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Abstract 

We consider a finite undirected and connected simple graph G(E, V) with vertex set V(G) and edge set E(G). The 

spectra of some special simple graphs and different types of their matrices are discussed to represent a graph. In 

this discussion we are interested in the adjacency matrix, Laplacian matrix, signless Laplacian matrix, 

normalized Laplacian matrix, and seidel adjacency matrix. 
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1. Introduction 

      Spectral graph theory has a long history. In the early days, matrix theory and linear algebra were used to 

analyze adjacency matrices of graphs. Algebraic methods are especially effective in treating graphs which are 

regular and symmetric. Sometimes, certain eigenvalues have been referred to as the “algebraic connectivity” of a 

graph [7]. There is a large literature on algebraic aspects of spectral graph theory, well documented in several 

surveys and books, such as Biggs [2], Cvetkovi ć, Doob and Sachs [4, 5], and Seidel [15]. In the past ten years, 

many developments in spectral graph theory have often had a geometric flavor. For example, the explicit 

constructions of expander graphs, due to Lubotzky-Phillips-Sarnak [10], are based on eigenvalue sand 

isoperimetric properties of graphs. The discrete analogue of the Cheeger inequality has been heavily utilized in 

the study of random walks and rapidly mixing Markov chains [1]. New spectral techniques have emerged and 

they are powerful and well-suited for dealing with general graphs. In a way, spectral graph theory has entered a 

new era. Just as astronomers study stellar spectra to determine the make-up of distant stars, one of the main goals 

in graph theory is to deduce the principal properties and structure of a graph from its graph spectrum (or from a 

short list of easily computable invariants). The spectral approach for general graphs is a step in this direction. We 

will see that eigenvalues are closely related to almost all major   invariants of a graph, linking one extremal 

property to another. There is no question that eigenvalues play a central role in our fundamental understanding of 

graphs. The study of graph eigenvalues realizes increasingly rich connections with many other areas of 

mathematics. A particularly important development is the interaction between spectral graph theory and 

differential geometry. There is an interesting analogy between spectral Riemannian geometry and spectral graph 

theory. The concepts and methods of spectral geometry bring useful tools and crucial insights to the study of 

graph eigenvalues, which in turn lead to new directions and results in spectral geometry. Algebraic spectral 

methods are also very useful, especially for extremely examples and constructions. In this book, we take a broad 

approach which emphasis on the geometric aspects of graph eigenvalues, while including the algebraic aspects 

as well. The reader is not required to have special background in geometry; spectral graph theory has had 

applications to chemistry [16]. Eigenvalues were associated with the stability of molecules. Also, graph spectra 

arise naturally in various problems of theoretical physics and quantum mechanics, for example, in minimizing 

energies of Hamiltonian systems. The recent progress on expander graphs and eigenvalues was initiated by 

problems in communication networks. The development of rapidly mixing Markov chains has intertwined with 

advances in randomized approximation algorithms. Applications of graph eigenvalues occur in numerous areas 

and in different guises. However, the underlying mathematics of spectral graph theory through all its connections 

to the pure and applied, the continuous and discrete can be viewed as a single unified subject.[see, 5, 6, 11, 12, 

13, 17] 
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        Throughout this paper it is assumed that all graphs are undirected and simple connected [without loops or 

multiple edges] and all matrices are real and symmetric.  

The following are the five different types of matrices that will take care for a graph G with n  vertices 

 vi;   ii = 1,2,… n n: 

The adjacency matrix, A = A(G) = aij  of  G is an n ×  n  symmetric matrix, 

aij = {
1,        if      vivj ∈ E,     

0,                   otherwise.
. 

The Laplacian matrix of G is the matrix L = L(G) = lij = D − A, 

lij = {

di,          if       i = j,
−1,        if      vivj ∈ E,

  0,          otherwise.

 

Where D is a diagonal matrix (D = (d1, d2, … , dn)). 

The signless Laplacian matrix of G is the matrix Q = Q(G) = qij = D + A, 

qij = {

di ,                     if       i = j,

1,            if     vivj ∈ E,

  0,                  otherwise.

