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Abstract

In this paper, we present tripled coincidence point theorems for F : X3 - X and g : X —» X satisfying weak
(w, @, ¥)contractions in partially ordered random metric spaces. Our results motivatedby Berinde and Borcut
[22], Abbas et. al., Aydi et al. [23] Choudhary [30-32]. Gupta et. al.[33]

2. Introduction

Fixed point theorems are very important tools for providing evidence of the existence and uniqueness
of solutions to various mathematical models. The literature of the last four decades flourishes with results which
discover fixed points of self and nonself nonlinear operators in a metric space. The Banach contraction theorem
plays a fundamental role in fixed point theory and has become even more important because being based on
iteration, it can be easily implemented on a computer. This theorem provides a technique for solving a variety of
applied problems in mathematical science and engineering. There are great number of generalizations of the
Banach contraction principle. Bhaskar and Lakshmikantham [1] introduced the notion of coupled fixed point and
prove some coupled fixed point results under certain conditions, in a complete metric space endowed with a
partial order. Later, Lakshmikantham and Ciric [2] extended these results by defining the mixed g- monotone
property. More accurately, they proved coupled coincidence and coupled common fixed point theorems for a
mixed g- monotone mapping in a complete metric space endowed with partial order. Karapiner [3] generalized
these results on a complete cone metric space endowed with a partial order. For other results on coupled fixed
point theory, we refers [4 - 14].

Beside this, in [15] Alber and Guerre - Delabriere presented the generalization of Banach contraction
principle by introducing the concept of weak contraction in Hilbert spaces. Rhoades [16] had shown the result of
[15] is also valid in complete metric spaces. Khan et.al. [17] introduced the use of control function in metric
fixed point problems. This function was referred to as 'Altering distance function' by the authors of [17]. This
function and its extensions have been used in several problems of fixed point theory, some of them are noted in
[18-21]. In recent times, fixed point theory has developed rapidly in partially ordered metric spaces, that is, in
metric spaces endowed with a partial ordering . Using the control functions the weak contraction principle has
been generalized in metric spaces [9] and in partially ordered metric spaces in [11].

Recently, Samet and Vetro [14] introduced the notion of fixed point of N- order, as natural extension
of the coupled fixed point and established some new coupled fixed point theorems in complete metric spaces,
using a new concept of F- invariant set. Later, Berinde and Borcut [22] obtained existence and uniqueness of
triplet fixed point results in a complete metric space, endowed with a partial order.

3. Privious Results: Now we recall come privious known definitions and results which are as follows.
Again, let (X,<) be a partially ordered set. The mapping F:X® — X is said to have the mixed monotone
property if for any x,y,z € X.

I X,% € X % < %X, F(x,y,2) < F(Xy,y,2),

ii. y1,¥2€ X, y12y,= Fxy1,2) 2F(x,y,2) ,

iii. 24,72, € X, 2, < 7, > F(x,y,2;) < F(x,y,25)
4. Triplet fixed point : An element (x,y,z) € X2 is called a triplet fixed point of F if
F(x,v,z) = x, F(y,x,y) =y, and F(z,y,x) = z
Berinde and Borcut [22] proved the following theorem.
5. Basic Theorems
Theorem 5.1.1:- Let (X, <) be a partially ordered set and (X,d) be a complete metric space. Let F: X3 — Xbea
continuous mapping having the mixed monotone property on X. Assume that there exist constants a,b,c €
[0,1) suchthat a + b + ¢ < 1 for which,

