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Abstract. 

In this paper we introduce a new class of sets called Ω̂ - closed sets in topological spaces and we study 

some of its basic properties.It turns out that this class lies between the class of δ -open sets and the class of δg 

(resp.ω  )-closed sets.Unique feature is, this new class of sets forms a topology.  
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1.Introduction 

Levine [11] initiated the study of generalized closed sets (briefly g -closed) in general topology. The 

concept of g -closed set has been studied further by weaker forms of open sets such  as α-open, semi open, pre 

open, and semi-pre open. By using δ -closure operator, Donham and Ganster [8] introduced and studied the 

concept of δg -closed set, strong than g -closed set. We introduce and study a new class of sets known as Ω̂  -

closed set, slightly stronger than the class of δg (resp.ω  )-closed  sets. Also it properly lies between δ -

closedness and δg  (resp.ω )-closedness. 

 

2. Preliminaries 

Throughout this paper (X, τ ) and (Y, σ) represent topological spaces on which no separation axioms are 

assumed unless explicitly stated. For a subset A of (X, τ ) , we denote the closure of A, the interior of A and the 

complement of A as cl(A), int(A) and A
c
 respectively. 

Let us recall the following definitions, which are useful in the sequel. 

Definition 2.1. A subset A of a topological space (X, τ ) is called a  

(i) α-open set [1] if A   int(cl(int(A)). 

(ii) semi-open set [10] if A   cl(int(A)). 

(iii) pre-open set [13] if A  int(cl(A)). 

(iv) β -open (or semi pre open) set[1] if A   cl(int(cl(A)). 

(v) regular open set [14] if A = int(cl(A)). 

(vi) b -open set [5] if A   cl(int(A))   int(cl(A)). 

The complement of the above sets are called α-closed, semi-closed, pre-closed, β -closed regular closed and b -

closed sets respectively. The α-closure (resp.semi-closure,pre-closure, β -closure) 

of a subset A of (X, τ ) is the intersection of all α-closed (resp.semi-closed ,pre-closed, β -closed,) sets containing 

A and is denoted by αcl(A) (resp. scl(A), pcl(A), βcl(A) ). The intersection of all semi open subsets of (X, τ ) 

containing A is called the semi kernel of A and is denoted by sker(A). 

Definition 2.2. [17] A subset A of X is called δ -closed in a topological space (X, τ ) if A =  δcl(A) , where 

δcl(A) = {x   X  : int(cl(U))∩A Φ ,U  τ, x   U }.The complement of δ –closed set in (X, τ ) is called δ -

open set in (X, τ ). From [9],lemma 3, δcl(A) = ∩{F δC(X) : A   F} and from corollary 4, δcl(A) is a δ -

closed for a subset A in a topological space (X, τ ). 

Definition 2.3. [17] A subset A of X is called θ -closed in a topological space (X, τ ) if A = θcl (A) , where 

θcl(A) = {x   X : cl(U) ∩ A Φ ,U   τ, x   U}.The complement of θ -open set in (X, τ ) is called θ -closed 

set in  (X, τ ). 

Definition 2.4. A subset A of a topological space (X, τ ) is called 

(i) a generalized closed (briefly g -closed) set [11] if cl(A)   U whenever A   U and U is open in (X, τ ).                       

(ii) a generalized α- closed (briefly gα-closed) set [12] if αcl(A)   U whenever A  U and U is α-open in (X, τ 

). 
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(iii) a α- generalized closed (briefly αg -closed) set[12] if αcl(A)   U whenever A   U and U is open in (X, τ ). 

(iv) a generalized semi-closed (briefly gs -closed) set [2] if scl(A)   U whenever A   U and U is open in (X, τ 

). 

(v) a generalized semi-closed (briefly sg -closed) set [3] if scl(A)   U whenever A   U and U is semi open in 

(X, τ ). 

(vi) a generalized semi-pre closed (briefly gsp -closed) set [7] if spcl(A)   U whenever A   U and U is open in 

(X, τ ). 

(vii) a δ generalized closed (briefly δg -closed) set [8] if δcl(A)   U whenever A   U and U is open in (X, τ ). 

(viii) ĝ (or) ω  -closed set [15] if cl(A)   U whenever A   U and U is semi open in (X, τ ). 

The complement of g -closed (resp. gα-closed, αg -closed, gs -closed, sg -closed, gsp -closed, δg -Closed, ω -

closed) set is called g -open (resp. gα-open, αg -open, gs -open, sg -open, gα-open, gsp -open, δg –open, ω -

open). 

