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Abstracts  

       In this paper we define a new class of algebra we  call    it  a non associative seminear ring with BCK 

algebra and define a non associative sub seminear ring with BCK algebra , then we study and prove some 

properties of them  .   

 

1) Introduction 

    The notation of BCK-algebra was introduced first in  1966 by Y.Iami and K-Iseki [1] ,in  in the same year, K-

Iseki [2] introduced the notion of BCI- algebra which is a generalization of a BCK-algebra .    In 1967 V. G. Van 

Hoorn and B. Van Root Selaar[9] introduced the concept of  seminear-rings and  discussed  general  theory of  

seminear-rings . We introduce a new class of algebra called a special kind of non associative seminear-ring with 

BCK algebra where we define as follows : Let (X,  , *) be a non-empty set with two binary operations '' and  

'' satisfying the following conditions :  

a.) (X,  ) is a semigroup . 

b.) (X, , 0) is a BCK algebra. 

c.) (a  b)  e = (a  e)  (b  e)  for all a, b, e  X 

e.) 0  x = x  0 = x     for all  xX  

then we say that X is a special kind of non associative seminear-ring with BCK algebra( SNAK seminear-ring)  

,then we define a special kind of non associative sub seminear-ring with BCK algebra we denoted by SNASK 

seminear-ring , then we study and prove some properties of them  .   

keywords : semigroup, BCK –algebra, seminear-ring , non associative seminear -ring 

2) preliminary 

In this section we view some concepts we needed in this paper . 

Definition2.1  [5],[6]
 
,[7]     

 

   Let S be a non-empty set. S is said to be a semigroup if on S is defined a binary operation ‘’ such that for all 

a, b  S, a  b  S and  (a b)  c = a  (b  c) for all a, b, c  S. 

Definition 2.2[4] 

  The direct product S × T of  two semigroups  S and T is defined by 

(x1, y1)  (x2 , y2) = (x1  x2 , y1  y2)   where x1,x2 ∈ S, y1,y2 ∈ T) . 

It is easy to show that the direct product is  a semigroup  

Definition (2.3) [4] 

A semigroup S with finite number of elements is called a finite semigroup and its order is finite and it is 

denoted by o(S) = |S|. If |S| is infinite we say S is a semigroup of infinite order.  

Definition  2.4 [5],[4] 

 Let (S , ) be a semigroup. P a non-empty proper subset of S is said to be a subsemigroup if (P, .) is a 

semigroup 

Definition  2.5  [3] 

    Let X be a semigroup and x an element of X . An element e of X is a left identity of  x  if e  x = x  , a right 

identity of  x  if x  e = x, an  identity of  x if  x  e = e  x = x  

Definition  2.6  [5] , [4] 

  A semigroup which has an identity element e  S is called a monoid, if e is such that x  e = e  x = x for all x 

 S. 
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Definition  2.7   [9] 

A non empty set R with two binary operations  +  (addition) and   (multiplication) is called a seminear-ring , if 

it satisfies the following axioms: 

(1) (R, +) and (R,  ) are semigroups, 

(2) (x + y)  z = x  z + y  z for all x, y, z  R. 

Precisely speaking, it is a right seminear-ring because it satisfies the right distributive law. 

Definition  2.8  [5] 

 Let (N, + , ) be a non-empty set with two binary operation ‘+’ and ‘’ satisfying the following conditions : 

a. (N, +) is a semigroup. 

b. (N, ) is a groupoid. 

c. (a + b)  e= a  e + b  e for all a, b, c  N; (N, +, ) is called the right seminear-ring which is non-

associative. 

If we replace (c) by a  (b + e) = a  b + a  e for all a , b, e   N Then  (N, +, ) is a non-associative left 

seminear-ring . In this text we denote by (X, +, ) a non-associative right seminear-ring and by default of 

notation call X  just a non-associative seminear-ring 

Definition 2.9 [5] 

 Let (N, +, ) be a seminear-ring which is not associative . A subset P of N is said to be a subseminear-ring if 

(P, +, ) is a seminear-ring. 

Definition  2.10 [5] 

Let (N, +, )  be a non-associative seminear-ring; we say N is a P-seminear-ring if 

       (x  y)  x = x (y  x) for all x, y  N. 

Definition 2.11  [5] 

 we call a non-associative seminear-ring N to be a Bol seminear-ring if  

     ((x  y)  z)  y = (x  (y  z)  y) for all x, y, z  N . 

Definition (2.12)   [11],[12] 

     An algebraic system (X, ∗, 0) is called a BCK algebra if it satisfies the 

following conditions: 

1)  ((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = 0, 

2)  (x ∗ (x ∗ y)) ∗ y = 0, 

3)  x ∗ x = 0, 

4)  0 ∗ x = 0 

5) if  x ∗ y = 0 and  y ∗ x = 0   then   x = y,   x, y, z   . 

