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Abstracts

In this paper we define a new class of algebra we call it a non associative seminear ring with BCK
algebra and define a non associative sub seminear ring with BCK algebra , then we study and prove some
properties of them .

1) Introduction

The notation of BCK-algebra was introduced first in 1966 by Y.lami and K-Iseki [1] ,in in the same year, K-
Iseki [2] introduced the notion of BCI- algebra which is a generalization of a BCK-algebra. In 1967 V. G. Van
Hoorn and B. Van Root Selaar[9] introduced the concept of seminear-rings and discussed general theory of
seminear-rings . We introduce a new class of algebra called a special kind of non associative seminear-ring with
BCK algebra where we define as follows : Let (X, e , *) be a non-empty set with two binary operations '+' and
‘o' satisfying the following conditions :

a.) (X, @) is a semigroup .

b.) (X, %, 0) isa BCK algebra.
c)(@ehb)xe=(axe)e(bxe) foralla, b,eeX
e)O0ex=xe0=x forall xeX

then we say that X is a special kind of non associative seminear-ring with BCK algebra( SNAK seminear-ring)
,then we define a special kind of non associative sub seminear-ring with BCK algebra we denoted by SNASK
seminear-ring , then we study and prove some properties of them .

keywords : semigroup, BCK —algebra, seminear-ring , non associative seminear -ring
2) preliminary

In this section we view some concepts we needed in this paper .

Definition2.1 [5],[6],[7]

Let S be a non-empty set. S is said to be a semigroup if on S is defined a binary operation ‘e’ such that for all
a,beS,aebeSand (ash)ec=ae(bec)foralla b,ceS.

Definition 2.2[4]
The direct product S x<T of two semigroups S and T is defined by
(X1, Y1) ® (X2, ¥2) = (X1 ® X2, y10Y,) Where Xi X, € S, y1y, € T).
It is easy to show that the direct product is a semigroup
Definition (2.3) [4]

A semigroup S with finite number of elements is called a finite semigroup and its order is finite and it is
denoted by o(S) = |S|. If |S| is infinite we say S is a semigroup of infinite order.

Definition 2.4 [5],[4]

Let (S, o) be a semigroup. P a non-empty proper subset of S is said to be a subsemigroup if (P, .) is a
semigroup

Definition 2.5 [3]

Let X be a semigroup and x an element of X . An element e of X is a left identity of x ife ex=x ,aright
identity of x if xe e =X, an identity of xif xee=eex=x

Definition 2.6 [5], [4]

A semigroup which has an identity element e € S is called a monoid, if e is such that x e e = e e x = x for all x
eS.
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Definition 2.7 [9]

A non empty set R with two binary operations + (addition) and e (multiplication) is called a seminear-ring , if
it satisfies the following axioms:

(1) (R, +) and (R, ) are semigroups,

Q) (x+y)ez=xez+yezforallx,y,zeR.

Precisely speaking, it is a right seminear-ring because it satisfies the right distributive law.

Definition 2.8 [5]

Let (N, +, o) be a non-empty set with two binary operation ‘+” and ‘e’ satisfying the following conditions :
a. (N, +) is a semigroup.

b. (N, e) is a groupoid.

c.(a+tb)ee=aee+bheeforalla b, c e N;(N,+,e)iscalled the right seminear-ring which is non-
associative.

If we replace (c) byae(b+e)=aeb+aeeforalla,b,e € NThen (N, +, ) is a non-associative left
seminear-ring . In this text we denote by (X, +, ) a non-associative right seminear-ring and by default of
notation call X just a non-associative seminear-ring

Definition 2.9 [5]

Let (N, +, ®) be a seminear-ring which is not associative . A subset P of N is said to be a subseminear-ring if
(P, +, ®) is a seminear-ring.

