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Abstract

In this paper we introduce a new class of functions in topological spaces, namely, s*g-a-proper
functions. Also, we study the basic properties and characterizations of these functions. One of the most
important of equivalent definitions to the s*g-o-proper functions gives by using s*g-o-limit points of nets.
Moreover we define and study s*g-a-perfect functions and s*g-a-compact functions in topological spaces and
we study the relation between s*g-a-proper functions and each of proper functions, s*g-a-perfect functions,
closed functions, s*g-a-closed functions and s*g-a-compact functions and we give an example when the
converse may not be true.
Key words:  s*g-a-proper functions, s*g-a-perfect functions, s*g-a-closed functions, s*g-a-compact
functions, s*g-a-limlt points, compactly s*g-a-closed sets and s*g-a-K-spaces.

Introduction

Levine, N. [6] introduced the concept of semi open sets. Also, Khan, M. and et.al. [5] introduced and
investigated s*g-open sets by using the concept of semi-closed sets. Mahmood, S. and Tareq, J. [7] we
introduced and study s*g-a-open sets and we can prove that the family of all s*g-a-open subsets of a
topological space (X, t) from a topology on X which is finer than t. The purpose of this paper is to introduce a
new class of functions, namely, s*g-a-proper functions. We give the definition by depending on the definition of
s*g-a-closed functions. Also, we give useful characterizations of s*g-a-proper functions. The second equivalent
definition to s*g-o-proper functions by using s*g-o-limit points of nets is more interesting than the first
equivalent definition. Moreover we study the relation between s*g-a-proper functions and certain types of
functions such as proper functions, s*g-a-perfect functions, closed functions, s*g-a-closed functions and s*g-a-
compact functions and we give an example when the converse may not be true. Recall that a subset A of a
topological space (X,t)is called a semi-open set if there exists an open subset U of X such that
U c A c cl(U) [6]. The complement of a semi-open set is said to be semi-closed [6]. An s*g-open set is also
called g-open [9], s*-open [2] and w-open [8].

1. Preliminaries

1.1 Definition [5]: A subset A of a topological space (X, ) is called s*g-open if F < A° whenever
F < Aand F is semi-closed in X. The complement of an s*g-open set is defined to be s*g-closed.
1.2 Definition [5]: Let (X, t) be a topological space and A < X. Then:

i) The s*g-closure of A, denoted by A”? is the intersection of all s*g-closed subsets of X which contains A.
ii) The s*g-interior of A, denoted by A®"° is the union of all s*g-open subsets of X which are contained in A.

sg°
g

1.3 Definition[7]: A subset A of a topological space (X,t) is called an s*g-a-open set if Ac A° . The
complement of an s*g-a-open set is defined to be s*g-a-closed. The family of all s*g-a-open subsets of X is
denoted by t597* .

1.4 Definition [7]: A subset A of a topological space (X,7)is called an s*g-a-neighborhood of a point x in X
if there exists an s*g-a-open set U in X such that xe Uc A. The family of all s*g-o-

neighborhoods of a point x € X is denoted by Ng,_, (X).

1.5 Proposition [7]: Let (X, t) be a topological space and B be a subset of X. Then B is s*g-a-closed in X if and
s*go

only if B cB.

1.6 Definition [7]: Let (X,t) be a topological space and A c X. Then the s*g-a-closure of A, denoted by

—s*g-a . . . .
A" 7" is the intersection of all s*g-a-closed subsets of X which contains A.
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1.7 Theorem [7]: Let (X, ) be a topological space and A,B< X . Then:

i) Agxs*gia gz
i) A9 is an s*g-a-closed set in X .
i) If AcB,then A°Y“ B
iv) A is s*g-a-closed iff AT AL
—s*g—a g —s*g—a,

v) A =A
Vi) X AT iff for every s*g-a-open set U containing x, UNA = ¢.

1.8 Proposition: Let (X, 1) be a topological space and Y be an open subspace of X. If A is an s*g-a-closed set
in X, then ANY isan s*g-a-closed setin Y.