d(F(x, y,z),F(u,v, w))
< ad(x,u) + bd(y,v) cd(z,w) 5.1.1

Forall x> u,y < v,z > w. Assume either,

1. Fis continuous,

2. X has the following properties:

e if non decreasing sequence x,, = x, thenx, < x foralln,

e if non increasing sequence y, = y, theny, > x forall n,
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If there exist xq, Vo, Zo € X such that
Xo < F(X0,¥0,20), Yo = F(¥o,%0,¥0), and zy < F(zo,¥0,%0)
Then there exist x,y,z € X such that,
F(x,y,2) = x,F(y,x,y) = y,andF(z,y,x) = z
[Abbas, Aydi and Krapinar, Triplet fixed point in partially ordered metric spaces, submitted]. In this
respect, let (X, <) be a partially ordered set, F:X3® —» Xand g: X —» Xtwo mappings. The mapping F is said to
have the mixed g - monotone property if for any x, y, z = X.
i X, X, €EX, gx; < gx, @ F(x1,v,2) < F(x,,v,2),
ii. Yi.¥2 € X, 8y1 = g8y, = F(xy1,2) = F(x,y,,2) ,
iil.  z,72, € X gz, < gz, =2 Fix,v,21) < F(x,y,2,)
An element (x,y,z) € X3 is called a triplet coincidence point of F and g if
F(xy,z) = gx F(y,xy) = gy, and F(zy,x) = gz
while (gx, gy, gz) is said a triplet point of coincidence of mappings F and g. Moreover (x,y,z) is called a triplet
common fixed point of F and g if
F(x,y,z) = gx F(y,xy) = gy, and F(z,y,x) = gz.
At last mappings F and g are called commutative if
g(F(xy,2)) = F(gx,gy,g2), Vxy,z € X
In the same paper, they proved the following result.
Theorem 5.1.2:- Let (X, <) be a partially ordered set and (X, d) be a complete metric space. Assume there is a
function ¢: [0, ) - [0, ) such that ¢(t) < tfor each t > 0. Also suppose thatF: X3 - Xandg: X -
X are such that F having the mixed g — monotone property on X. Assume that there exist constants a,b,c €
[0,1) such that a + 2b + ¢ < 1 such that,
d(F(x, y,z), F(u,v, w)) < o (a d(gx,gu) + bd(gy,gv) + cd(gz, gw)) 1.2
forall gx > gu,gy < gv,gz > gw.
Suppose (X3) c g(X), g is continuous and commutes with F. Suppose either,
1. Fiscontinuous,
2. X has the following properties:
e if non decreasing sequence gx, = x, then gx, < x foralln,
e if non increasing sequence gy, — y, then gy, = y foralln,
If there exist x,,v,, 2z, € X such that
9xo < F(x0,Y0,20), 9¥o = F(¥o,%0,¥0), and gz, < F(Zo, Y0, %) -
Then there exist x,y,z € X such that,
F(x,y,2) = gx,F(y,x,y) = gy,and F(z,y,x) = gz
that is, F and g have a triplet coincidence point.
In [23] Aydi et.al. Prove the following theorem
Theoremb5.1.3:- Let (X, <) be a partially ordered set and (X, d) be a complete metric space. Assume there is a
function ¢:[0,0) — [0,) such that ¢(t) < t for each t > 0. Also suppose that F: X3 > X and
g+ X — X aresuch that F having the mixed g - monotone property on X. Assume that there exist constants
a,b,c € [0,1)suchthat a + 2b + ¢ < 1 such that,
d(F(x, v,2),F(u,v, W)) + d(F(y, x,v), F(v,u, v)) + d(F(z, v,x),F(w,v, u))
<3¢ (d(gx.gu)+ d(g;',gV)+ d(gz,gw)) 13

Forall gx = gu,gy < gv,gz = gw.
Suppose F(X3) c g(X), g is continuous and commutes with F. Suppose either,
1. Fiscontinuous,
2. X has the following properties:
e if non decreasing sequence gx,, — x, then gx,, < x forall n,
e if non increasing sequence gy, — y, then gy, = y foralln,
If there exist x4 ,¥,2, € X such that
9%o < F(x0,¥0,20), 9¥0 = F(Vo, %0, ¥0), and gz, < F(zo, yo,%Xo)
Then there exist x,y,z € X such that,
F(x,y,z) = gx,F(y,x,y) = gy,and F(z,y,x) = gz
that is, F and g have a triplet coincidence point.
Probabilistic functional analysis has emerged as one of the important mathematical disciplines in view of its role
in analyzing probabilistic models in the applied sciences. The study of fixed points of random operators forms a
central topic in this area. The Prague school of probabilistic initiated its study in the 1950. However, the research
in this area flourished after the publication of the survey article of Bharucha-Reid [10]. Since then many
interesting random fixed point results and several applications have appeared in the literature.
5.2 Main Results
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First we give some definitions, which are use to prove of the main theorem.
Definition 5.2.1 :- Let @ denote all functions ¢: [0,0) — [0, ) which satisfy
i ¢ is continuous and non decreasing,
ii. @ () =0 ifft=0,
jii. epr+s+t) o)+ p(s)+ @)V 1,5t € [0,0)
For example, functions ¢,(t) = kt where k > 0,¢,() = i ,o3(t) = In(t+1), and ¢@,(t) =
min {t,1} arein .
Definition 5.2.2:- Let ¥ be the set of all functions ¢ : [0,00) — [0,00) which satisfy lim, _, ,¢(t) > 0 for
all ¢ > O0andlim,_, Y(t) =0
For example, functions 1, (t) = kt where k > 0, ¥, (t) = areiny,
Throughout this paper (£, 2) denotes a measurable space, X be a partially ordered metric
space.and C is non empty subset of X.
Definition 5.2.2(a): A function f : 2 — C is said to be measurable if f'(B n C) € X for every
Borel subset B of X.
Definition 5.2.2 (b): A function f: 02 x C — C is said to be random operator, if f(.,X):2 -
C is measurable for everyX € C.
Definition5.2.2 (c): A random operator f: 2 X C — C is said to be continuous if for fixed
ten, f(t,.):Cx C iscontinuous.
Definition 5.2.2 (d): A measurable function g : €2 — C is said to be random fixed point of

the random operator f:02 x C - C,if
f(tg®) = g®,vteqn.