Definition 2.10 [5]
Let (N, +, ®) be a non-associative seminear-ring; we say N is a P-seminear-ring if
(xeoy)ex=xe(yex)forall X,y € N.
Definition 2.11 [5]
we call a non-associative seminear-ring N to be a Bol seminear-ring if
(xey)ez)oy=(xeo(yoz)ey)forallx,y,zeN.
Definition (2.12) [11],[12]
An algebraic system (X, *, 0) is called a BCK algebra if it satisfies the
following conditions:
1) ((x*y)* (x*2)) * (z*y) =0,
2) (x*(x*xy))*xy=0,
3) x*x=0,
4) 0%x=0
5)if x*xy=0and y*x=0 then x=y, Vxvy,z€X.
Remarks (2.13) [8]
Let X be a BCK algebra then :
A partial ordering ” <” on X can be defined by x <y if and only if
x*y=0,
A BCK-algebra X has the following properties:
1) x*0=x.
2) if x*y=0 and y*z=0 imply x*z=0 .
3) if x*y=0 implies (x*2)*(y*z)=0 and (z*y)*(z*x)=0 .
4) (x*y)*z=(x*2)*y.
5) (x*y)*x=0.
6) x*(x*(x*y))=x*y.
7)if (x*y)*z=0 implies (x*z)*y=0.
8) [(x*2)*(y*2)]*(x*y)=0.
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9) [((x*2)*2)*(y*)]1*[(x*y)*z] =0. forallx,y,z € X
3) Main Results :

In this section we define a new class of algebra , we call it a special kind of non associative seminear-ring with
BCK algebra then we study and prove some of properties .

Definition 3.1

Let X be a non-empty set with two binary operations "+' and 'e' satisfying the following conditions :
a.) (X, e ) is asemigroup .
b.) (X, *, 0) is a BCK algebra.
c)(xey)xz=(x*2z)e(y*2z) forall x,y,z e Xwhichis called the distributive law
e)0ex=xe0=x forall xeX

Then ; (X, e, *,0)is called Special Kind Of Non Associative Seminear-Ring With BCK Algebra, we
denoted by SNAK seminear-ring

Example: 3.3
Let X={0,1,2,3}with two binary operation e and * are defined by the following tables :

w| v R o
w| v R o] o
w| N R k| e
N NN NN
N N W] w| o w
w| N~ o

w| v R o] o
w| N o of -
o| ol ol o N
o| o] o| o] w

Then by usual calculation we can prove that (X ,e, *,0) is a SNAK seminear-ring
Example:3.2
Let X={0,1,2,3}with two binary operation e and * are defined by the following tables :

w| V| »| o] ©
w| N[ Rk | -
= w| N NN
N | w| w| w
w| V| »| o o
o V| o] o] -
ol o]l o]l o N
o V| w| o] w

Wl N k| O
W[ N| —,| O

Then (X, e, *,0) is not SNAK seminear-ring since1,2,3 € Xbut (1 e2)*3=2+3=2 # (1*3)e(2%3)=3
e2=1

Remark 3.3

Let X be a SNAK seminear-ring then x"<x V x e X

Proof

Let X be a SNAK seminear-ring since x*Xx=0 so X<X

X2 E X=X %X ®X*X [by c of definition 3.1]
=0e¢0=0 [ by e definition 3.1 ]

so x> < x.By mathematical induction we have X" <xV x eX,n e N
Proposition 3.4

Let X be a SNAK seminear-ring and x ey =0 for some x,y € Xthenx*y=0and y * x =0, the converse
is not true

Proof
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Let X be a SNAK seminear-ringand xey=0 = (X ey) * X =0 * X

=>x*Xeyxx=0e(yxx)=(y*x) = y=*x=0 bysimilar way we have x =y =0, we will show that the
converse is not true by the following example:

Let X={0,1,2,3}with two binary operation e and * are defined by the following tables :