Remarks (2.13)  [8] 

  Let X be a BCK algebra then : 

A partial ordering ” ≤ ” on X can be defined by x ≤ y if and only if  

x ∗ y = 0. 

A BCK-algebra X has the following properties: 

1)  x ∗ 0 = x. 

2) if  x*y=0  and y*z=0 imply x*z=0 . 

3) if  x*y=0  implies (x*z)*(y*z)=0  and  (z*y)*(z*x)=0 . 

4)  (x*y)*z=(x*z)*y. 

5)  (x*y)*x=0. 

6)  x*(x*(x*y))=x*y. 

7) if  (x*y)*z=0  implies  (x*z)*y = 0 . 

8)  [(x*z)*(y*z)]*(x*y)=0. 
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9)  [ ((x*z)*z)*(y*z)]*[(x*y)*z] = 0 .  for all x, y, z  X 

3) Main Results : 

  In this section we define a new class of algebra , we call  it a special kind of non associative seminear-ring with 

BCK algebra then we study and prove some of properties . 

Definition 3.1   

   Let X be a non-empty set with two binary operations '' and  '' satisfying the following conditions : 

a.) (X,  ) is a semigroup . 

b.) (X, , 0) is a BCK algebra. 

c.) (x  y)  z = (x  z)  (y  z)     for all   x, y, z  X which is called the distributive law 

e.) 0  x = x  0 = x     for all  xX 

Then ; (X ,  ,  , 0) is called  Special Kind Of Non Associative Seminear-Ring With BCK Algebra, we 

denoted  by SNAK seminear-ring  

Example: 3.3 

Let X={0,1,2,3}with two binary operation  and  are defined by the following tables : 

 

 0 1 2 3 

 

 0 1 2 3 

0 0 1 2 3 0 0 0 0 0 

1 1 1 2 3 1 1 0 0 0 

2 2 2 2 2 2 2 2 0 0 

3 3 3 2 2 3 3 3 0 0 

 

Then by usual calculation we can prove that (X ,, ,0) is  a SNAK seminear-ring  

Example:3.2 

 Let X={0,1,2,3}with two binary operation  and  are defined by the following tables : 

 

 0 1 2 3 

 

 0 1 2 3 

0 0 1 2 3 0 0 0 0 0 

1 1 1 2 3 1 1 0 0 3 

2 2 2 3 1 2 2 2 0 2 

3 3 3 1 2 3 3 0 0 0 

 

Then (X , , ,0) is not SNAK seminear-ring  since 1, 2 , 3  X but (1  2) 3 = 2 3 = 2  ≠  (1  3)  (2  3) = 3 

 2 = 1 

Remark  3.3 

Let X be a SNAK seminear-ring  then  x
n
  x    x  X 

Proof 

Let X be a SNAK seminear-ring  since   x  x = 0  so   x  x       

 x
2
  x = x  x  x  x                                                    [by c of definition 3.1] 

            = 0  0 = 0                                                         [ by e definition 3.1 ]    

 so x
2
  x .By   mathematical induction we have x

n
  x x X, n  N 

Proposition 3.4  

Let X be a SNAK seminear-ring  and  x  y = 0  for  some x , y  X then x  y = 0 and  y  x = 0 , the converse 

is not true  

 

Proof 
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Let X be a SNAK seminear-ring and  x  y = 0   (x  y)  x = 0  x   

 x  x  y  x = 0  (y  x) = (y  x)    y  x = 0  by similar way we have x  y = 0 , we will show that the 

converse  is not true by the following example: 

Let X={0,1,2,3}with two binary operation  and  are defined by the following tables :   

 

 0 1 2 3 

 

 0 1 2 3 

0 0 1 2 3 0 0 0 0 0 

1 1 1 1 1 1 1 0 3 0 

2 2 1 2 3 2 2 0 0 0 

3 3 3 3 3 3 3 0 3 0 

 

 Then, since 1,3X and 1  3 = 0 and  3  1 = 0 but 1  3=1  0    

proposition (3.5) 

let X be SNAK seminear-ring then  

1) 0  0 = 0 

2) ((ab) c)*b=(a c)*b             for all a,b,c X 

3) ((ab) c)*a=(bc)*a             for all a,b,c X 

4) ((ab) c)*c=(ab)*c             for all a,b,c X 

proof  

let X is a SNAK seminear-ring 

1) since  0  X  and 0  x = x  0 = x     x  X  so  0  0 = 0  

2)  let a , b , c  X  then  

 ((a  b)  c)  b = (a  (b  c)  b                                [ since (x , ) is semigroup] 

                           = a  b  ((b  c)  b 

                           = (a  b)  [(b  b)  (c  b)]              [by c of definition 3.1]    

                           = a  b  [ 0  (c  b)]                        [by e of definition 3.1]  

                          = a  b  c  b = (a  c)  b  

4)In a similar way we can prove 3,4. 

