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Abstract
In this paper, we present a class of hybrid multistep methods for the numerical solution
of first-order initial value problems. We have used second derivative of solution (similar to second derivative
multistep methods of Enright) and an off-step point. The accuracy and stability analysis are discussed. Stability
domains of our presented methods have been obtained, showing that this class of efficient numerical methods are
A( «)-stable of order up to 10. Numerical results are also given for four test problems.
Keywords: Initial value problems, Multistep methods, Off-step point, Stability aspects.

1. Introduction
In recent years, numerous work have focused on the development of more advanced and efficient methods for
stiff problems [1, 2, 4,5, 6,7, 8,9, 10, 11, 12]. A potentially good numerical method for the solution of stiff
systems of ODEs must have good accuracy and some reasonably wide region of absolute stability [3, 13]. A-
stability requirement puts a sever limitation on the choice of suitable methods for stiff problems. Dahlquist [3]
proved that the order of an A-stable linear multistep method <2 and that an A-stable multistep method must be
implicit. This pessimistic result has encouraged researchers to seek other classes of numerical methods for
solving stiff equations. The search for higher order A-stable multi-step methods is carried out in the two main
directions. (a) Use higher derivatives of the solutions. (b) Throw in additional stages, off-step point, super-future
points and like. This leads into the large field general linear methods. Some known important schemes for stiff
systems that will be used for comparison are as follows.

* The Enright [4] k—step second derivative multistep method (SDMM) of order k + 2 which takes the form:
k
Yk = Yook = hZﬂj fn+j + hz'Ykgn+kv

j=0
* Special class of SDMM, introduced by Ibrahim
and Ismail [7] of the form:

k
>V =NB(fo = B* fi ) Hy* (0, — B* G n)-
j=0

For 5*=0, v*=0this is the same as the SDBDF method.

» MEBDF [2] of order k +1 takes the form

RS SRR CAR N AR ER GRS P e
* AEBDF iIi;roduced by Hojjati [8] is
Yotk — th fo = idj Yoij + hﬁk+1f_r1+k+l'

In this paper we introduce a new class of hybrid second derivative multi-step method that has good stability
properties.

2. FORMULATION OF THE NEW METHOD

For the numerical solution of

d
d—y= Focy) (0 =y, o)
X

we introduce a class of hybrid second derivative multistep methods (HSDMMs) with one off-step points as
follows:

k—2
Yoio = hu fn+1 +nyj Yo )

j=0
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Yo 7Zaj Yoi-j = hg, fn+e +h*v0,4 3)
=0

where g(x,y)=y"=f + f,f and coefficients are chosen so that (1) and (2) have order k—1 and k+1,
respectively. To get formula (2) (evaluation the value of y, ., at off-step point, i.e.x , =X, +6h) Newton's
interpolation formula for nodes x, , (double node), X,,X, ..., X, .1 (Simple nodes) have been used. For more
details see [4]. The coefficients of schemes (1) and (2) are given in Table 1 and Table 2, for k=1,2,...,8 with

0=—.
2
Table 1. Coefficients in (2)
r 1 4 32 192 3072 10240 40960
m X 1 6 _30 _40 1260 4620
r r r r r r r
1 3 21 115 1715 5397 20559
o7 r T T v r r
1 12 90 1680 6300 27720
= [ R O R B :
1 30 8960 2100 11150
i I R N
2 112 840 6160
s [ T R R
15 225 2475
e ]
28 616
s T
70
Ve =
Table 2. Coefficients in (3)
1 25 277 20085 273243 13951028 358345319 31746201805
~ 0 1 12 852 11160 547740 13552560 1159880400
r r r r r r r
3 1 24 264 19200 263040 13547520 351267840 31419924480
o ¥ T T r r r r o
o 1 26 201 20984 280905 13997124 348440337 29727911520
L r r r r r r r r
o 1 15 894 3110 ~ 630765 44902809 7267840680
3 r r r r r r r
o 1 24 6990 1123160 63367955 10329123616
5 r r r r r r
o 19 2865 593730 42026355 8281573650
i r r r r r
o 421 168012 17412381 4510487520
5 r r r r
o 20581 4210843 1623353480
6 r r r
454689 348835680
& : T
33939291
(e —_—

r
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3. ACCURACY AND STABILITY ANALYSIS

We now prove the following lemma regarding the order of accuracy of (3) used in the way described by stages
(2) and (3).
Theorem 1. Let
(i) formula (2) is of order k—1,
(i1) formula (3) is of order k +1, are solved using an iteration scheme iterated to convergence,
then scheme (2-3) has orderk .
Proof. The local truncation error for (2) of order k —1 is

Y Xorg — Vs =Chy" x. +0(h), (4)

where x ., =X +6h,0<0<1, and C,is the error constant when the method is being used to get y, ,,.

Similarly, the truncation error for method (3) of order k +1 is
y Xn+1 _yn+1:Chk+2y(k+2) Xn +O(hk+3)! (5)

where C is the error constant of the method (2). Assuming that y,., ;,j=12,...,k, be exact, then from (2) and
(3) the difference operator associated with method (2) is
Y Xoig = Youa =ChE2YE D X hB [ F X0y Xy =T Xy oy |#O D2 Q)

For some n,_, inthe interval whose end are y, , and y X, ,we can write

_ of _
f Xn+97y Xn+s —f Xn+91yn+0 :a_y Xn+9777n+0 y Xn+9 _yn+6 : (7)

Now, from (4-7) we have

of =
y Xn+1 _yn+1:ha_y Xn+ﬁ!77n+0 y Xn+H _yn+6 +Chk+2y(k+2) Xn +O hk+3

:ha_ Xo0 hso [Clhky(k) x, +0 e ]+Chk+zy(k+2) X, +0 hk+s
Yy

_ hk+1 ﬁ
oy

Xn+H’77n+H Cly(k) Xn +Cy(k+2) Xn +O hk+3 . (8)

It results from the above that order of new method (1-2) is k .