 

3. Ω̂  -Closed Sets 

In this section we introduce a basic definition of new class of sets known as Ω̂  -closed sets in 

topological spaces. 

Definition 3.1. A subset A of a space (X, τ ) is called Ω̂  -closed if δcl(A)   U whenever A   U and U is semi 

open set in (X, τ ). The complement of Ω̂  -closed set in (X, τ ) is called Ω̂ - open set in (X, τ ). 

Theorem 3.2. Every δ -closed set is Ω̂  -closed in (X, τ ). 

Proof. Let A be any δ -closed and U be any semi open set in (X, τ ) such that A   U. Since A is δ -closed set in 

(X, τ ) , δcl(A) U. Thus A is Ω̂  -closed set in (X, τ ). 

Remark 3.3. The reversible implication is not true in general from the following example.  

Example 3.4. Let X = {a, b, c} and τ = {Φ ,{a}, {b, c},X}. Here {b} is Ω̂  -closed set in (X, τ ) but not , δ -

closed in (X, τ ). 

Theorem 3.5. In a topological space (X, τ ) ,every Ω̂ -closed set is 

(i) ĝ  (or ω ) -closed set in (X, τ ). 

(ii) g (resp. gα,αg , sg , gs )-closed set in (X, τ ). 

(iii) δg -closed set in (X, τ ). 

Proof. (i) Suppose that A is a Ω̂  -closed and U be any semi open set in (X, τ ) such that A   U. By hypothesis, 

δcl(A)   U. Then cl(A)   U and hence A is ˆg -closed set in (X, τ ). 

(ii) By [16], every ĝ  -closed set is g (resp. gα,αg , sg , gs )-closed set in  (X, τ ). Therefore.it holds. 

(iii) Suppose that A is a Ω̂  -closed and U be any open sets in (X, τ ) such that A   U.Then, U is semi open in 

(X, τ ) and by hypothesis, δcl(A)   U. Hence A is δg -closed set in (X, τ ). 

Remark 3.6. The reversible implications are not true in general from the following example. 

Example 3.7. Let X = {a, b, c, d} and τ = {Φ , {a}, {a, b},X}. Then the set {b, c} is g -closed,gα-closed, sg -

closed, δg -closed but not Ω̂  -closed in (X, τ ). Also {c, d} is ĝ  -closed but not Ω̂ -closed in (X, τ ). 

Remark 3.8. The following examples show that Ω̂  -closed set is independent of closed,α-closed,semi closed, 

and δ -semi-closed sets. 

Example 3.9. Let X = {a, b, c, d} and τ = {Φ , {a}, {a, b},X}. Then the set {c, d} is closed,semi closed and α-

closed but not Ω̂  -closed set in (X, τ ). 

Example 3.10. Let X = {a, b, c} and τ = {Φ , {a, b},X}. Then the set {a, c} is Ω̂  -closed,but not closed or semi 

closed or α-closed in (X, τ ). 
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Example 3.11. Let X = {a, b, c, d} and τ = {Φ , {a}, {b}, {a, b},X}. Then the set {c} is δ -semi-closed but not 

Ω̂  -closed set in (X, τ ). 

Example 3.12. Let X = {a, b, c, d} and τ = {Φ , {c}, {a, d}, {a, c, d},X}. Then the set {a, b, c} is Ω̂  -closed but 

not δ -semi-closed in (X, τ ). 

Remark 3.13. The pictorial representation of the above discussions and existing results is shown in  

Figure-1.The reversible implication is not possible in general. 

 

4.Characterizations. 

In this section we characterize Ω̂  -closed sets by giving three necessary and sufficient conditions. 

Theorem 4.1. If A is Ω̂  -closed subset in (X, τ ) ,then δcl(A) \ A does not contain any nonempty closed set in 

(X, τ ). 

Proof. Let F be any closed set in (X, τ ) such that F   δcl(A) \ A. Then A   X \ F and X \ F is open in (X, τ ). 

Since A is Ω̂ -closed and X \ F is semi open, δcl(A)   X \ F. Hence F   X \ δcl(A). Thus F   (δcl(A) \ (A)) ∩ 

(X \ δcl(A)) = Φ . 

Remark 4.2. The converse may not be true in general from the following example. 