Proposition 3.6 

Let X be a SNAK seminear-ring then X is not P-seminear-ring  

Proof 

Let X be a SNAK seminear-ring and suppose that X is a P-seminear-ring 

  (x  y)  x = x  (y  x)        x , y  X                  

 x  (y  x) = (x  x)  y                                       [by 4 of Remarks 2.13] 

                                   = 0  y = 0    x , y  X                    [by 1 of Remarks 2.13]   

 since it is true   x , y  X so if  y = x    x  0 = 0            

 x = 0 contradiction    X is not P-seminear-ring   

Proposition 3.7 

Let X be a SNAK seminear-ring then X is not Bol  seminear-ring 

 Proof 

  Let X be a SNAK seminear-ring and suppose that X is Bol  seminear-ring 

     ((xy)z)y = x((yz)y)   x , y , z  X                 [X is SNAK seminear-ring] 

 ((xy)y)z = (x(0z))     

                          = x  0 = x                   
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Since it is true   x , y  X  so it is true if   x = y  (0  y)  z= x   x = 0  contradiction 

 X is not Bol  seminear-ring  

Proposition 3.8: 

Let S , T be  a SNAK seminear-ring then  ST = {(s , t) : sS , tT} is  a SNAK seminear-ring  and , where the 

binary operations '' and '*' defined by the following :             

 (a1 , b1)  (a2 , b2) = (a1  a2 , b1  b2) 

(a1 , b1)  (a2 , b2) = (a1  a2 , b1  b2) 

for all (a1,b1) , (a2,b2)  ST 

Proof  

 Let S and T  a SNAK seminear-ring so [by 2.1.1] S and T are semigroup then S  T are semigroup [ by 

Definition 2.2]  since  S and T are  BCK algebra then S  T it is easy to prove S  T a BCK where  

 (0 , 0)  S  T since  0  S  and  0  T also for each  x = (a , b)  S  T  we have    

 (a , b)  (a , b) = (a  a , b  b) = (0 , 0)                  [by 4 of definition 2.1 2]       

(a , b)  (0 , 0) = (a  0) , (b  0) =  (a , b)                [by 1 0f  Remark  2.13]   

and (0 , 0)  (a , b) = (0  a , 0  b ) = (0 , 0)            [by 4 of definition 2. 12] 

and all condition of BCK algebra are satisfied .  

Now , to proof  that (x  y)  z = (x  z)  (y  z) for all x, y, z  S  T 

Let x = (a1 , b1)  , y = (a2 , b2)  ,  z = (a3 , b3)  S  T  

Where a1, a2, a3  S    and  b1 , b2 ,  b3  T   then 

 (x  y)  z =[(a1 , b1)  (a2 , b2)]  (a3 , b3)  

                  = ((a1  a2) , (b1  b2))  (a3 , b3)  

                  = ((a1  a2)  a3 , (b1  b2)  b3 ) [since  S and, T are  SNAK seminear-ring] 

                   = ((a1a3)  (a2a3)  ,  (b1 b3)  (b2 b3))     

                   = (((a1a3) , (b1 b3))  ((a2a3) , (b2 b3)))  

                   = ((a1 , b1)  (a3 , b3)  (a2 , b2)  (a3 , b3)) = (x z)  (y z)  

 Now,,it is clear that 

 (0 , 0)  (a , b) = (0  a , 0  b )  = ( a , b )           [by e Definition 3.1]    

                        = ( a , b )  (0 , 0 )  

Then S  T  is  a SNAK seminear-ring . 

 

Proposition 3.9 

If (X ,   ,  , 0)  be a SNAK seminear-ring there is no  ( P  Ø)  X   such that (P  ,   ,  , 0) is a seminear-ring 

Proof  

 Suppose that ( P  Ø)  X   is a seminear-ring and   

Let 0x  P  Then (x  x)  x = 0  x = 0         [by 4 definition 2.12 ] 

   but  x  (x  x)  = x  0 = x                             [by 1 of Remark 2.13 ]   

So     (x  x)  x         x  (x  x)                    for each x  P    

So (P , ) will not be a semigroup so (P ,  , , 0) not a seminear-ring 

Example 3.10:  

Let X={0,1,2}with two binary operations '' and '' are defined by the following tables : 

 0 1 2 

 

 0 1 2 

0 0 1 2 0 0 0 0 

1 1 1 2 1 1 0 0 

2 2 2 2 2 2 1 0 
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Then by usual calculation we can prove that  (X,  ,  ,0) is a SNAK seminear-ring . 

