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1. Introduction and Preliminaries

Throughout this article, unless otherwise specified, we always suppose that N is the set of positive integers
and X is a non empty set. Some authors generalized the Banach contraction principle theorem [2] in
different ways. Recently, Bhashkar and Lakshmikantham[3] expressed coupled coincidence points, coupled
fixed points, coupled common fixed points and common fixed points of nonlinear mappings with two
variables. After publication of this work, several coupled fixed point and coincidence point results have
appeared in the recent literature. Works noted in [1, 4, 5, 6,7, 8, 9, 10,11] are some relevant examples. The
aim of this article is to make further studies on such problems, and to generalize and complement some
known results. Next, let us recall some related definitions:

Definition 1.1 [3] Let (X,=<) be a partially ordered set, and F : X x X — X . The mapping F has the
mixed monotone property if F(X, y) is monotone non-decreasing in X and is monotone non-increasing in y.
Definition 1.2 [3] An element (X, y) e X x X is called a coupled fixed point of the mapping

F: XxX =X if F(X,y)=x, F(y,x)=Y.
The main results of Bhaskar and Lakshmikantham in [3] are the following coupled fixed point theorems.

Theorem 1.1 [3] Let (X ,j) be a partially ordered set and suppose there exists a metric d on X such that
(X,d) is a complete metric space. Let F: X x X — X be a continuous mapping having the mixed
monotone property on X . Assume that there existsa kK €[0,1) with

d(F(x,y),F(u,v)) < g[d(x,u)+d(y,v)]

for all u=<x and Y=V . If there exist two elements X,,Y,€ X with X,<F(X,,Y,) and
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F(Y,%)=Y,, then F hasa coupled fixed point.
Recently, R. Bhardwaj [4] proved some generalizations of the main results in [3].
Theorem 1.2 [4] Let (X,d,=) be a partially ordered complete metric space. Suppose there exist A €[0,1),

T: X xX — X suchthat

d(x, T(x,y)).d(u,T(u,v)) d(u,T(x,y).d(xT(u,v))
d(x,u) ’ d(x,u)

d(T (%, ¥), T (u,v)) < A max{
,d(x,u)}
for all X,y,u,ve X with X=U,y >V and X==U. Suppose also that T is continuous, has the mixed

monotone property on  X. If there exist (X,,Y,) € XxX such that X,=<T(X,,VY,) and

Yo =T (Y, X,), thenthereexist X,y € X suchthat X =T(X,y) and Yy =T(Y,X).

In [7], Lakshmikantham and C'iric’ introduced the concept of mixed g -monotone property which present
these definitions and results in the following.

Definition 1.3 [7] Let (X,=) be a partially ordered set,and F: X x X — X and ¢:X — X . We say
F has the mixed @ -monotone property if F is nondecreasing ¢ -monotone in its first argument and is

nondecreasing @ -monotone in its second argument, that is, forany X,y € X

X, %, € X, 9% =2g%, = F(x, Y)=F(X,,y)

and

Vi, Yo € X, 0y, =20y, = F(X, ¥) = F (X, Y,).

Note that if g is the identity mapping, then Definition 1.4 reduces to Definition 1.2.

Definition 1.4 [7] An element (X, y)eX x X is called a coupled coincidence point of a mapping

F:XxX =X andamapping g: X — X if F(X,y)=0gx, F(y,x)=gy.
Definition 1.5 [7] An element X € X is called a common fixed point of a mapping F: X x X — X and

g: X > X if F(X,X)=gx=Xx.
Definition 1.6 [7] Let X be a nonempty setand F: X xX — X and g: X — X. Onesays F and

g are commutative if forall X,y e X, F(gx,ay)=g(F(x,Yy)).