. 0 1 2 3 * 0 1 2 3
0 0 1 2 3 0 0 0 0 0
1 1 1 1 1 1 1 0 3 0
2 2 1 2 3 2 2 0 0 0
3 3 3 3 3 3 3 0 3 0
Then, since 1,3eXand1+«3=0and 3*1=0but1e3=1+=0
proposition (3.5)
let X be SNAK seminear-ring then
1) 0e0=0
2) ((aeb) ec)*b=(ae c)*b for all a,b,c eX
3) ((aeb) ec)*a=(bec)*a forall a,b,c eX
4) ((aeb) ec)*c=(aeb)*c for all a,b,c eX
proof
let X is a SNAK seminear-ring
1)since 0 e X and0ex=xe0=x VXxeX so0e0=0
2) leta,b,c e X then
(aeb)ec)xb=(ae(bec)*b [ since (x, ®) is semigroup]
zaxbe((bec)*b
=(@a=*b)e[(b*bh)e(c*Dh)] [by c of definition 3.1]
—axbe[0e(Cc*h) [by e of definition 3.1]
za*becxhb=(aecC)*bh
4)In a similar way we can prove 3,4.
Proposition 3.6
Let X be a SNAK seminear-ring then X is not P-seminear-ring
Proof
Let X be a SNAK seminear-ring and suppose that X is a P-seminear-ring
S>X*y)rx=x*(y*x) V x,yeX
= Xk (y*X)=(X*X)*y [by 4 of Remarks 2.13]
=0*y=0V x,yeX [by 1 of Remarks 2.13]
sinceitistruevV x,y e Xsoif y=x = x*0=0
= x =0 contradiction = X is not P-seminear-ring
Proposition 3.7
Let X be a SNAK seminear-ring then X is not Bol seminear-ring
Proof
Let X be a SNAK seminear-ring and suppose that X is Bol seminear-ring
= ((x*xy)*z)*y = xx((y*2)*y) VX,y,ze X [Xis SNAK seminear-ring]
= ((xxy)*y)*z = (x*(0%2))
=x*0=x
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Sinceitistrue V x,y e X soitistrueif x=y= (0 *y) * z=x = x =0 contradiction
= Xisnot Bol seminear-ring
Proposition 3.8:

LetS, T be a SNAK seminear-ring then SxT ={(s,t) :seS,teT}is a SNAK seminear-ring and , where the
binary operations ‘' and "*' defined by the following :

(a1, b1) @ (a2, b2) = (a1 ® @z, by ® by)
(a1, br) * (a2, b)) = (ar * a2, by * by)
for all (ag,by) , (82,b2) € SXT

Proof

Let Sand T a SNAK seminear-ring so [by 2.1.1] S and T are semigroup then S x T are semigroup [ by
Definition 2.2] since Sand T are BCK algebrathen S x T it is easy to prove S x T a BCK where

(0,0) eSxTsince 0 e S and 0 € Talso foreach x=(a,b) € SxT we have

(@,b)*@,b)=(@=xa,b*xb)=(0,0) [by 4 of definition 2.1 2]
(@,b)*(0,0=(@=0),(b*0)= (a,b) [by 1 Of Remark 2.13]
and (0,0)*(a,b)=(0=*a,0+b)=(0,0) [by 4 of definition 2. 12]

and all condition of BCK algebra are satisfied .
Now , to proof that (xey) *z=(x*z)e (y*2z)forallx,y,ze SxT
Letx=(a;,by) ,y=(a2,by) , z=(az,b3) e SxT
Where a;, a,a3 € S and by,by, b; € T then
(xey) *z=[(as, by) ® (a2, b2)] * (a3, bs)
=((a1® ay), (b ® by)) * (a3, bs)
= ((a, ® a,) * az, (b, @ by) * bs) [since S and, T are SNAK seminear-ring]
= ((ar*az) ® (a2*az) , (by *b3) e (by *b3))
= (((ar*az) , (b1 *b3)) & ((az*as) , (b2 *b3)))
=((a1, by) * (a3, b3) @ (a2, by) * (a3, b3)) = (x *2) @ (y *2)
Now,,it is clear that
(0,0)e(a,b)=(0ea,0eb) =(a,b) [by e Definition 3.1]
=(a,b)e(0,0)
Then S x T is a SNAK seminear-ring .

Proposition 3.9
If (X, o, *,0) bea SNAK seminear-ring thereisno (P = @) < X suchthat (P , e, *,0)isaseminear-ring
Proof
Suppose that (P = @) < X is a seminear-ring and
LetO#£x e P Then (x #X) * x=0*x=0 [by 4 definition 2.12 ]
but x = (x *X) =x*0=X [by 1 of Remark 2.13 ]
SO (X*X)xXx # X*(X*X) foreachx e P
So (P, *) will not be a semigroup so (P , e, *, 0) not a seminear-ring

Example 3.10:
Let X={0,1,2}with two binary operations 'e' and ="' are defined by the following tables :
° 0 1 2 * 0 1 2
0 0 1 2 0 0 0 0
1 1 1 2 1 1 0 0
2 2 2 2 2 2 1 0
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Then by usual calculation we can prove that (X, e, *,0) isa SNAK seminear-ring .

