 1/n. 

 

Thus, for every p ∈ A, 

 

                                νp (xn ) ≥ RA (xn ) > 1 −1/n . 

 

Since, in view of the DI-condition, 

 

                                               lim Φ(λ, 1/n) = +∞, 

                                               λ→0    

 

 

for every n ∈ N,  there exists λ′ ∈ R such that Φ(λ′ , 1/n) ≥ xn . 

 

Therefore, 

 

                               νλ′p (1/n ) = νp (Φ(λ′ , 1/n)) ≥ νp (xn ) ≥ RA (xn ) > 1 −1/n. 

 

As a consequence letting k = [1/ λ′], where [t] denotes the integral partof t, one has   

 

                                             νp/k (1/n ) > 1 −1/n ,  

 

namely, A is bounded. 

 

(b) ⇒ (a). Let A be a bounded subset of V and consider the neighbourhood of  Nθ (1/n ).  

 

 

 

Then there exists λ0 ∈R such that for every p ∈ V, p = λ0q for some q ∈ Nθ (1/n ).                    

 

Because of the DI-condition, 

 

                                              lim Φ(λ0 , x) = +∞, 

                                             x→+∞ 

 

for every n ∈ N ; then, there exists x0 > 0 such that, Φ(λ0 , x0 ) ≥ 1. Then, for x ≥ x0 , 

 

             νp (x) = νλ0q (x) ≥ νλ0q (x0 ) = νq (Φ(λ0 , x0 )) ≥ νq (1) ≥ νq (1/n ) > 1 −1/n ,   

 

So that   

 

                                                RA (x) ≥ 1 −1/n , 

 

i.e., RA is in D
+
 . 

 

(a) ⇒ (c). Let A any D-bounded subset of V. One has, as above, 
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                                   ναn pn (xn ) = νpn (Φ(αn , xn )) ≥ RA (xn ) > 1 −1/n, 

which implies 

 

                                 αn pn → θn→+∞ . 

 

(c) ⇒ (a). Let A be a subset of V which is not D-bounded. Then 

 

                                lim RA (x) = γ < 1. 

                                x→+∞  

 

By definition of RA , for every n ∈ N there is pn ∈ A such that, for every x > 0, 

 

                                    νpn (x) < 1+γ/2< 1. 

 

Then for every x > 0, 

                                   ναn pn (x) = νpn (Φ(αn , x)) <1+γ/2<1, 

 

 

which shows that ναn pn does not tend to ε0 , even if it has a weak limit, viz., (αn pn ) does not 

tend to θ in the strong topology; in other words, A is not topologically bounded.   □                                                  

 

Example 1.6. Let (V, ∥ 0 ∥) be a normed space and, for α ∈]0, 1[, Let 

 

ν : V → ∆
+
 be given by 

 

 

 

 

νp (x) = 

                  1,                                                            x = +∞ 

 

                      1,                                                              x=+∞              

 

 

Then 

 

(1) (V, ν, τπ , τM ) is a PN space satisfying the DI-condition with 

 

                                  Φ(λ, x) = (1 + x) 
1/∥λ∥ − 1; 

 

(2) (V, ν, τπ , τM ) is a TV PN space; 

 

(3) the subset A = {p : ∥ p ∥< 1} is both D-bounded and bounded. Only property (2) needs to 

be checked. For every sequence (λn ) Of real numbers that converges to 0 as n tends to +∞, 

and for every p ∈ V, one has λn p → θ in the strong topology of V; in fact, For every x ∈ R
+
 , 

limn→∞ νλn p (x) = 1, namely, 

 

                                        lim νλn p = ε0 . 

0,                                                                x≤0  

 

ln(1 + x)/ ln(1 + x)+ ∥ p ∥ ,                          x ∈]0, +∞[, ∥ p ∥< 1  
       
aln(1 + x)/ ln(1 + x)+ ∥ p ∥ ,                    x ∈]0, +∞[, ∥ p ∥≥ 1 
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