In this paper, we present tripled coincidence point theorems for F : X3 - X and g : X —» X satisfying
weak (u, @, W)contractions in partially ordered random metric spaces. Our results motivatedby Berinde and
Borcut [22], Abbas et. al., Aydi et al. [23] Choudhary [30-32]. Gupta et. al.[33]

Now we prove our main results.

Theorem 5.2.3:- Let (X, <) be a partially ordered set and (X,d) be a complete random metric space. Let
F: X® > X be a continuous mapping having the mixed g - monotone property on X and F(X3) c g(X).
& € 0, be a measerable sellector .Suppose there exist 4, ¢ € @, Y € ¥ for which,

. w(d(F(E (€, (), 2(E), F(E, (u(§), v(§), w(EN)))
S§<P(d(g9C(f)»gu(f))+ d(gy(©), gv(©) + d(gz(§), gw(£)))

iy ( d(gx(), gu() + d(gy(®), 917(5))) (5231)
3 + d(gz(§), gw(§))

Forall gx($) = gu($), gy(§) < gv(§) and gz (§) = gw($).
Assume that F is continuous; g is continuous and commutes with F.

If there exist x4($),y0(&),2,(¢) € X such that
9%0(§) < F(§, (x0($),¥0(£),20(§)), g0 (§) = F (&, o(£), X%0(£), ¥0 (),
and gzy(§) < F(§,(20(§),¥0(§), %0($))
Then there exist x(&),y(§),z(¢) € X such that,
F (& (), (), 2(9)) = gx(©),
F& (v, x(©),y@)) = gy(©),and F(§, (2(£),y(),x(©)) = gz(%).
That is, F and g have a triplet coincidence point.
Proof: Let x4(&),y0(£),2z,(§) € X such that

9%0() < F (& (%9 30(9), 20()),

9¥0(8) = F(& (o %08, %0(5)),
and gz, (§) < F(&,(20(§), ¥0(§), %0(£))
We can choose x;(¢),y,(§),2,(§) € X such that
961§ = F (& (x6(8),70(), (D)),

9y1(§) = F (5 (o(£), %0 ($), ¥0())),
and gz1(§) = F(&,(20(£),¥0(£), x0($)) (52.3.2)

This can be done because F(X3) c g(X). Continuing this process, we construct a sequence {x,(5)}, {7.(&)}
and {z,(&)} in X such that

9%n11(E) = F(, (xn(8), y0(8), 2,(8)),
9Yn1) = FE (3(), %,(E), 7 (O,

n(2t+1)
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and gz,.1(§) = F(& (2a(), 7 (), %2(§)))  (5.2.3.3)

By induction, we will prove that
9% (§) < gxn+1()r gy (§) = gyn+1($)

. and gzp(§) < gZn+1($) (5.2.3.4)
ince,
9%0(§) < F(&, (%), %08, 20(9))), 9¥0(§) = F(&, (o(£), x0(£), ¥o(9))),
and gzy(§) < F(2(£), yo(§), %0(£))) (5.2.3.5)

Therefore by ((5.2.3.2)) we have

9% () = gx:1(§), g¥0(§) 2 gy1 (§) and gz,(§) < gz ()
Thus (5.2.3.4) is true for n = 0. We suppose that (5.2.3.4) is true for some n > 0.

Since F has the mixed g - monotone property, by (5.2.3.4)we have that
9xn41(8) = F(& (X ($), ¥n(§), 22 (D)) < F (&, (X341(§) ¥ (€, 20 ()
< F(Er (xn+1(f)' Y(E)n' Zn+1(€))
=< F(fr (xn+1(§)'Yn+1(‘f)vZn+1(€))) = gxn+2(‘f)
QYn+2(€) = F(E' (Yn+1($;)vxn+1(€)ﬂ)’n+1(€)))
2 F(§ n+1(8) x0(E)s Yns1(§))
2 F(fr (yn(f):xn(f)ryrwl({))
2 F(§ (), %0(9), v (§)) = g¥n+1($)

9Zn41(§) = F(§, (2n(8), yn (), xn(§))) < F (&, (Zn41(E), ¥n(§), %()))
< F(f' (Zn+1'yn+1'xn)