Example 4.3. Let X = {a, b, c} and τ = {Φ , {a},X}. Let A = {b}. Then δcl(A) \ A = X \ {b} = {a, c} does not 

contain any non-empty closed set and A is not a Ω̂  -closed subset of (X, τ ). 

Theorem 4.4. If A is Ω̂  -closed subset in (X, τ ) iff δcl(A)\A does not contain any non-empty semi closed set in 

(X, τ ). 

Proof. Necessity- Let F be any semi closed such that F   δcl(A) \ A. Then A   X \ F and X \ F is semi open in 

(X, τ ). Since A is Ω̂  -closed set in (X, τ ) , δcl(A)   X \ F, F  X \ δcl(A). Thus, F   (δcl(A) \ A) ∩ (X \ 

δcl(A)) = Φ . 

Sufficiency- Suppose that A U and U is any semi open set in (X, τ ). If A is not Ω̂ -closed set,then δcl(A)   U 

and hence δcl(A) ∩ (X \ U) Φ .We have a nonempty semi closed set δcl(A)∩(X \ U) such that δcl(A)∩(X \ U) 

  δcl(A)∩(X \ A) = δcl(A) \A which contradicts the hypothesis. 

Theorem 4.5. Let A be any Ω̂  -closed set in (X, τ ). Then A is δ -closed in (X, τ ) iff δcl(A)\A is semi closed set 

in (X, τ ). 

Proof. Necessity- Since A is δ -closed set in (X, τ ) , δcl(A) = A. Then δcl(A) \ A = Φ  is semi closed set in (X, τ 

). 

Sufficiency- Since A is Ω̂  -closed set (X, τ ) ,by theorem 4.4, δcl(A) \ A does not contain any non-empty semi 

closed set. Therefore, δcl(A) \ A = Φ .Hence δcl(A) = A. Thus, A is δ -closed in (X, τ ). 

Notations 4.6. In a topological space (X, τ ) ,Xs = {x X : {x} is semi closed in (X, τ ) } and 
Ω̂

X  = {x X : 

{x} is Ω̂  - open in (X, τ ) }. 

Proposition 4.7. In a topological space (X, τ ) ,for each x X, either {x} is semi closed or {x}c is Ω̂  -closed set 

in (X, τ ). That is, X = Xs 
Ω̂

X  

Proof. Suppose that {x} is not a semi closed set in (X, τ ). Then {x}
c
 is not a semi open set and the only semi 

open set containing {x}
c 
is X. Therefore δcl({x}

c
 )   X and hence {x}

c
 is Ω̂ -closed set in (X, τ ). 

Theorem 4.8. Let A be any Ω̂  -closed set in (X, τ ). If A B  δcl(A) , then B is also a Ω̂ -closed set in (X, τ ). 

Proof. Let B   U where U is any semi open set in (X, τ ). Then A  U. Since A is Ω̂ -closed set, δcl(A)   U. 

Since δcl(B)   δcl(δcl(A)) = δcl(A)   U, B is a Ω̂ -closed set in (X, τ ). 

Definition 4.9. The intersection of all Ω̂  -open subsets of (X, τ ) containing A is called the Ω̂ -kernel of A and is 

denoted by Ω̂ kerˆ(A). 

Theorem 4.10. A subset A of a topological space (X, τ ) is Ω̂ -closed in (X, τ ) if and only if δcl(A)   sker(A) 

http://www.iiste.org/


Mathematical Theory and Modeling                                                                                                                                                  www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.5, No.1, 2015 

 

107 

Proof. Necessity. Suppose that A is Ω̂ -closed set in (X, τ ) and x   δcl(A) and x  sker(A). Then there exists a 

semi open set U in (X, τ ) such that A   U and x   U. Since A is Ω̂ -closed set in (X, τ ) , δcl(A)   U which is 

a contradiction to x δcl(A) and x   U. 

Sufficiency. Suppose that δcl(A)   sker(A) and U is any semi open set in (X, τ ) such that A   U. Then 

sker(A)   U and hence δcl(A)   U. Thus A is Ω̂  -closed set in (X, τ ). 

Justification 4.11. By the following results,we justify that the original axioms for the topology are preserved by 

the class of Ω̂  -closed sets in a topological space (X, τ ). It is denoted by 
Ω̂
τ  which is weaker than τδ and 

stronger than the topology formed by the class of ω -closed sets. 

Theorem 4.12. If A and B are Ω̂  -closed sets in a topological space (X, τ ) ,then A   B is Ω̂ -closed set in (X, τ 

). 

