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Abstract 

In this article we investigate and examine some of our results from transitive permutation groups which have 

some bearing to wreath product  
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I. INTRODUCTION 

Here we prove some properties of transitive groups that bear consequences upon the Wreath Product of two 

permutation groups.  

 

II. RESULTS 

1.1 Lemma 

Let C  Sym (n), then C acts transitively on a set  if and only if C is cyclic, where 

  n.  

 

Proof 

Suppose C acts transitively on the set  = {1, 2, … , r} and C = m. Let   C,   (1), then 
s
 = (1) for some 

positive integer s and by Lagrange’s theorem sm. If s  m, then some elements of  are fixed by . 

Consequently C moves elements of a proper subset of , contrary to assumption that C acts transitively on . 

Thus s = m   and C is cyclic generated by . 

Conversely suppose C is cyclic, say C = {(1), , 
2
, … ,  

m – 1
 } , where  

m
 = (1),  

Then r  m and  = (1, 2, 3,  … , m). We observe that for each j (j = 1, 2, . . . , r),   


i
 (j)  i + j (mod m), i = 0, 1, 2, … , m – 1. Here 

0
 (j) = (1) denotes the identity permutation. Clearly for each i 

 0, i + j  j and 
i
 (j)  . Thus 

i
 (j) = k, for some  

j, k   and 
i 
 C. This shows that C is transitive on  as required 

 

1.2 Lemma 

Let G  Sym (n) and G= m. Then G is the unique permutation group acting on a set  with = r if and only 

if r = m.   

Proof 

Suppose G is the unique permutation group acting transitively on , then r m otherwise G will not be transitive 

on  by [1].  

If r  m, consider the permutation  = (r, r -1, … , 1) and let H = {(1), , … , 
r -1

 }, with 
r
 = (1). Since for each 

i (i = 1, 2, …, r -1), we have  
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(mod ) 0,
( )

0

i
r i j r if i

j
j if i


  

 


 

holds for j = 1, 2, . . . , r and r - i + j  j for i  0, it follows that H is transitive on , contradicting the uniqueness 

of C as the only transitive group acting on , hence r = m.      

Conversely if C
/
 is another permutation group acting transitively on  with = r = m, let C

/
= n, then by 

Lemma 1.1, G
/
 is cyclic and let C

/
 = {(1), , 

2
, … , 

n – 1 
} where  


n
 = (1). As C

/
 acts transitively on , 

r
 = (1). 

 Thus  r n            (1.21)  

But n being the order of  means that n  r                                                               

(1.2.2)  

Hence from (1.2.1) and (1.2.2), we see that n = r = m and so C  C
/
.  

1.3 Proposition 

Let G  Sym (n), (n  1) be a permutation group of exponent n such that for 1  k  n, 

G = kn. Then G is transitive on the set  with  = n. 

Proof 

If k = 1, then G= n and as G is of exponent n, G is cyclic. Let  G with  

G =   , 
n
 = 1. Then G is transitive on the set  = {1, 2, … , n }. 

If 1 k  n, as G= kn and G is of exponent n, G contains an element a, say of order n. Let H =  a  with a 
n 

 

=1, then the normalizer of H in G, NG (H) is of order multiple 1 of n and a divisor of kn, thus NG (H)= kn 

=G and H⊴ G. Let b G – H such that  

b 
k
 = (1) and set K=  b ,  then H  K= {1} and G = HK.  As H G, b 

– 1 
a b H= a , we obtain G = < a, b:  

a 
n
 =1, b 

k
 = 1, b a = a 

r
 b for some r such that 0 < r < n ,  a group which contains a cyclic subgroup of order n 

that is a transitive subgroup of order n and by [1], G is transitive on  ={1, 2, … , n } as required. 

1.4 Proposition 

Let C and D be transitive permutation groups on sets  and  respectively such that =D and CD, 

then the wreath product of C and D, W = C wr D with base group P = C

 is the unique group acting transitively 

on the set  x . 

 

Proof 

Let C
/
 and D

/
 be other permutation groups acting transitively on the sets  and  respectively with =D

/
 

and consider W
/
 = C

/
 wr D

/
 with base group P = C

/ 
, then W

/
=C

/



D
/
 . Since =D and 

=D
/
, then D=D

/
 , also by  

Lemma 1.1, D and D
/
 are cyclic and so D  D

/
. Also since P=C

/



 = C


 then C
/
= C and again 

by Lemma 1.1, C and C
/
 are cyclic, thus C  C

/
. Hence  

W
/
=C

/



D
/
=C


D=W, and so W  W

/
.    

1.5 Proposition 

Let  be a set of size p, p a prime. If G is Sylow q – subgroup of Sym (), where q is a prime with p  q, then G 

is not transitive on . 