< F(E (2n1(8) Yna1(8) %41 (§))) = 92Zp42(8)
That is (5.2.3.4)is true forany n € N.Ifforsome k € N,

9%(§) = gXis1(8), gYk(§) = gYi+1(§) and gz (§) = g2Zk+1(S)
then, by(5.2.3.4) (x, (£), yi (), z, (§)) is a triplet coincidence point of F and g. Now we assume that at least

9xn (&) # gxns1(§), gYn () # GYns1 (§)and

92n(§) # 9Zn11($)
foranyn € N.From (5.2.3.4)and the inequality (5.2.3.1)we have

d(gxnﬂ(f),gxn(f))
= d(F & (tn(§), (), 20 (E))), F (€, (n-1(8), Yn-1(8), 2n-1(5)))
1 (dCF &, Cen(€), Y (8D, 20 (), F(§, (X1 (§), ¥no1(8), 21D (§)))
Sﬁfp(d(gxn(f),gxn_l(f))+ d(gyn(§), gyn-1(E)) + d(g2,(§), 97n-1(£)))
—é W(d(gxn(§), gxn-1() + d(GYn(§), gYn-1(E)) + d(g2, (), 92n-1(5)))
1 (d(g%n11(8), 9% (£)))
< 29(d(gxn(©), gxn-1(©) + d(gYn(©), gYn1(©) + d(9Zn(§), 9Zn-1(5)))
—2 9 (d(920(©), gXn-1(®) + A(gYn(©), gYn-1(9) + A(G2u(E), gZu-1(£))) (5:23.6)
Similarly we get
#(d(gyn+1(8), g¥a(£)))
< §¢(d(gxn(€).yxn_1(f))+ d(gyn(§), g¥n-1(E)) + d(gyn(§), gyn-1(§))
—2(d(gxa(8), 9% (D) + d(GYn(©), gYn-1(E)) + A(GYn(©), 9Yn-1(5))) (5.2.3.7)
u (d(g2n+1,920))
< 2 0(d(gxn(®), g1 (©) + d(gYn(©), gYn-1(E) + d(92n(8), 9Zn-1(5)))
—glﬂ(d(gxn(f),gan(f)) + d(gYn(§), g¥n-1(5)) + d(g2a(§), 92n-1(§))) (5.2.3.8)

Foreach n > 1.
By adding (2.6), (2.7) and (2.8) and from the property of u we get

u(H(E, (0 (8, 70 (9), 2a(8)))
< @(H(E, (n(§), ¥n(8), 20(8))) — ¥ (H(E, (n-1(§), Yn-1(8), 2n-1(§)))

where

and

H(E, (00 (), ¥ (8),2,(8)) = d(9(x), 9(xn41(E)) + d(gm(8)), g(yns1(5)) +
d(9(2,(©)), 9(zn+1))

or
H(E, (xn(8), ¥ (8, 2,(9))
= d((§, F(a(§), ¥ (), 2()), F(§, (tn-1(§), Yn1(8), Zn-1(§)))
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+ d(F(f, (yn(g)'xn(f)v yn(f)))v F(f! (yn—l(f)' xn—l(f): yn—l(f))))
+ d(F (&, (28, yn (), X0 (8D, F (§, (20-1(§), Yn-1(8), X—1(£)))

Using the fact of i, ¢ are non decreasing, we get

H(E, (68, 78, 2n(§)) < H(E, (x-1(8), Yn-1(§), 2n-1(£))

Op = H(E, (x-1(8), Yn-1(8), 241 (£))
= d(gx%,(8), gxp-1(©) + d(gyn(8), g¥n-1(5))

+ d(gz,(§), 92n-1(5)) (5.2.3.10)
Then the sequence {&,, } is decreasing. Therefore, there is some § = 0 such that

lim,_, o 0n
= limn—>oo (d(gxn(f)'gxn—l(f)) + d(gyn(‘f)vgyn—l(f)) + d(gzn(f)!gzn—l(f)))
=6 (5.2.3.11)

We set,

We shall show that § = 0. Suppose, to the contrary, that § > 0. Then taking the limitas n — oo of both sides
and have in mind that we suppose lim,, ,, ¥(t) > Oforall ¢ > 0and u, ¢ are continuous, we have
1() = limy, o @(6y)
iMoo 1t (8) < limy oo (@(8na) = P(Bm1)) < p(8)

a contradiction. Thus § = 0, that is

lim,, 6, =

limn—»oo (d(gxn(f):gxn—l(f)) + d(g)’n(f). 93’n—1(5)) + d(an(f), an—1(f)))
=0 (5.2.3.12)