2. Main results
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Our first result is the following.

Theorem 2.1 Let (X,d,=) be a partially ordered complete metric space. Let T : X x X — X

g: X > X and ¢,y :[0,00) — [0, 0)satisfy following condition

y(d(T(x ), TUV)) <w(M(x,y,u,v)) -g(M(x,y,u,v)), (2.1)

for all X,Y,U,ve X with gXx=gu,gy>gv and gx==gu, where ¢ is lower semi-continuous, ¥ is
continuous, non-decreasing, @(t) =0=w(t) ifandonlyif t=0 and

d(gx,T(x,¥)).d(gu,T(u,v)) d(gu,T(x, y))-d(gx,T(u,V)),d(gxlgu)}_

M (X, Y,u,v) = max{ d(gx, gu) : d(gx, gu)

Also, assume T and g are continuous mappings such that T has the mixed @ -monotone property, ¢
commutes with T and T(XxX)cg(X) . If there exists (X, Y,) € XxX such that
%, =T (X5, Y,) and Y, =T (Y, %,), then T and g have coupled coincidence pointin X .

Proof. By the condition of the theorem there exist (X, Y,) € X x X such that gX,=<T(X,,Y,) and
Yo =T (Yo, %) Since T(XxX)cg(X), we can define (X,Y;) € XxX such that

9% =T (X, o) and gy, =T (Yo, %), then 09X, =T (X, Y¥o)=0% and gy, =T (Y, %)= QY.

Since T has the mixed @ -monotone property, we have

9% =T (X, Yo)=T (%o, V1) =T (%0, Y1) = 9%,

and

9y, =T (Y1, %) =T (Y6, X)=T (Yo: %) = O¥:-
Continuing in this way, we construct two sequences {X,} and {y,} in X such that
0X,, =T(X,,y,) and gy,, =T(y,,x,) foralln=0,12,... (2.2)
for which
9%, 20X, 20X, .. 20X, 20X, = and QYo = Oy, = OY, Ze Z OV, Z QY Zee (23)
If there exists K, € N such that 9%y a = %, and QY o = Y, » then OX :T(xko, yko) and
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Y, = T(yko , Xko)' This means that (Xko' ka) is a coupled coincidence point of T, @ and the proof is
finished. Thus, we can suppose that gX,., # gX, and @y, # @y, forall neN. From (2.2) and
(2.3) and the inequality (2.1) with (X, y) =(X,,Y,) and (U,V) = (X,.;, ¥s.1), We have

l//(d (gxn+l' gxn+2)) = l//(d (T (Xn’ yn)lT (Xn+1l yn+1)))

(2.4)
< l//(M (Xni yn’ Xn+l’ yn+l)) - ¢(M (Xni yn ’ Xn+l! yn+l))1

where
d (9%, T (Xns ¥n))-d (9%, T (Xpi1 Ynis))
d(9X,, 9X;.1) ’
d (9%, T (X, ¥, ))-d (9%, T (X015 Vi)
d (9, 9%y.1)
d(9%n, 9%n.1)-d(9Xn1s OXnip) A(9Xn.0 9%ni1).d(9X01 9X,p)
d(9%,, 9%,.1) ’ d(g%,, 0%,.1)
= max{d (gX,,1, 9X,.2), A (9X,, 9%, )3
Therefore
w (d(9%,.10 9X,.2)) < v (max{d (9X,, 9%,,1), d (X1, 9%,.2)})
—p(max{d (9x,, 9X,,1), d (9.1, 9%, .2)})- (25

We prove that forall ne N,

d (gxm—l’ an+2) < d (gxn ! gxn+1)' (26)

M (Xn’ yn ' Xn+1’ yn+1) = maX{

1 d (an 1 an+1)}

= maX{ ) d (gxn ) gxn+l)}

Suppose there exists N, € N such that d (gxnoﬂ, gxn0+2) >d (gxno : gxn0+l)' from (2.5) , we have

V/(d (gxn0+l! an0+2 )) < l//(maX{d (anO ' anO+1)’ d (an0+1’ an0+2 )})
- ¢(maX{d (gxno ' an0+1)’ d (gxn0+11 gxn0+2 )})
= l//(d (gxno+1’ gxn0+2 )) - ¢(d (gxn0+l’ gxn0+2 )) < V/(d (gxn0+17 an0+2))1

which is a contradiction. Hence, d(gX..;,9X,.,) <d(0X,,0X,,,)forallne N.
Similarly, we can show that d(QYy,.;,9Y,.,) <d(9y,,9Y,,,) forallne N.
It follows that the sequences {d(gX,, 9X,.;)} and {d(Qy,,0Y,.;)} are monotone decreasing sequences of
non-negative real numbers and consequently there exists J;,9, =0 such that
limd(9X,,9X,,) =6, and limd(9Y,, 9Y,..) = 5. 2.7)
N> N>