Proof. Suppose that A B  U where U is any semi open in (X, τ ). Then A  U and B  U. Since A and B 

are Ω̂ -closed sets in (X, τ ) , δcl(A)   U and δcl(B) U. Always δcl(A   B) = δcl(A)   δcl(B). Therefore 

δcl(A   B)   U Thus A   B is Ω̂  -closed in (X, τ ). 

Lemma 4.13. [6] Let x be any point in a topological space (X, τ ). Then {x} is either nowhere dense or pre-open 

in (X, τ ). Also,X = X1   X2 ,where X1 = {x   X : {x} is nowhere dense in (X, τ ) } and X2 = {x   X : {x} is 

pre-open in (X, τ ) } is known as Jankovic-Reilly decomposition. 

Theorem 4.14. In a topological space (X, τ ) , X2 ∩ δcl(A)  sker(A) for any subset A of (X, τ ). 

Proof. Suppose that x   X2 ∩ δcl(A) and x   sker(A) .Since x   X2 , scl({x}) = int(cl({x})). 

Moreover,x   X1 implies scl({x}) Φ . Since x   δcl(A),A∩int(cl(U)) Φ  where U = int(cl({x})). Thus A ∩ 

(int(cl({x}))) Φ . Choose y   A ∩ (int(cl({x}))). Since x   sker(A) ,there exists a semi open set V in (X, τ ) 

such that A   V and x   V . If F = X \ V ,then x   F   X \ A. Also int(cl({x}))  int(cl(F))   F and hence y 

  A ∩ F, a  contradiction. Thus, x   sker(A) . 

Theorem 4.15. A subset A is Ω̂ -closed set in a topological space in (X, τ ) if and only if X1 ∩ δcl(A)   A. 

Proof. Necessity- Suppose that A is Ω̂  -closed set in (X, τ ) and x   X1 ∩ δcl(A) but not in A. Therefore, {x} is 

semi closed set in (X, τ ) and hence X \ {x} is semi open set in (X, τ ). 

Since X\{x} is the semi open set in (X, τ ) containing A and by hypothesis, δcl(A)   X \ {x},a contradiction to 

x δcl(A). Thus X1 ∩ δcl(A)   A. 

Sufficiency- Suppose that X 1∩ δcl(A)   A. Since A   sker(A),X ∩ δcl(A)  sker(A) . By theorem 4.14,X2 ∩ 

δcl(A)   sker(A) . Therefore, δcl(A) = (X 1  X2) ∩ δcl(A) = (X1 ∩ δcl(A))   (X2 ∩ δcl(A))   sker(A) .By  

theorem 4.10,A is Ω̂ -closed set in X. 

Theorem 4.16. Arbitrary intersection of Ω̂  -closed sets in a topological space (X, τ ) is Ω̂ -closed set  

in (X, τ ). 

Proof. Let {Ai : i   I} be any family of Ω̂  -closed sets in (X, τ ) and A = i I iA . Therefore,X1∩δcl(Ai)  Ai 

for each i   I and hence X1∩δcl(A)   X1∩δcl(Ai)   Ai for each i   I .Thus X1 ∩ δcl(A)  i I iA = A. By  

theorem 4.15,A is Ω̂  -closed set in (X, τ ). Thus, arbitrary intersection of Ω̂ -closed sets in a topological space 

(X, τ ) is Ω̂  -closed set in (X, τ ). 

Notations 4.17. In a topological space (X, τ ) ,the set of all semi (resp.pre, Ω̂  ) open sets are denoted by SO(X) 

(resp.PO(X), Ω̂O(X) ). The set of all δ -closed sets are denoted by δC(X). 

Lemma 4.18. If A is Ω̂  -closed and B is δ -closed sets in (X, τ ) then A ∩ B is Ω̂  -closed in (X, τ ) because of 

arbitrary intersection of Ω̂  -closed sets is a Ω̂  -closed set. 

Let us characterize partition space via Ω̂  -closed sets. 

Remark 4.19. [8] A partition space is a topological space (X, τ ) where every open set is closed.Also a 

topological space is partition space if and only if every subset is pre open. 

Theorem 4.20. In a topological space (X, τ ) , 
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(i) SO(X)   δC(X) if and only if Ω̂O(X) = P(X) . 

(ii) (X, τ ) is a partition space if and only if Ω̂O(X) = P(X) . 

Proof. (i) Necessity- Let A be arbitrary subset of (X, τ ) such that A   U where U   SO(X) .By hypothesis, 

δcl(A)   δcl(U) = U Therefore, A is Ω̂  -closed set in (X, τ ). 