In what follows, we shall prove that {gx,,(é)},{gy,,(6)} and {gz,(¢)} are Cauchy sequences. Suppose, to the
contrary, that atleast one of {gx,,(é)} {gv.(&)},{g92,(é)} in not Cauchy sequence. Then there existsan ¢ > 0

for which we can find subsequence {gx,q (&)} ,{g%mau ()} of {gx.(E)}and {g¥na (O} {gVmuo ()}
of {gy. ()}

and {97, ()} {9Zmao (©)}of {92, (6)} with n(k) > m(k) > k such that

d(9%na0) (), 9%ma(E)) + A(IYnw () 9Ymw(©)) + d(92n) (), 9Zmao(§)) =€ (5.2.3.13)

Additionally correspondence to m(k). we may choose n(k) such that it is the smallest integer satisfying
(5.2.3.13) and n(k) > m(k) = k. Thus

A(g%n(1-1(8), 9% (©)) + d(9Yn0-1() 9Ym(©) + A(9Zna0-1(8), 9Zma (§)) <€ (5.2.3.14)
By using triangle inequality and (2.13) and (2.14)
€ < p(® = d( 9% (&), Bmao ()
+ d(9Yn00 () 9V (©) + d(9Zni)(©)s 9Ziman (©))
< d(g%n@)(©), 9Xnao-1(8)) +
A(9Yn10-1(8) 9V (©)) + d(9Znie) () 9Zn(a0)-1(5))
+ d(gYnto)- 18y 9Ym@io ()
+ d(9Zn()(©)s 9Zn(i)-1(9)) + d(9Zng0-1(8), 9Zmao ()
< d(g%ngy 9Xnao-1(8))

+ d(9Yn00 () 9Ynw0-1) + d(9Zn() () 9Zngi)-1(5)) + € (5.2.3.15)
letting k - o in5.2.3.15) and using 5.2.3.12)

I d (gxn(k)(f),gxm(k)(f)) l
im0 Pe(€) = limy o+ d (Y000 (), 9Yma ()
+d (gzn(k) (), 9zZmao (f))
limg_ opr(é) = € 5.2.3.16)
Again by triangular inequality,
Pe@ = d (%00 (), PXma0 ©) + (Ym0 () IYma () + (970008, 9Zman(©)
< d(92u0©), 92n041©) + (9041, Xm+1®)) + d(9Xm00+1 (), GXmao ©) )
d (gyn(k) (5),9}’n(k)+1(5)) + d (g)’n(k)u(f),gym(k)+1(f)) +d (gym(k)+1(f)' Y@ (5))
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d(gzn(k)(f)'gzn(k)+1(f)) + d(9Zn@+1 9Zman+1) + d(me(k)H(f),me(k)(f))
< Sno+r T Omgo+1 Tt d(yxn(k)n(f),yxm(k)+1(f))

+ d(9Yna+1 9Ymao+1) + d(gzn(k)+1:gzm(k)+1('s)) 2.17
Since n(k) > m(k), then
9% &) = gxmw () IV () < gGYmw (&),
9Zn)(§) = 9Zmaoy () (5.2.3.17)Take (5.2.3.17)in (5.2.3.1)to get,
( d(gxn(k)u(f)'gxm(k)+1(f)) )
+d (gJ/n(k)H(f)'gJ/m(k)+1(f)) }
)

\+ d (an(k)ﬂ(f)' me(k)+1(f))

(d (F(f' (*n00©)» Y () Znir (D), F (&, (xm(k)(f)'Ym(k(f))’Zm(k) (f)))) )
= 4' + d (FE (00 %00 @), Yo N, FE i ) X (€ Yo (€)))) }
)

| +d (F(f. (200 Yn 0 () %) D)), F (&, (210 (8D, Yoy (6, Xmaro (5))))
Using the property of ¢ we get,

1 (0e(®) < 0 (620011©®) + @ (Bmas2(®) + 0(Be(®) = W(Pe(D))

Letting k — oo and using (5.2.3.10)and (5.2.3.14)we get

) = 90 + @) = lime, o (Pe(§)) < ¢ (€)

This is contradiction. This shows that {gx, (&)}, {gy.(é)}and {gz,(&)}are Cauchy sequences. Since X is a
complete metric space, there exist x,y,z € X such that

limy 0 {gxn (9} = x(§) . limy, o {9y (D)} = ¥(§)

lim,, , o {9z (§)} = 2(§) (5.2.3.18)
From (5.2.3.18)and the continuity of g,

lim, , o {9(92%,(8))} = gx(&)
Vim0 (9(970()} = gy,
limy o {9(972(8))} = 92(§) (5.23.19)