LetP={0,1} < Xthen P is not a seminear-ring since it is not associative where (1* 1) * 1 =0 = 1 *(1=*1)
=1 .

Definition 3.11 :

Let (X, o, % ,0) is a SNAK seminear-ring a non empty subset P of X is said to be a Special Kind of Non
Associative Sub Seminear-Ring With BCK Algebra if (P, e, *,0) is a SNAK seminear-ring we denoted by
SNASK seminear-ring.

Example 3.12 :
Let X={0,1,2,3}with two binary operations 'e' and '+ are defined by the following tables :

w| N k| o
w| N k| o o
N
NI NI
| R k| W w
w| N k| o

w| N k| o o
o| ol o of ~
N o v ol N
o| ol o| o w

Then by usual calculation we can prove that (X, e, *, 0) is a SNAK seminear-ring

LetP={0,1,2} < X then by usual calculation we can prove that P is a SNASK seminear —ring from above
tables.

Proposition 3.12

Let (X;,®,*,0) , (X, ,o,*,0) beaSNASK seminear-ring of X such that X; n X, = @ then The following
are SNASK seminear-ring

1)(X1ﬁX2,.,*,0)
2) Xy u X, ,e,%,0) suchthat X; < X, or X, < X;

Proof :

1) a) Let X; X, be a SNASK seminear-ring Since (X, ®), (X, , ®) are semigroup so it is easy to prove that (X;
N X, , ®) is a semigroup

b) To prove that ( X; N X, , *) isa BCK algebra

since 0 € Xjand X, so 0 e X;n X, [since X;, X, are SNASK seminear-ring]
Letx,y,ze X;n X,

= X,y,ze€ XjandXx,y,ze X;since X;, X, isaBCK algebra

So it is easy to prove that all the conditions of definition BCK satisfies forall x,y,z € X;,and X, then
satisfies to X; N X,

= (XinX;,,*,0)isaBCKalgebra

c)Letx,y,ze X;nXythen x,y,ze X;andXx,y, z e X,since X;, X, are SNASK seminear-ring
> Xey)xz=(x*x2z)e(yx2z)forallx,y,ze X;nX,

d)let x € X;nX,then x € X; andx € X,

so xe0=0ex=x[since X;, X, are a SNASK seminear-ring] Then (X; n X, , e, *,0) isa SNASK
seminear-ring

2) let X, and X, be a SNASK seminear-ring such that X; < X,

Since X; = X, = X u X, =X, and X, isa SNASK seminear-ring so ( X; U X, , e, %, 0) isa SNAK
seminear-ring .If X, < X; = X, u X; =X, and X; is SNASK seminear-ring so

(XiuXy,e,*,0)isaSNASK seminear-ring .
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Proposition 3.13:

Let X be a SNAK seminear-ring and let ac X then £={xeX: x*a =0} isa SNASK seminear-ring Proof
1) let X be a SNAK seminear-ring. It is clear that £ — X and £+ @

since a € £ where a*a=0. To prove that (&, ¢ ) is a semigroup
a) Letx,yef=>x*a=0 and y=*a=0
= (Xey)xa=(x*a)e(y=*a) [since X be a SNAK seminear-ring]

=0e0=0

= X ey e £ then £ is closed under (o)
b) letx,y,z e £but£ subsetof Xsox,y,z e Xand Xisa SNAK seminear-ring
so(xey)ez=xe(yez)forallx,y,z e X so£ isassociative for all x, y, z € £then £, is semigroup.
2) to prove that £ is a BCK algebra

Since0*a=0=0 e £. Now ,since £ < Xand 0 € £so itiseasy to prove that (£, *,0) isaBCK
algebra. Now , let X,y,z € £s0 X,y,z € X

=S Xey)xz=(X*2)e(y*2) [by c of definition 3.1]
and xe0=0ex=xforallx e £ [by e of definition 3.1]
Then £ is SNASK seminear-ring
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