Sufficiency- Let U be any semi open set in (X, τ ). By hypothesis, U is Ω̂  -closed set in (X, τ ). Since every Ω̂  -

closed set is pre closed set, U is a pre closed set in (X, τ ). It is clear that if U is both semi open and pre closed, 

then U is regular closed and hence it is δ -closed in (X, τ ). 

(ii) Necessity- Let A be arbitrary subset of (X, τ ) and suppose that x   X1 ∩ δcl(A), x   A. We have {x} is a 

semi closed set and hence it is a closed set in (X, τ ). Therefore X\{x} is an open set in (X, τ ) and by hypothesis, 

it is a closed set in (X, τ ). Now X\{x} is a clopen set in (X, τ ) and then δ -closed set in (X, τ ). Therefore δcl(A) 

  δcl(X \{x}) = X \{x},a contradiction to xδcl(A). X1 ∩Thus X1 ∩ δcl(A)   A. By 4.15,A is Ω̂  -closed set 

in (X, τ ). 

Sufficiency- Let U be any open and hence semi open set in (X, τ ). By hypothesis,U is Ω̂ -closed set in (X, τ ). 

Since every Ω̂  -closed set is pre closed set,U is a pre closed set in (X, τ ). It is clear that if U is both semi open 

and pre closed,then U is a regular closed and hence it is a δ -closed in (X, τ ). Therefore U is a closed set in (X, τ 

). Thus every open set is closed in (X, τ ). 

Remark 4.21. From the above discussions, a topological space is partition space if and only 

if Ω̂O(X) = PO(X) = P(X) . 

 

5. Ω̂  -closure  

In this section we define the closure of Ω̂  -closed sets and prove that it is a ”Kuratowski closure 

operator.” 

Definition 5.1. Let A be a subset of a topological space (X, τ ). Then the Ω̂  -closure of A is defined to be the 

intersection of all Ω̂  -closed sets containing A and it is denoted by Ω̂ cl(A). That is Ω̂ cl(A) = {F /A  F and 

F is a Ω̂  - closed set in (X, τ ) } Always A   Ω̂ cl(A) . 

Remark 5.2. From the definition and 4.16, Ω̂ cl(A) is the smallest Ω̂  -closed set containing A. 

Theorem 5.3. Let A and B be subsets of a topological space (X, τ ). Then 

(i) Ω̂ cl(Φ ) = Φ and Ω̂ cl(X) = X. 

(ii) If A  B, then Ω̂ cl(A)   Ω̂ cl(B). 

(iii) Ω̂ cl(A ∩ B)   Ω̂ cl(A) ∩ Ω̂ cl(B). 

(iv) Ω̂ cl(A   B) = Ω̂ cl(A)   Ω̂ cl(B). 

(v) A is Ω̂ -closed in (X, τ ) if and only if A = Ω̂ cl(A). 

(vi) Ω̂ cl( Ω̂ cl(A)) = Ω̂ cl(A). 

(vii) Ω̂ cl(A)  δcl(A). 

Proof. (i) Obvious. 

(ii) A  B  Ω̂ cl(B). But Ω̂ cl(A) is the smallest Ω̂  -closed set containing A. Hence Ω̂ cl(A)   Ω̂ cl(B). 

(iii) A ∩ B   A and A ∩ B   B. By (ii), Ω̂ cl(A∩B)   Ω̂ cl(A) and Ω̂ cl(A ∩ (B)   Ω̂ cl(B).Hence 

Ω̂ cl(A∩B)   Ω̂ cl(A) ∩ Ω̂ cl(B). 

(iv) A   A B and B   A   B. By(ii), Ω̂ cl(A)   Ω̂ cl(A B) and Ω̂ cl(B)   Ω̂ cl(A   (B).Hence 

Ω̂ cl(A)   Ω̂ cl(B)   Ω̂ cl(A B). Also A  Ω̂ cl(A) and B   Ω̂ cl(B) which implies AB   Ω̂ cl(AB) 

.But Ω̂ cl(AB) is the smallest Ω̂  -closed set containing AB. Hence Ω̂ cl(AB)   Ω̂ cl(A)  Ω̂ cl(B). 
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(v) Necessity- Suppose that A is Ω̂  -closed in (X, τ ). By 5.2, A   Ω̂ cl(A). By the definition of Ω̂  closure and 

hypothesis, Ω̂ cl(A)   A. Therefore A = Ω̂ cl(A). 