From the commutativity of F and g, we have
9(920:1(©) = g (F(& (4a(8), 3(8), 2())
= F(§(9%n(8), g¥n(8), 920(8))
9(gYns1) = g<F (5 (yn(f),xn(f),yn(f))))
= F(§ (g (8), 9xn(8), gy (©))
9970 (0) = 9 (F (£ (2 7@, 2:6)))
= F(§,(92n(§), g¥n($), gxn(£))) (5.2.3.20)

Now we shall show that
9x(§) = F(& (x(§),y(8),z(£)), gy(©&) = F( (), x(5),y(£)),
and gz = F(§,(z(§),y(§),x(£)))
Suppose that F is continuous. Letting n — oo in (5.2.3.20), therefore we obtain
gx(&) = limy o {g(9%.())}
= limy 5 oF(§, (9%,(8), gyn(§), 92, (£))) = F(§, (x(§),y(£),z(£)))
gy(€) = limy, o {g(gy:(©))}
= 1imy, ., oF (& (9Yn(8), 9% (8), gy () = F(E (¥(), x(8),¥(8)))
9z(&) = lim, .« {9(92.())}
= limn—»ooF(f: (gzn(f)rgyn(f)'gyn(f)))
= F(§ (z(£),y(8),x(8))) (5.2.3.21)

We have proved that F and g have a tripled coincidence point.

Corollary5.2.4:- Let (X, <) be a partially ordered set and (X, d) be a complete metric space. Let F: X3 - X
be a continuous mapping having the mixed g - monotone property on X and (X3) c g(X) . Suppose there exist
a € [0,1) & € 2, be a measerable sellector, for which,
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d(F(, (x(§),¥(8),z())), F (€, (u(€), v($), w(£))))
< a (d(gx(§), gu($)) + d(gy(),gv(§)
+ d(9z(§), gw(£))) (5.24.1)
Forall gx(§) = gu($), gy(§) < gv(§) and gz(§) = gw(§).
Assume that F is continuous; g is continuous and commutes with F.
If there exist x,(&), v, (£),2,(§) € X such that
gxo(f) < F(f' (xo(f):)’o(f):zo(f)))’
g.’VO(f) = F(f' (YO(E)le(E)'yO(f)))v and gZO (6) < F(f! (Zo(f):YO(f),xo(f))
Then there exist x(£),y(¢),z(§) € X such that,
F(E (x(©),y(5),z(8)) = gx(),
F(& (), x(8),y(©) = gy(©),and F(¢,(2(£),y(&),x(8))) = gz(&).
That is, F and g have a triplet coincidence point.
Proof:- It can be proved easily using above Theorem.
Corollary 5.2.5:- Let (X, <) be a partially ordered set and (X, d) be a complete metric space. Let F : X3 —
X be a continuous mapping having the mixed g - monotone property on X and F(X3) c g(X) . Suppose there
exist ¢ € @, Y €V & e, be ameaserable sellector ,for which,

d(F (€, (x(£), (), 2(E)), F (&, (w(§), v(§), w(£))))
< (d(gx($), gu(§)) + d(gy(€),gv($)) + d(gz($), gw($)))
=Y (d(gx($), gu($)) + d(gy(€),gv($)) + d(gz($), gw($)))
Forall gx($) = gu($), gy(§) < gv(§) and gz (§) = gw($).
Assume that F is continuous; g is continuous and commutes with F. If there exist x,(&),v,(§),2z,(§) € X such
that
9%0(§) = F(&, (x0(£),¥0(§),20($))), gyo = F(& o($), x0(§), ¥0(£)),
and gz,($) < F(§,(20($), y0(§), x0(£))
Then there exist x(£),y(§),z (§) € X such that,
F(&, (xy(8),2(8)) = gx(§), F(&, (v(§), x($),¥($))
= gy(§),and F(S, (z($), y(£), x(§)) = 9z($).
That is, F and g have a triplet coincidence point.
Proof:- Using above Theorem , taking u(t),= ¢(t) = t corollary 52.5.can be proved easily.
Theorem 5.2.6:- Let (X, <) be a partially ordered set and (X, d) be a complete metric space. Let F : X3 — X be
a continuous mapping having the mixed g - monotone property on X and (X3)c g(X) .
& €0, be a measerable sellector .Suppose there exist u, ¢ € @, Y € ¥ for which,
d(F (&, (x(),y(), (O, F(§ @(©), v(©), w(©))))
iy +d(FE G©,xE), N FE (), u(®), v(§)))

+ d(F (&, (2(8),y(8),x()), F (&, (w(§), v(§), u(§))))
d(gx(§), gu($)) d(gx(§), gu($))
< @4+ dlgy(©),gv(€) ¢ — i+ dlgy(§), gv($)) (5.26.1)
+ d(gz, gw) + d(gz(§), gw(£))
Forall gx(§) = gu($), gy(§) < gv (§) and gz(§) = gw(s).
Assume that F is continuous, g is continuous and commutes with F. If there exist x,(&),y,(&), 2z, (§) € X such
that
9%0(§) < F(§, (%0 ($), ¥0(£), 20(§))),

9Y0(§) = F(§,(vo(§),%0(§),¥0(§)), and gz, < F(§,(20(§),¥0(§) %0(£))
Then there exist x,y,z € X such that,

F(§ (x(6), (), 2(9))) = gx(). FE . x,y) = gy($),
and F (&, (2($), y(§),x(§)) = gz(5).