We shall show that &, =&, = 0. Suppose, to the contrary, that &, > 0.
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Taking the (upper) limitas N — o0in (2.5) and using the properties of the function @, we get
w(6,) <y (6,) —liminf #(6,) <y (5,) — #(6,) <y (5)),
n—o0
which is a contradiction. Therefore, &, =0, that s,

Ilm d (gxn ! gxn+l) = 0 (2-8)

nN—o0

Similarly, we can show that

lim d(gy,, 9Y,.,) =0. (2.9)
Now, we claim that
lim d(gx,,9x,)=0. (2.10)

Assume the contrary. Then there exists & >0 for which we can find two subsequences {gX; )}, {9%, 4}
of{gx,}with m(k) >n(k) >k such that

d(9Xny» Plngry) = € (211)
Additionally, corresponding to N(k), we may choose M(K) such that it is the smallest integer satisfying

(2.11) and m(k) > n(k) > k. Thus,

d (X Pny-r) < &- (2.12)

We have

& <A (K Pagiy) < A(BKy» Pingoy-1) + A (PKiniy20 Pay) < APy s Plingrya) + &-
Taking the upper limitas k — co and using (2.8) we obtain

’(im d (9o kyr Pngiy) = &- (2.13)
Also
d (X1 Pago-1) < A (K10 Pny) + A (X0 » Do) + (9K Pigora)s
d (9%, )10 Pingey ) < A (IXey21 Py ) + (9%, 1y Py )
d (X Pag) < A (XK PXogry1) + (X1 Koy

d (X0 Pangoy) < APy s Pinciy-2) T A (DX oy1 Pgiy) + A (X020 Py ):
So from (2.8), (2.13) and taking k — oo in the above inequalities, we have

I|<I_F>T1 d(9Xn)-10 Pmg-1) = ,(En d (9% -1 Pngiy) = € (2.14)
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Also

A (QXingry-10 Pengy1) < A(PXingry-10 P ) + Ay » Py1) < €+ (PXory 2 Plrgiy-1)
So from (2.8), (2.14) and taking k —> oo in the above inequalities, we have
1md (Xngyr Pny-1) = &- (2.15)
By the definition of M (X, y,U,V) and from (2.8),(2.14) and (2.15) we get
L'_To M (X110 Yago-10 Xm0 Ymgoy1) = € (2.16)
since M(K) > n(K), X402 = PKogos A QY91 =W ngga from (2.1), we have

W (d (9w Pagey)) = W (A (T Xogeyas Yaya)s T Kingy-ar Yngry1))
<Y (M (X010 Yagoar Xmgoar Y1) = PIM (X 15 Yowy10 Xm0 Ymgo-2))s

Taking the upper limitas K —> 0o, and using (2.16) , we obtain

w(e) <w(e)—dle) <wyl(e),
which is a contradiction. Therefore (2.10) holds, and we have

lim d(gx,,0x,)=0.

n,m—>o0

Similarly, we show that

lim d(9y,,9Y,)=0.

n,m—>c0

Since X is a complete metric space, there exist X, y € X such that
lim 9%, =X and [im gy, = V- (2.17)
N—o0 N—o0

From the commutativity of T and g , we have

9(9%.1) = 9(T (X, ¥4)) = T(9%,, 9Yn) 9(Yra) = (T (Yn0 X)) =T (Y, 9X,)- (2.18)
Lettingn — o0 in(2.18) and from the continuity of T and g , we get

0X = lim 9(9X,,.) = lim T (9X,, 9y,,) = T (lim 9%, lim gy,,) =T (X, y),

n—o0

gy = 1im 9(9Y,..) = limT(9Y,, 9%,) =T (lim gy, lim 9x,) = T (Y, X).

n—o0 n—o0 nN—o0 N—o0

This implies that (X, Y) is a coupled coincidence point of T and g . This completes the proof.