Sufficiency-Suppose that A = Ω̂ cl(A). By the definition of Ω̂  closure, Ω̂ cl(A) is a Ω̂ - closed set and hence A 

is a Ω̂  -closed set in (X, τ ). 

 (vi) Since arbitrary intersection of Ω̂  -closed sets in a topological space (X, τ ) is Ω̂  -closed set in (X, τ ) , 

Ω̂ cl(A) is a Ω̂ -closed set in (X, τ ). By previous division, Ω̂ cl( Ω̂ cl(A)) = Ω̂ cl(A). 

(vii) Suppose that x   δcl(A) .Then there exists a δ -closed set F such that A   F and x   F .Since every δ -

closed set is Ω̂  -closed set, x   Ω̂ cl(A) . Thus Ω̂ cl(A)   δcl(A). 

Remark 5.4. The reversible implication of (iii) is not true in general from the following example. 

Example 5.5. Let X = {a, b, c, d} and τ = {Φ , {a}, {b}, {a, b},X}. If A = {a} and B = {b}, then Ω̂ cl(A) = {a, c, 

d} , Ω̂ cl(B) = {b, c, d},A ∩ B = Ω̂ cl(A ∩ B) = ;.But Ω̂ cl(A) ∩ Ω̂ cl(B) = {c, d}. 

Remark 5.6. From Ω̂ cl(Φ ) = Φ ,A Ω̂ cl(A), Ω̂ cl(A   B) = Ω̂ cl(A)  Ω̂ cl(B) ,and Ω̂ cl( Ω̂ cl(A)) = 

Ω̂ cl(A) we can say that Ω̂ -closure is the Kuratowski closure operator on (X, τ ). 

Definition 5.7. A point x of a space (X, τ ) is called a Ω̂  -limit point of a subset A of (X, τ ).if for each Ω̂  -open 

set U containing x intersects A other than x. That is A ∩ (U −{x}) Φ .The set of all limit points of A is denoted 

by 
Ω̂

D  (A) and is called the Ω̂ -derived set of A. 

Theorem 5.8. Let A and B be any two subsets of a space (X, τ ). Then 

(i) 
Ω̂

D (Φ ) = Φ  and 
Ω̂

D  (X) = X. 

(ii) If A  B, then 
Ω̂

D  (A) 
Ω̂

D  (B). 

(iii) 
Ω̂

D  (A   B) = 
Ω̂

D  (A)   
Ω̂

D  (B). 

(iv) 
Ω̂

D  (A ∩ B) 
Ω̂

D  (A) ∩ 
Ω̂

D  (B). 

(v) A subset A is Ω̂  -closed iff 
Ω̂

D  (A)  A. 

(vi) Ω̂ cl(A) = A 
Ω̂

D  (A). 

Proof.Follows from the definition and similar to theorem 5.3. 

Remark 5.9. The reversible implication of (iv) is not true in general from the following example. 

Example 5.10. Let X = {a, b, c, d} and τ = {Φ , {a}, {b}, {a, b},X} If A = {a} and B = {b},
Ω̂

D  (A) = {c, d} and 

Ω̂
D  (B) = {c, d},A ∩ B = 

Ω̂
D  (A ∩ B) = ;. But 

Ω̂
D  (A) ∩ 

Ω̂
D  (B) = {c, d}. 

Theorem 5.11. In a topological space (X, τ ) ,for x   X, x   Ω̂ cl(A) if and only if U ∩A Φ  for every Ω̂  -

open set U containing x. 

Proof. Necessity- Suppose that x   Ω̂ cl(A) and there exists a Ω̂  -open set U containing x such that U ∩A = 

Φ . Then A U
c
 and U

c
 is a Ω̂  -closed set and so Ω̂ cl(A)   U

c
 .This shows that x  Ω̂ cl(A), a contradiction. 

Sufficiency- Suppose that x  Ω̂ cl(A) Then there exists Ω̂  -closed set F containing A such that F. Hence F
c
 is 

a Ω̂  -open set containing x such that. F
c A

c
 .Therefore F

c
 ∩A = Φ  which contradicts hypothesis. 

Definition 5.12. A point x in a topological space (X, τ ) is called a Ω̂  -interior point of a subset A of (X, τ ) if 

there exists some Ω̂  -open set U containing x such that U  A. The set of all Ω̂ -interior points of A is called the 

Ω̂  -interior of A and is denoted by Ω̂ int(A). 