That is, F and g have a triplet random fixed point.
Proof:- From the Theorem we can

u (d(F(f, (x(§), ¥, 2()), F (S, (u(f),v(f).W(f))))
< o(d(gx(§), gu(®) + d(gy(©), gv(©) + d(gz(£),gw(®))

—%w(d(gx(f).gu(f)) + d(gy(©),gv(©) + d(gz(§), gw(¥)))
(5.2.6.2)

Similarly we get,
#(d(F (& (€, x(), y(ON, F (& (&), u(®), v(§)))))
<so(dlgx,gw) + d(gy,gv) + d(gy,gv))
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—9(d(gx(©), gu(©) + d(gy(©), gv(E) + d(gy(©), gv(©)))

(5.2.6.3)

and

w (d(F (& 2(8),y(8), x(©)), F(§ w (&), v(&), u(¥)))))
< 2o(d(gx(©), gu(®) + d(gy(©), gv(®) + d(gz(£),gw(®))

—§¢(d(gx.gu(f)) + d(gy(§), gv(©) + d(gz(§), gw(§)))
(5.2.6.4)
by adding (5.2.6.2), (5.2.6.3)and (5.2.6.4)and property of u then the result is follows similarly to the prove of
Theorem and nothing to remain prove in Theorem .
Remark 5.2.7:- It is clear that Theorem 5.2.6 is the special case of Theorem 5.1.3.
Remark 5.2.8:- It is clear that Theorem 2.3 is the special case of Theorem 5.1.1 for perticular valuies of a,b and
c
Theorem 5.2.9:- In addition to hypothesis of Theorem 5.2.3 suppose that for all (x(¢),y(¢),z(§)) and
W (&), v(&),w(d)) in X3, there exists (a(£), b(&),c(§)) in X3 & € 2, be a measerable sellector , such that
(F . (a(@), b(€), c(E), F(E(B(E), a(€), b(9))), F(E(c(8), b(§), a(9))))
(F(E (x(),y(9),2())), F(E (@), v(©),wE)),
are comparable tod F(& (), x(§),y(6)), ¢ andi{| F(& w(§),u(®) v(©)),
F(&,(2($),y(§),x(5)))) F(& w(§),v(&)u$))
Also assume that u, @ are non decreasing. Then F and g have unique tripled common random fixed point

(x(), y(), 2(§) thatis
x(©) = gx(®) = F (& (x(©).y©),2©))

y (&) = gy(©&) = F(& (), x(5),y()))
and z(§) = gz(§) = F(§, (z(5), y(§), x())).
Proof:- Assume now, that (x, y, z) and (u, v, z) are two tripled coincidence points of F and g that is
F(§, (x(§),¥(8),2(£))) = gx(8),F(§ (v(§),x(),¥(§)) = gy(©)
and F(§, (z($),y(§),x(£))) = gz($),

F (& (u®,v©),w®)) = gu®,

F(& (v(),u(®),v()) = gv(§) and F(§, (w(§), v(&), u(s))))
= gw($)
We will show that (gx($), gy (£), 9z(£)) and (gu($), gv(§), gw($)) are equal.
By assumption, there is (a(®),b(®),c(®)) (in X3 such that
(F(& (a(€), b(8), (), F(§, (b(§), a(§), b(), F (&, (c(§),b(§), a($)))) is comparable to
(F(&, (x(£), ¥(§),2(£))), F(y(£), x(£), ¥(£)), F(§, (2(£), ¥(£), x(£))))
and (F(§, (u($), v(§), w($))), F (&, (v(&), u(§), v(§))), F(§, w($), v(§), u(£))))-
Define the sequence {ga,, (£)}, {gbh,,(é)}and {gc,,(¢)}such that a(¢) = a,(§),
b(§) = bo($),c(§) = co(§)and
9an(§) = F(&, (an-1(8), bn-1(§), cu-1(£))
9bn(§) = F(§, (bn-1(8), an-1(§), bp-1(£))
gcn(§) = F(&, (cn-1(§), bp-1(§), an-1(5))
for all n. Further, set x(&) = x,(£),y(&) = y,(8),
z(&) = zp(&) and u(é) = uy(é),v(é) = vu(&),w(é) = wye(é) and similarly define the sequences
{92.()} {9y (D)}, {gza(§)}and {gun}, {gn (€)}, {gwn($)}. Then,
9% (§) = F(&, (x(§),¥(6),2(£))) gun(§) = F(& (&), v(§),w($)))
gy (§) = F(E (6, x(£),¥())) gva(§) = F(, (v(§),u(),v(£))) (5.29.1)