Proof 

Suppose G acts transitively on the set , and let G= q
 r
,  q 

r
 the highest power of q dividing p.  As q  p, 

we may assume q  p. Since G is transitive on , G contains at least one element of order p, say a. Let H =  a , 

with a 
p
 = (1), then H= p and by Lagrange’s theorem, p  q 

r
 which is impossible since p and q are prime and q 
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 p. Hence G is not transitive on .   

1.6 Proposition 

Let C be a permutation group acting transitively on a set  and let D  Sym (n) be a cyclic permutation group 

acting transitively on a set  such that D= n, = r, then there exists a unique Wreath Product of C and D, W 

= C wr D if and only if n = r. 

 

Proof 

Suppose n  r, then n  r (by [1]), let  ={1, 2, … , r} and consider the base group P = C

 ={i :   C, i = 1, 

2, … , C


}. Since D is cyclic, we consider the element d = (1, 2, 3, 4, …, r, r + 1, …, n) of D, then for (, r) 

  x  and  

i, j {1, 2,  …,C


}, we have  

(, r) (i d) (j d) = (i (r)j (rd), d
2
) = (i (r)j (r + 1), d

2
) is not defined since 

 r + 1, thus W = C wr D does not exist. 

Also if n  r, consider the generator  = (1, 2, 3,  …, n) of the cyclic group D. Then  

2, r , but we cannot find 
i
 D (for any i {1, 2, 3, …, n – 1}) such that 

i 
(r) = 2 since n  r. This means that 

D is not transitive on , thus W = C wr D exist implies n = r. 

Conversely if n = r, then the elements of the base group  

P = C 

 = {i:   C, i = 1, 2, … , C


} and the elements of D = <  >,  

 = (1, 2, 3, …, n ) are all defined and the groups P = C 

 and D are finite, so is  

C


D= W, hence, W = C wr D is a Wreath Product of C and D. The uniqueness of W = C wr D follows 

from the fact that any two cyclic groups of the order are isomorphic.     

1.7 Lemma  

Let C acts transitively on a group  and D  Sym (n) acting transitively on a set , such that D is not cyclic, D 

= n and  = r. Then there exists a Wreath product if and only rn, r  n. 

Proof 

Let W = C wr D, be a Wreath product of C and D, then W=C


 D=C
r 
n. Since D is not cyclic, D 

contains no elements of order n. Let  D such that 
m
 = (1), then mn. For transitivity of D on , we must have 

m = r, thus and r  n and rn. 

Conversely if r  n and rn, then the cyclic group H generated by the element  

 = (1, 2,  . . . , r) of D is a subgroup of D transitive on the set  = {1, 2, 3, . . . , r}. Thus H = r =  and so 

by Proposition 1.6, a Wreath product of C and H, W = C wr H exists and is unique.  

1.8 Lemma 

Let C be a transitive permutation groups on the set  and let D and D
/
 be transitive permutation groups on the set 

. Then the Wreath products W = C wr D and  

W
/
 = C wr D

/
 are isomorphic if and only if D and D

/
 are isomorphic. 

Proof 

If D and D
/
 are not isomorphic, then D  D

/
, hence  

WC


 D  C


 D
/
  W

/
, W and W

/
 do not have the same order  and hence cannot be 

isomorphic. 

Conversely if W and W
/
 are not isomorphic then WW

/
, that is, 

C


 DC


 D
/
, hence DD

/
 and so D is not isomorphic to D

/
. 

 

1.9 Theorem 

For every prime number p, there is a non – abelian transitive p – group of degree p
2 

isomorphic to a unique 
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Wreath product W = C wr D transitive on the set  x  with  

 x  = p
2
, where C    p, D    p. 

Proof 

Let G be a p – group acting transitively on a set  with  = p
2
, p an arbitrary but fixed prime. Then the size of 

any of its orbits is of cardinality p
2 
> 1 and it is readily seen that the order of G is at most p

p + 1
. Consequently G 

is non – abelian and  

G = p
p + 1 

= p
p 

p = C

D = C wr D. Clearly C and D are cyclic and by Proposition 1.6, the Wreath 

product C wr D is the unique group acting transitively on set x, of size p
2
. Since Wreath products are non – 

abelian, it follows that G  C wr D. 

From Theorem 1.9, we deduce the following: 

1.10 Corollary 

There is, up to isomorphism, only one non – abelian transitive p – group of degree p
2
 and order p

p + 1
, namely the 

Wreath product Cp wr Cp, for every prime number p.  

1.11 Corollary 

Every transitive p – group of degree p
2
 and order p

p + 1
 is isomorphic to a unique transitive p – group of degree 

p
3
.  

 

Proof: 

We consider the transitive p – group G
/
 of degree p

3
 and order G

/
= p

p + 1
 = G, where G is transitive p – 

group of degree p
2
. Then by Corollary 1.10, such group G is unique and whence G

/
  G.  

1.12 Remark 

We draw our attention here to the fact that a similar result to Corollary 1.10 was obtained by  Audu, M. S. in 

[8]. 
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