Remark 5.13. Ω̂ int(A) is the union of all Ω̂ -open sets contained in A and by 4.16, Ω̂ int(A) is the largest Ω̂  -

open set contained in A. 

Theorem 5.14. A subset A of (X, τ ) is Ω̂  -open if and only if F   δint(A) whenever F is 
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semi closed and F A.  

Proof. obvious. 

Theorem 5.15. (i) Ω̂ cl(X \ A) = X \ Ω̂ int(A). 

(ii) Ω̂ int(X \ A) = X \ Ω̂ cl(A). 

Proof. (i) Ω̂ int(A)   A   Ω̂ cl(A). Hence X \ Ω̂ cl(A)  X \ A  X \ Ω̂ int(A). Therefore X \ Ω̂ cl(A) is the 

Ω̂  -open set contained in X \A. But ˆ Ω̂ int(X −A) is the largest Ω̂  -open setcontained in X\A. Thus X\ Ω̂ cl(A) 

 Ω̂ int(X\A). On the other hand, if x   Ω̂ int(X\A),there exists a Ω̂  -open set U containing x such that U  X 

\ (A). Hence U ∩ A =Φ .Therefore, x   Ω̂ cl(A) and hence x  (X \ Ω̂ cl(A)) . Thus Ω̂ int(X \ A)   X \ 

Ω̂ cl(A). 

(ii) Similar to the proof of (i). 

 

6.Applications in Subspace Topology 

Notations 6.1. For any set A  X (A, τ |A) represents subspace topological space with respective to τ. Let A and 

B be any two subsets in a topological space (X, τ ) such that B   A ,then δclX(B) (resp. Ω̂ clX(B)) represents δ 

(resp. Ω̂ ) closure of B in (X, τ ) and δclA(B) (resp. Ω̂ clA(B)) represents δ (resp. Ω̂  ) closure of B in the 

subspace (A, τ |A) . Also skerX (B) (resp. { Ω̂ kerX (B)) represents semi (resp. Ω̂  ) kernel of B in (X, τ ) and 

skerA (B) (resp. Ω̂ kerA (B)) represents semi (resp. Ω̂  ) kernel of B in the  

subspace (A, τ |A) . 

Remark 6.2. Let A be open set in a topological space (X, τ ). Let B  A Then δclA(B) = A ∩ δclX(B) 

Remark 6.3. Let A be pre open set in a topological space (X, τ ). Let B   A  

Then SkerA (B) = A ∩ skerX (B). 

Theorem 6.4. If A is both semi open and pre closed set in a topological space (X, τ ) , then A is Ω̂  -closed in (X, 

τ ). 

Proof. It is clear that if A is both semi open and pre closed, then A is regular closed and hence it is δ -closed in 

(X, τ ). Therefore it is Ω̂ closed in (X, τ ).  

Theorem 6.5. Let B   A  X where A is open in (X, τ ). If B is Ω̂  -closed set in (X, τ ) ,then B is Ω̂  -closed 

set in the subspace (A, τ |A). 

Proof. Suppose that B is Ω̂ -closed set in (X, τ ). By 4.10, δclX(B)   skerX (B) and hence A∩δclX (B)   

A∩skerX (B) .By 6.2 and 6.3, δclA (B)  skerA (B) .Again by 4.10,B is Ω̂ -closed set in the 

 subspace (A, τ |A) . 

Theorem 6.6. Let B   A   X where A is both open and pre closed set in (X, τ ). If B is Ω̂ -closed set in the 

subspace (A, τ |A), then B is Ω̂ -closed set in (X, τ ). 

Proof. Suppose that B is Ω̂ -closed set in the subspace (A, τ |A). By 4.10, δclA(B)  skerA(B) and hence by 6.2 

and 6.3, A ∩ δclX(B)   A ∩ skerX (B). Since A is δ -closed in (X, τ ) , δclX (B) = δclX(A) ∩ δclX(B) = A ∩ 

δclX(B)   A ∩ skerX(B)   skerX(B). Therefore, δclX(B)   skerX(B). By 4.10, B is Ω̂  -closed set in (X, τ ). 

Theorem 6.7. If F is Ω̂  -closed set in (X, τ ) ,then F ∩ A is Ω̂ -closed set in the subspace 

(A, τ |A) provided that A is both open and pre closed set in a topological space (X, τ ). 