920(&) = F (& (2(8),5(£),x())
gwa(§) = F(E (w(©),v(9),u())

for all n > 1. Since
(F(E& (x(§),¥($),2(8)), F (&, (£, x(§), ¥(§)), F(§, (z(£), y(§), x($)))
= (9%1(£), 9¥1(£), 92:(§)) = (gx($), gy($), gz(§)) is comparable to
(F(E (@(), b(©), (), F(E, (b(©), a @), bEN), F(E, (c(), b(©), a(©)) )
= (ga,(&),gb1(8€), gc,(€)), then it is easy to see that
(9x(£), 9y(§),92(§)) = (gai(§), gb.(§), gc1(§)). Recursively, we get that

(9x(8), gy(£),92()) = (gan(§), gbn(§),gcn(§)) ¥Yn = 0. 2.29
Now we have

i (A(FCE (), ¥(©), 2()), F(E (an(8), ba(), cn(D))))
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< 0(d(gx(§), gan(@) + d(gy(©), gbu () + d(gz(§), gea(§)))

—¥(d(gx(©), 9a.(E) + d(gy(©), gbn(©) + d(gz(§), gcn(§)))
(5.2.9.2)
From (5.2.9.2)
We deduce that y,,41(§) < @ ($)),
Where
¥a(®) = d(F(E (x(£),y(), (), F(§, (an-1(8), bp-1(), ca1(£))).
Yo (§) < @™ (¥o(9)

That is the sequence d(F (€, (x(€), ¥(£),z())), F (€, (an-1(&), bn_1(8), cn_1(£)))) is decreasing. Therefore,
there exists a = 0 such that

d(gx(©), gan(§))

limy o 1+ d(gy (&), gba(©)) = a(§). (5.2.9.3)

+ d(gz(§), geu ()
We shall show that a(¢§) = 0. Suppose, to the contrary, that «(§) > 0. Taking the limit asn — o in
(5.2.9.2)we have

d(gx(§), gan($))
p@(®) < p(a®) — limy_o P{| + dgy(§), gbn(§)) | < ¢ (@)
+ d(gz($), gen(§)
a contradiction. Thus, « = 0, that is
d(gx(§), 9a,(9)) ‘
= 0.

lim, ., o (5.2.9.4)

+ d(gy(§), gbn(9))

+ d(gz(§), gen(£))
limy, o, [d(gx(£), gan(9))]
= limy,_ o [d(gy(§), gbn(9))]

= llmn—»w[d(gz(f)'gcn(f))] = 0.
Similarly we show that
limn—mo [d(gu(f)rgan(f))]
= limy o [d(gv(), gbn ()]
= limy o [d(gw(§), gen ()] = 0
Combining yields that (gx(£), gy (&), gz(£))
and (gu($), gv($), gw($)) are equal.
Since F (&, (x(£),¥(£),2(6))) = gx(&), F(, (y(©), x(£), (D))
= gy(&) and F(§,(z(8€),y(&),x(&))) = gz(&) by commutativity of F and g, we have
gFE, (x(§),¥(6),2(§))) = g(gx(§)) = F(& (gx(£), gy(§), 92($))
gFE (©)y,x(),¥))) = glgy©) = F(& (gy(§), gx(£), gy())

a(F (5. C©@y©.x))) = 9(oz®)

= F(§,(9z(£), gy(§), gx(£))),

Denote gx(§) = x'($), gy(§) = ¥'(§) and gz(§) = 2'($).
It is clear that,
F( (X'(6),y'(6),7'(§) = gx'(§),FE (), x'(§),¥' () = gy'(©)
and F(§,(2(£)",y'(§),x'(§)) = gZz'(§)

That is, (X'(£),y'(¢),2'(¢§)) is a tripled coincidence point of F and g. Consequently,
(9x'($), gy'(8), 82 (%)) and (gx(3), gy(8), gz(§)) are equal, that is
gx(§) = gx'(§),gy(®) = gy’ (Hand gz (§) = gz(¥)".
We deduce gx (§) = gx'(§) = x(8),gy(§) = gy'(®) = y (§)
and gz(§) = gz’ (§) = z(€). Therefore, (x'(§),y(€)’,z(§)") is a tripled common random fixed point of F and g.
Uniqueness can be proved easily.
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