Let P = { 0 , 1 }  X then P is not a seminear-ring since it is not associative where (1 1)  1 = 0      1  (1  1) 

= 1   . 

 

Definition 3.11  : 

    Let (X , ,  ,0) is a SNAK seminear-ring a non empty subset P of  X  is said to be a Special Kind of Non 

Associative Sub Seminear-Ring With BCK Algebra if (P, , ,0) is a SNAK seminear-ring  we denoted by 

SNASK seminear-ring. 

Example 3.12 : 

   Let X={0,1,2,3}with two binary operations '' and '' are defined by the following tables : 

 

 0 1 2 3 

 

 0 1 2 3 

0 0 1 2 3 0 0 0 0 0 

1 1 1 1 1 1 1 0 2 0 

2 2 1 2 1 2 2 0 0 0 

3 3 1 1 1 3 3 0 2 0 

  

Then by usual calculation we can prove that (X ,  , , 0) is a SNAK seminear-ring  

  Let P = { 0 , 1 , 2 }  X  then by usual calculation we can prove that P is a SNASK seminear –ring from above 

tables.  

 

Proposition 3.12 

Let (X1,  ,  , 0)  ,  (X2  ,  ,  , 0)  be a SNASK seminear-ring of X such that X1  X2  Ø then The following 

are SNASK seminear-ring  

1) (X1  X2 ,  ,  , 0)  

2)  (X1  X2  ,  ,  , 0)  such that  X1  X2  or X2  X1 

 

Proof : 

1) a) Let X1 , X2  be a SNASK seminear-ring  Since (X1 , ) , (X2 , ) are semigroup so it is easy to prove that  (X1 

 X2 , ) is a semigroup 

b) To prove  that ( X1  X2 ,  ) is a BCK algebra 

since  0   X1 and X2  so   0  X1  X2  [since X1 , X2  are SNASK seminear-ring]   

Let x , y , z   X1  X2 

 x , y , z   X1 and x , y , z   X2 since  X1 , X2  is a BCK algebra 

So it is easy to prove that all the conditions of definition BCK satisfies for all x , y , z   X1 , and  X2 then 

satisfies to X1  X2 

 (X1  X2 ,  , 0 ) is a BCK algebra  

c) Let x , y , z   X1  X2 then  x , y , z   X1 and x , y , z  X2 since X1 , X2 are SNASK seminear-ring  

 (x  y)  z = (x  z)  (y  z) for all x , y , z   X1  X2 

d) let  x    X1  X2 then  x    X1  and x     X2 

so  x  0 = 0  x = x [since X1 , X2  are a SNASK seminear-ring] Then (X1  X2 ,  ,  , 0 ) is a SNASK 

seminear-ring 

2) let  X1 and X2  be a SNASK seminear-ring  such that X1  X2  

Since  X1  X2    X1  X2 = X2 and X2  is a SNASK seminear-ring so ( X1  X2 ,  ,  , 0) is a SNAK 

seminear-ring .If  X2  X1    X2  X1 = X1 and X1  is SNASK seminear-ring so 

 ( X1  X1 ,  ,  , 0 ) is a SNASK seminear-ring  .                                      
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Proposition 3.13:  

  Let X be a SNAK seminear-ring and let aX then  £a = { xX :  x  a = 0} is a SNASK seminear-ring   Proof   

1) let X be a SNAK seminear-ring. It is clear that £a  X and £a  Ø 

 since a   £a where  a  a = 0. To prove that (£a ,  ) is a semigroup 

a)   Let x , y  £a  x  a = 0     and    y  a = 0 

 (x  y)  a = (x  a)  (y  a)          [since X be a SNAK seminear-ring]  

                      = 0  0 = 0      

 x  y  £a  then £a is closed under (  ) 

b)  let x , y , z   £a but £a  subset of X so x , y , z  X and X is a  SNAK seminear-ring  

 so( x  y)  z =  x  ( y  z) for all x , y , z  X  so £a  is associative for all x, y, z  £a then £a is semigroup. 

2) to prove that £a  is a BCK algebra 

Since 0  a = 0  0  £a. Now ,since  £a   X and  0  £a so it is easy to prove that  ( £a ,  , 0)   is a BCK 

algebra. Now , let  x, y, z  £a so  x, y, z  X 

  (x  y)  z = (x  z)  (y  z)                    [by c of definition 3.1]  

and  x  0 = 0  x = x for all x  £a                        [by e of definition 3.1] 

Then £a is  SNASK seminear-ring 
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