Proof. Since F ∩ A is Ω̂ -closed set in (X, τ ) , by 4.10, δclX(F ∩ A)   skerX(F ∩ A) .Then A∩ δclX(F ∩A)   

A ∩ skerX(F ∩ A) and hence by 6.2 and 6.3, δclA(F ∩A)   skerA(F ∩ A)  Again by theorem 4.10,F ∩ A is Ω̂  -

closed set in the subspace (A, τ |A) . 

Theorem 6.8. Let U   A   X where A is both open and pre closed set in (X, τ ). If U is  Ω̂ -open set in (X, τ ) 

, then U is Ω̂  -open in the subspace (A, τ |A) . 
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Proof. Suppose that U is Ω̂  -open set in (X, τ ). Then X \U is Ω̂  -closed set in (X, τ ). By theorem 6.7,(X 

\U)∩A is Ω̂  -closed set in the subspace (A, τ |A) .That is A\ (A ∩ U) is Ω̂  -closed set in the subspace (A, τ |A) . 

Then A \ U is Ω̂  -closed set in the subspace (A, τ |A) .Thus U is Ω̂  -open set in the subspace (A, τ |A)   

Theorem 6.9. Let U   A   X where A is both δ -open and pre closed set in (X, τ ). If U is Ω̂ -open set in the 

subspace (A, τ |A) ,then U is Ω̂  -open in (X, τ ). 

Proof. Suppose that U is Ω̂  -open set in the subspace (A, τ |A) . Then A\ U is Ω̂ -closed set in the subspace (A, τ 

|A) . By 6.6, A \ U is Ω̂  -closed set in (X, τ ). That is A \ U = (X \ U) ∩ A is Ω̂ -closed set in (X, τ ). Then U = 

[X \ ((X \ U) ∩ A)] ∩ A is Ω̂ -open set in (X, τ ). 

Theorem 6.10. Let A be both open and pre closed set in a topological space (X, τ ). If U is Ω̂ -open set in (X, τ ) 

,then U ∩ A is Ω̂  -open set in a subspace (A, τ |A) . 

Proof. Suppose that U is Ω̂  -open set in (X, τ ) ,then X \ U is Ω̂  -closed set in (X, τ ). By theorem 6.7,(X \ U) ∩ 

A is Ω̂  -closed set in a subspace (A, τ |A) . Then A \ (U ∩ A) is Ω̂  -closed set in a subspace (A, τ |A) . Thus U 

∩ A is Ω̂  -open set in a subspace (A, τ |A) . 

Theorem 6.11. Let A be both open and pre closed set in a topological space (X, τ ). If E is any subset of X such 

that E   A X, then Ω̂ clA(E)   A ∩ Ω̂ clX(E) . 

Proof. Suppose that x  Ω̂ clA(E) and F be an arbitrary Ω̂ -closed set in (X, τ ) such that E  F By theorem 6.7, 

F ∩ A is Ω̂  -closed set in a subspace (A, τ |A) such that E  F ∩ A. Therefore, Ω̂ clA (E)  F ∩ A and hence x 

  F ∩ A   F By the definition of closure, x   Ω̂ clX(E) and hence x   A ∩ Ω̂ clX(E) .Thus Ω̂ clA (E)  A ∩ 

Ω̂ clX(E) . 

Theorem 6.12. Let A be both open and pre closed set in a topological space (X, τ ). If E is any subset of X such 

that E A   X .then A ∩ Ω̂ clX(E)  Ω̂ clA(E) . 

Proof. Suppose that x   A∩ Ω̂ clX(E) and F is an arbitrary Ω̂  -closed set in the subspace (A, τ |A) such that E 

  F   A. By 6.6, F is Ω̂  -closed set in (X, τ ). Therefore, Ω̂ clX(E)  Ω̂ clX(F) = F. Therefore,  x   F. By the 

definition of Ω̂  -closure in subspace, x   Ω̂ clA(E) . Thus A ∩ Ω̂ clX(E)  Ω̂ clA(E) . 

Theorem 6.13. Let A be both open and pre closed set in a topological space (X, τ ). If E is any subset of X such 

that EA   X, then Ω̂ kerA(E)  A ∩ Ω̂ kerX(E) . 

Proof. Similar to 6.11. 

Theorem 6.14. Let A be both δ -open and pre closed set in a topological space (X, τ ) and E  A  X .Then A 

∩ Ω̂ kerX(E)   Ω̂ kerA(E) . 

Proof. Similar to 6.12. 
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