 

The normalized Laplacian matrix of G is the matrix  £ = £(G) = £ij, 

                                                             £ij = {

1,             if       i = j,

−
1

√didj

,      if      vivj ∈ E,    

  0            otherwise.

 

The Seidel adjacency matrix of a graph G with adjacency matrix A is the matrix S defined by 

  S = J − I − 2A = sij (where J is the square matrix with all entries are equal one), i.e. 

                                                             sij = {

0,                            if  i = j,
−1,                    if  vivj ∈ E,

1,                        if  vivj
  E.

 

The results of the adjacency matrix and Laplacian matrix are calculated in [3, 4]. We compute the new results in 

matrices the signless Laplacian, the normalized Laplacian, and the Seidel adjacency. 

Definition 1.1. The trace  tr(A)  of a square matrix A =  [aij]   is the sum of the entries along the main diagonal 

i.e.  tr(A) = ∑ aii.
n
i=1  

The following are some simple facts about Trace 

Suppose  k1, k2 ∈ℝ and A, A1, A2 are n ×  n matrices.Then 

tr(k1A1 + k2A2) = k1. tr(A1) +  k2. tr(A2). 

tr(AB) = tr(BA). This is known as the cyclic property of the trace. 

If A = (aij) is m ×  n  matrix, then  tr(AAt) = ∑ ∑ aij
2n

j=1
m
i=1 , where At is the transpose of matrix A. Thus, if A is 

square symmetric matrix (A = At), we have   tr(A2) = ∑ ∑ aij
2 .n

j=1
n
i=1  

        Some previously established results about the spectrum are summarized in this section. They will play an 

important role throughout this article. 
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Lemma 1.2[9]. Let A be a  n ×  n  symmetric matrix. Then, 

tr(A) = ∑ λi
n
i=1 ,  where  λi  are the eigenvalues of  the adjacency matrix.                                              □ 

Theorem 1.3[12]. Let G be a simple graph, then  ∑ di
n
i=1 = 2|E|, where  di is the degree of the vertex i of  graph 

G and |E| is the number of edges.                                                                                         □ 

Theorem 1.4 [12]. Let G be a simple graph of order n, then 

(i)∑λi

n

i=1

= 0. 

                                                                                (ii) ∑ λi
2n

i=1 = ∑ di
n
i=1 .                                                  □ 

2. Graph spectrum 

    In this section we showed how graphs can not only be represented as a picture but also be represented in 

matrix form. We now can introduce some ideas from linear algebra, as we will be working with matrices. In 

particular, we will introduce ideas that still relate to graphs. 

Theorem 2.1 Let G be a simple graph of order n, then 

(i)∑ρi

n

i=1

=∑di = 2|E|

n

i=1

. 

                                                                   (ii) ∑ ρi
2n

i=1 = ∑ di
n
i=1 (di + 1), 

where  ρi  arethe eigenvalues of  the Laplacian matrix. 

Proof. Since G does not have self-loops, all the diagonal elements of A are zero. Thus 

∑ λi
n
i=1 =  tr(A) = ∑ aii

n
i=1 = 0.  Then we have 

∑ ρi
n
i=1 = tr(L) = tr(D − A) = tr(D) − tr(A) = ∑ di

n
i=1 − ∑ aii 

n
i=1 = ∑ di = 2|E|

n
i=1 , ( by Theorem 1.3). 

We have ∑ λi
2n

i=1 = tr(A2) = ∑ ∑ aij
2n

j=1
n
i=1 , where   ∑ aij

2n
j=1  is the degree of vertex i. Since 

  aij
2 = (ai 1 ai 2 … . ai n )

(

  
 

ai 1
ai 2
.
.
.
ai n)

  
 

, A is symmetric and G is simple graph. Thus ∑ ai j
2 = di

n
j=1 , and tr(A2)  equal the 

sum of every vertex’s degree in G. If A is symmetric matrix and D is n diagonal matrix, then we have   tr(AD) =

tr(DA) = 0. Thus 

∑ρi
2

n

i=1

= tr(L2) = tr((D − A)2) =  tr(D2) − tr(DA) − tr(AD) + tr(A2) =  tr(D2) + tr(A2) 

                                          = ∑ di
2n

i=1 +∑ di
n
i=1 .                                                                                                      □ 
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Theorem 2.2. Let G be a simple graph of order n, then 

(i)∑μi

n

i=1

=∑di

n

i=1

. 