Corollary 2.2 Let (X,d,=) be a partially ordered complete metric space. Suppose there exist A €[0,1),
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T: X xX — X suchthat

d(T (% y).T(U,V) < imax{d(X’T(X’gz('du()u’-r(u’v» 1 d(u,T(x,glzz(.du()x,T(u,v)) Ak

for all X,Yy,U,ve X with X=<U,y>V and X=uU. Suppose also that T is continuous, has the mixed
monotone property on  X. If there exist (X,,Y,) € XxX such that X,=<T(X,,Y,) and
Yo =T (Y, X,), thenthereexist X,y € X suchthat X =T(X,y) and Yy =T(Y,X).

Proof. In Theorem 2.1, taking w/(t) =tand¢(t) = (1—-A)t, for all t€[0,0) and g =1, , we obtain
the corollary 2.2.

Now we give sufficient conditions for uniqueness of the coupled coincidence point. Note that if (X ,j) isa

partially ordered set , then we endow the product X x X with the following partial order relation, for all

(x,¥),(z,t) e X x X,

(X, ¥)=(z2t) & %=z, y ~t.
From Theorem 2.1, it follows that the set of coupled coincidence pointsof T and g is non-empty.
Theorem 2.3 By adding to the hypotheses of Theorem 2.1, the condition: for every (X,Yy) and (z,t) in

X x X, there existsa (U,V) € X x X such that (T (u,V),T(v,u)) is comparable to (T(X,Y),T(Y,X))
and to (T(z,t),T(t,z)),then T and g have a unique coupled common fixed point, that is, there exist a
unigue (X,y) € X x X such that

X=gX=T(xy),y =gy =T(y,).

Proof. We know, from Theorem 2.1, that exists a coupled coincidence point. Suppose that (X, y) and
(z,t) are coupled coincidence pointsof T and g, thatis, T(X,y)=gx, T(y,x)=gy, T(z,t) =9z
and T(t,z)=9gt . We shall show that gx=gz and Qy=gt. By assumption, there exists
(uv)e XxX such that (T(u,v),T(v,u)) is comparable to (T(X,¥), T(y,X)) and to
(T(z,1),T(t,z)). without the restriction to the generality, we can assume that

(TG YLTY XM (V). T(v,u)) and (T(z,1),T(t 2)=(T (U, V), T(v,u)).
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Put U, =U,V, =V andchoose (U;,V,) € X xX such that
gu, =T (U, V), gV, =T (Vy, Uy).
For n>1, continuing this process we can construct the sequences {gu,} and {Qv,} such that
gu,., =T(,,v,),9v,, =T(v,,u,) for all n.
Further, set X, =X,Y, =Y and Z,=2,t, =t and on the same way define the sequences {QX,},
{ay.}. {9z,}and {gt }. Then, itis easy to check that
X, > T(X,y), 9y, >T(y,x) and gz, > T(z,t),0t, >T(t,z), forall n>1. (2.19)
Since (T (X, ¥), T(y,X)) = (9x,9y) = (9%, 9y,) is comparable to (T (u,v),T(v,u)) =(gu,,9v,), then
it is easy to show (gX, gy)=(qu,,QVv,), thatis, gx=gu, and gy >gv, forall neN.
Thus from (2.1) , we have

y(d(g%, 9u,.1)) = w(d(T (% y), T(U,,v,)) <y (M(X Y, u,,v,)) =g(M (X, y,U,, V),

where

M Oyt v ) = @@ T 00 (0, T(, %)) (g, TONA@T M%) 4y o

d(gx, gu,) ’ d(gx, gu,)
- maX{d (gX! gX)d (gun! gun+1) d (gun! gX)d (gX, gun+1) d (gX gu )}
d(gx, gu,) ’ d(gx, gu,) R

= max{d(gx, gu,,,),d(gx, gu,)}-

Hence

y(d(gx, 9uy,,)) <w(max{d(gx, gu,,,), d(gx, gu,)}) — g(max{d (gx, gu,.,), d(gx, gu,)}).