Consider the Dahlquist's test equation of form
y'=2y, yo0=y,. 9)

Applying method (2-3) to this test equation results in getting equations of the form
_ k-2
yn+e = lu‘hyn+l + Z)\J yn+1—j’ (10)
j=0

k pa— p—
yn+l+zajyn+l—j = h/BSynHi Jrhzryynﬂ' (11)
=1

where h =hX . Now, we substitute (10) to (11) and therefore we obtain

k pa—
¢ h Yo =0, (12)
=0

where
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Cy =1-h? Byt +y *ﬁﬁﬂ/ov
CJ:OélghBH’YJ, j:11"'lk72!
C1 = g,

C, = oy.

Therefore, the corresponding characteristic equation of k™ order difference equation of the method is

T &N = i:cj»glfj =0. (13)

To obtain the region of absolute stability we use the boundary locus method. Thus, the stability regions given are
not exact but are those which have been found using a numerical search. By collecting coefficients of different
powers of h in (13), we obtain

Ah?4+Ah+A =0, (14)

Where Aj,A and A, are functions of ¢ . Inserting ¢ =e' ,(14) gives us two roots h ¢ ,i=12, which

describe the stability domain. Regions of A( « )-stability are given in Table 3 for A-EBDF, MEBDF, Enright
methods and new methods. Tables 3 shows that regions of A( « )-stability for our new method is larger than
those of the other mentioned methods.

Table 3. A( «)-stability for A-EBDF, MEBDF, Enright methods and new methods

2 & 4 5 6 7 8
a(®) 90 90 90  88.85 84.2 75 61
2 g 4 5 6 7 8
a(®) 90 90 90 88.4 82.5 74.5 62
3 4 5 6 7 8 9
a(®) 90 90 87.88 8203 73.10 59.95 37.61
1 2 3 4 5 6 7
a(®) 90 90 90 90 89.11 73.46 61.05

Figure 1. The region of absolute stability of new method.

4. NUMERICAL RESULTS

In this section we present four numerical results to compare the performance of our new methods. We have
programmed these methods in MATLAB.

Example 1. The first test problem which we consider is
Y1/ - *0-1)/1 *49-9)/2, yl(o) =2,
yzl = *50)/2, Y, 0)=1,
y3’ = 70y2 _120y3v Ys 0)=2,

with theoretical solution
yl — e—O.lx _|_e—50><’ y2 — e—SOx, y3 — e—50x _|_e—120x

and the results are tabulated in Table 4 at different values of x. We
have obtained slightly better results than those of HBDF[4].
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Table 4. Results for Example 1.

Error in the new Error in HBDF
method [3]
40 A 5.88E-15 2.5E-10
Y, 9.45E-23 6.96E-24
Y, 8.05E-19 6.96E-24
10° A 4.0E-15 4.02E-11
Y, 1.88E-24 1.09E-24
Y, 1.88E-24 1.09E-24
10° A 5.08E-14 4.06E-13
Y, 1.23E-29 1.07E-26
= Ys 1.23E-29 1.07E-26

Example 2. The second test problem which we consider is
y; =—21y, +19y, —20y;, y,(0)=1

YZ, = 19y1 - 213/2 + ZOY:;- Y, (O) =0,

yg :40y1_40y2 —40y3, y3(0)=—1,

with theoretical solution

ylzge-zx +%e“‘°x cos 40x +sin 40x ,
1 —2x 1 —40x i

Y, :Ee _Ee cos 40x +sin 40x

y, = —€e ** cos 40x —sin 40x |,

The results of the numerical integration at 10° and 10° are presented in Table 5 solving with the method of
order four and fixed stepsize h =0.001 .
Table 5. Results for Example 2.
Error in the new
method

Example 3. Consider the stiff system of initial value problems
y, =—-0.1y, —49.9y,,

y; = _SOY21
y; =70y, =120y,

with initial value y(0) = (1,0,0)" whose exact solution is

y _ e—O.lx +e—50x
1~ 1
y _e—50x
2 1
y3 — e—50x + e—120x. (10)
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The numerical results are illustrated in following Table 6.

Table 6. The results for Example 3

Y, 2.41E-08 1.75E-07
Y, 3.54E-11 3.59E-08
Y, 6.93E-9 3.72E-08
Y, 1.78E-08 1.64E-05
Y, 3.88E-07 2.79E-07
Y, 9.17E-07 2.79E-07

Example 4. Let us consider the following stiff problem
y; =-0.04y, +10"y,y;,

y, =0.04y, -10%y,y, —3x10"y,?,
y, =3x10"y,?,
with initial value y(0) = (1,0,0)" . This is a chemistry problem suggested by Robertson. The results of the

numerical integration at X =0.4,40 and 400 are presented in Table 7 solving with (7) and fixed stepsize
h=0.001.

Table 7. Numerical results for Example 4

Y 9.85172113863285E-1
Y, 3.38639537890963E-5
Ys 1.47940221854871E-2
A 7.15827068718903E-1
Y, 9.1855347645673E-6
Ys 2.84163745746394E-1
A 4.50548668477070E-1
Y, 3.22290144170159E-6
Ys 5.49478108624731E-1

5. DISCUSSION

HSDMMs which are based on the second derivative of solution and off-step points, are A( « )-stable of order up
to 10. Therefore, they are appropriate for the solution of certain ordinary differential and stiff differential
equations.
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