                    (ii) ∑ μi
2n

i=1 = ∑ di
n
i=1 (di + 1), 

where μi  are the eigenvalues of  the signless Laplacian matrix. 

Proof.  (i) As in the proof of  Theorem 2.1, we have 

∑ μi
n
i=1 = tr(Q) = tr(D + A) = tr(D) + tr(A) = ∑ dii

n
i=1 +∑ aii 

n
i=1 = ∑ dii

n
i=1 . 

∑ μi
2n

i=1 = tr(Q2) = tr((D + A)2) =  tr(D2) + tr(DA) + tr(AD) + tr(A2) =  tr(D2) + tr(A2) = ∑ di
2n

i=1 +

∑ di
n
i=1 .                                                                                                                                            □  

Theorem 2.3. Let G be a simple graph of order n, then 

∑ νi
n
i=1 = ∑ 1 = nn

i=1  , where νi are the eigenvalues of the normalized Laplacian matrix. 

Proof.  Since £ is normalized Laplacian matrix, we have 

∑ νi
n
i=1 = tr(£) = ∑ £ii

n
i=1 = ∑ 1 n

i=1 =  n .                                                                                                      □ 

Theorem 2.4. Let G be a simple graph of order n, then ∑ ωi
n
i=1 = 0, where ωi  are the eigenvalues of  the seidel 

adjacency matrix. 

Proof. (𝑖) Since S is seidel adjacency matrix, then we have ∑ ωi
n
i=1 = tr(S) = ∑ sii

n
i=1 = 0 .                       □ 

Theorem 2.5. Suppose that c1 be a coefficient of  xn−1 in characteristic polynomial of  

adjacency, Laplacain, signless Laplacain, normalized Laplacain, and seidel adjacency matrices, then 

(i) For adjacency matrix c1 = 0. 

(ii) For Laplacian matrix,  −c1 = ∑ di
n
i=1 , where di are the degrees of vertices vi respectively.  

(iii) For signless Laplacian matrix,−c1 = ∑ di
n
i=1 . 

(iv) For normalized Laplacian matrix, −c1 = n. 

(v) For seidel adjacency matrix, c1 = 0. 

Proof. Since −c1 is a trace of all matrices mention above, then the assertion is clear.                              □ 

3.  Spectrum of some graphs 

     We applied the matrices above to find the eigenvalues and the respective multiplicities of five different 

graphs as follows. 
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3.1 Star  𝑆𝑛 

Matrices Eigenvalues Respective multiplicities 

Adjacency matrix −√𝑛 − 1, 0 , √𝑛 − 1 1, 𝑛 − 2, 1 

Laplacian matrix 0, 1, n 1, 𝑛 − 2, 1 

Signless Laplacian Matrix 0, 1, 𝑛 1, 𝑛 − 2, 1 

Normalized Laplacian Matrix 0, 1,2 1, 𝑛 − 2, 1 

Seidel adjacency matrix −1, n − 1 𝑛 − 1,1 

Table 1:  The eigenvalues and respective multiplicities for  𝑆𝑛. 

3.2 Complete graph  𝐾𝑛   

Matrix Eigenvalues Respective multiplicities 

Adjacency matrix −1, n − 1 𝑛 − 1, 1 

Laplacian matrix 0, 𝑛 1, 𝑛 − 1 

Signless Laplacian Matrix n − 2, 2(n − 1) 𝑛 − 1, 1 

Normalized Laplacian Matrix 0,
n

n − 1
 1, 𝑛 − 1 

Seidel adjacency matrix 1 − n , 1 1, 𝑛 − 1 

Table 2: The eigenvalues and respective multiplicities for  𝐾𝑛. 