It is easy to show that

w(d(9x gu,.,)) <w(d(gx, gu,)) —¢(d(gx, gu,)) <w(d(gx, gu,)). (2.20)
This implies that {d(gX, gu,)} is a non-increasing sequence. Hence, there exists r >0 such that

limd(gx,gu,) =r.

N—o0

Passing the upper limitin (2.20) as N — oo, we obtain

y(r) <y (r)—g(r),

which implies that @¢(r) =0 and then, r = 0. We deduce that
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limd(gx, gu,) = 0. (2.22)

N—o0

Similarly one can prove that

limd(gy, gv,) = 0. (2.22)

n—oo

Similarly, one can prove that

!]iﬂ;d(gz, qu,) = &iﬂ;d(gt, gv,) =0. (2.23)
By the triangle inequality, (2.22) and (2.23), we get
d(gx,9z) <d(gx,qu,,,)+d(gz,qu,,,) >0asn— x,
d(gy, gt) < d(gy. v,..) +d(gt, Qv,.,) > 0asn —>co.
Therefore, we have gX = gzand gy = gt.Since gX =T(X,y) and gy =T(Y,X), by commutativity of
T and g, we have
9(9x) = g(T(x,y)) =T (9x,ay), 9(ay) = g(T(y,x)) =T(gy, 9x). (2.24)
Denote gx =a and gy =D.Thenfrom (2.24),
g(a) =T(a,b),g(b) =T(b,a). (2.25)
Thus, (a,b) is a coupled coincidence point, it follows that ga=gz and gb=gy, that is,
g(a) =a,g(b) =h. (2.26)
From(2.25) and (2.26),
a=g(a)=T(ab),b=g(b)=T(b,a). (2.27)
Therefore, (a,0) is a coupled common fixed point of T and g . To prove the uniqueness of the point (@,b),
assume that (C,d) is another coupled common fixed pointof T and . Then we have
c=9gc=T(c,d),d=gd =T(d,c).
Since (C,d) is a coupled coincidence pointof T and g,wehave gc=gx=aand gd =gy =b.Thus

c=gc=ga=a and d =gd =gb=Db. Hence, the coupled common fixed point is unique. This
completes the proof.
Theorem 2.4 In addition to hypotheses of Theorem 2.3, if gX, and Qy, are comparable,then T and g

170


http://www.iiste.org/

Mathematical Theory and Modeling www.iiste.org
ISSN 2224-5804 (Paper)  ISSN 2225-0522 (Online) lL,i,!
Vol.5, No.2, 2015 IIS E

have a unique common fixed point, that is, there exists X € X suchthat X = gX =T(X,X).
Proof. By Theorem 2.1, we can construct two sequences {gx,} and {gy,} in X such that gx, — X and
gy, — Y, where (X,Y) is a unique coupled common fixed point of T and ¢ .We only have to show that

X =Y. Since gX, and QYy, are comparable, we may assume that QgX,=Qy,, then it is an easy matter to
show that

gx,=gy, foralln>0. (2.28)

From (2.1) and (2.28), we have

w(d(9%1s 9Yne1)) =W (A (T (%00 Yo ) T (Vas X)) S/ (M (X0, Yoo Yoo X0)) =@M (X4 Vs Yoo X0))s
where

d (9%, T (%, ¥ ))-d (Yo, T (Vs X,)) (Y, T (% ¥o))-d(9X,, T (Vs X))

M (X, Yos Yo %) = MmaX{ ,
d(gx,,9y,) d(gx,,9y,)

d(9%,,9y,)}

A(9%,, 9%,.1)-d(9Yn, QYna) A(GY, 0%01) (9%, BYos)
d(9x,. 9Y,) d(9x,. 9Y,)

By taking the upper limitas n — oo, we get

mM(X,, Y, Y, X,) = d(X, ).

= max{ ns gyn)}'

Hence

w(d(x y)) <y (d(xy))—¢(d(x Y)),
which implies that @(d(X,y)) =0. Therefore X =y, that is, T and g have a common fixed point.

Similar arguments can be used if gX, =~ QY,,.
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