 

 

3.3 Path 𝑃𝑛   

Matrix Eigenvalues Respective multiplicities 

Adjacency matrix 
2 cos (

πi

n + 1
) , i = {1,2,⋯ , n} 

1,1, … , 1 

Laplacian matrix 2 − 2cos(
𝜋𝑖

𝑛
),  

𝑖 = { 0, 1, 2,⋯ , 𝑛 − 1  }, ∀ 𝑛 ≥ 3 

  

1,1, … , 1 

SignlessLaplacian Matrix 2 + 2cos(
𝜋𝑖

𝑛
),    

𝑖 = { 1, 2,⋯ , 𝑛  }, ∀ 𝑛 ≥ 3 

1,1, … , 1 

Normalized Laplacian Matrix 1 − cos(
𝜋𝑖

𝑛−1
),    

𝑖 = {0, 1,⋯ , 𝑛 − 1  } 

∀ 𝑛 ≥ 3 

1,1, … , 1 

Table 3:  The eigenvalues and respective multiplicities for  𝑃𝑛. 
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3.4 Cycle 𝐶𝑛   

Matrices Eigenvalues Respective multiplicities 

Adjacency matrix 
2 cos (

2πi

n
) , i = {0,1,2,⋯ , n

− 1} 

2,1, … , 1,2 for even 

1,…,1,2   for odd 

Laplacian matrix 
2 − 2 cos

2𝜋𝑖

𝑛
,   𝑖 =

{0, 1,⋯ , 𝑛 − 1  } ∀ 𝑛 ≥ 3 

 

Signless Laplacian Matrix 
2 + 2cos

2𝜋𝑖

𝑛
,   𝑖 = {0, 1,⋯ , 𝑛 −

1  } ∀ 𝑛 ≥ 3 

 

Normalized Laplacian Matrix 
1 − cos

2𝜋𝑖

𝑛
,   𝑖 = {0, 1,⋯ , 𝑛 −

1  } ∀ 𝑛 ≥ 3 

 

Table 4: The eigenvalues and respective multiplicities for  𝐶𝑛. 

3.5 Complete Bipartite 𝐾𝑛,𝑚 

Recall that the general form for the adjacency matrix of a complete bipartite graph is: 

𝐴𝐾𝑛,𝑚 = [
0 𝐶
𝐶𝑇 0

], where C is 𝑛 ×m matrix in which all entries are 1. 

 

 

Matrices Eigenvalues Respective multiplicities 

Adjacency matrix −√𝑛𝑚, 0, √𝑛𝑚 1, 𝑛 + 𝑚 − 2, 1 

Laplacian matrix 0, 𝑛,𝑚,𝑚 + 𝑛 1,𝑚 − 1, 𝑛 − 1, 1 

Signless Laplacian Matrix 0, 𝑛,𝑚,𝑚 + 𝑛 1,𝑚 − 1, 𝑛 − 1, 1 

Normalized Laplacian Matrix 0, 1, 2 1,𝑚 + 𝑛 − 2, 1 

Seidel adjacency matrix −1,𝑚 + 𝑛 − 1 𝑚 + 𝑛 − 1, 1 

Table 5: The eigenvalues and respective multiplicities for  𝐾𝑛,𝑚. 

3.6 Petersen graph 𝑃𝑒𝑡10 

Matrices Eigenvalues Respective multiplicities 

Adjacency matrix −2, 1, 3 4, 5, 1 

Laplacian matrix 0, 2, 5 1, 5, 4 

Signless Laplacian Matrix 1, 4, 6 4, 5, 1 

Normalized Laplacian Matrix 
0,
2

3
,
5

3
 

1, 5, 4 

Seidel adjacency matrix −3, 3 5, 5 

Table 6: The eigenvalues and respective multiplicities for  𝑃𝑒𝑡10. 
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