1.9 Proposition: Let (X,t)and (Y, 1) be topological spaces. If A< Xand Bc Y. Thenif AxBisan s*g-a-
closed setin Xx Y, then A and B are s*g-a-closed sets in X and Y respectevely.

Proof: It is obvious.

1.10 Definition [7]: Let (X,t)and (Y,<t') be topological spaces. A function f : X — Y is called s*g-a-irresolute if the
inverse image of every s*g-a-open subset of Y is an s*g-a-open subset of X.

1.11 Proposition [7]: Let (X,t)and (Y, ") be topological spaces. A function f : X — Y is s*g-a-irresolute if the
inverse image of every s*g-a-closed subset of Y is an s*g-a-closed subset of X.

1.12 Definition [4]: Let (X,t) and (Y, ") be topological spaces. A function f : X — Y is called compact if the
inverse image of every compact set in Y is a compact set in X.
1.13 Definition: A family{U },., of s*g-a-open sets in a topological space (X, 1) is called an s*g-a-open cover

of asubset A of X if Ac UUa'

aeA
1.14 Definition: A topological space (X, ) is called an s*g-a-compact space if every s*g-a-open cover of X has

a finite subcover.

1.15 Definition: A subset A of a topological space (X, 1) is called s*g-a-compact if every cover of A by s*g-a-
open subsets of X has a finite subcover.

1.16 Proposition: Every s*g-a-compact space is a compact space.

The converse of proposition (1.16) is not true in general as shown by the following example:
1.17 Example: Let X be any infinite setand p € X, then ©={X, ¢,{p}}is a topology on X. Notice that

(X, 1) is a compact space. However, it is not an s*g-a-compact space, because {{p, x}: x € X}is an s*g-a-open
cover of X which has no finite subcover.

1.18 Proposition: The s*g-a-irresolute image of an s*g-a-compact space is s*g-a-compact.

Proof: It is obvious.

1.19 Definition: A subset F of a topological space (X,t)is called compactly s*g-a-closed if FKis a
compact set in X for each s*g-a-compact set K in X.

Clearly every s*g-a-closed subset of a topological space (X, t) is compactly s*g-a-closed. But the converse
is not true in general as shown by the following example:
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1.20 Example: Let X ={a,b,c}and t={¢, X,{a}}be a topology on X. Therefore the sets in {X, ¢,{b},
{c},{b, c}}are s*g-a-closed in X. Thus {a}is a compactly s*g-a-closed set in X, but is not s*g-a-closed.

1.21 Definition: A topological space (X,)is called an s*g-a-K-space if every compactly s*g-a-closed subset of
X is s*g-a-closed.

1.22 Definition: Let (X4)q4.pbe a net in a topological space (X,t). Then (X4)4p S*g-o-converges to

X € X (written X 4 M)x) if for each s*g-a-neighborhood U of x, there is some d, € D such that d >d,
implies x4 € U. This is sometimes said (Xy)q4cp S*g-a-converges to X if (X4)qep IS eventually in every s*g-a-
neighborhood of x. The point X is called an s*g-o-limit point of (X4)gep -

1.23 Proposition: Let (X, t) be a topological space and A < X. If x is a point of X, then X eZS*g’“ if and only

if there exists a net (X4)qop iN A such that Xy —9-% 5 x.

Proof: < Suppose that 3 a net (Xy)gep IN A such that xd%x. To prove that xeA T Let

U e Ngy , (X), since Xg—9% sx = 3d, D such that x, eU, Vd>d,. But x,eA,vdeD =

—s*g—a

UNA=#¢ ,V UeNggy, (X). Hence by theorem ((1.7),(vi)), we get x e A

Conversely, suppose that x eA” T To prove that 3 a net (X4)gep iN A such that Xy S0 % Since

XEZ\S*Q_(X, then by theorem ((1.7),(vi)), we get N(Y1A =6,V N e Ngy ,(X). Hence D=Ngqy ,(X) is a
directed set by inclusion. Since N[TA# ¢,V NeNgqy , (X) = I xy e NNA.
Define X:Ngg_o (X) > A by: X(N)=Xy, V NeNgy_,(X). Thus (xN)NeNs*g_a(X) is a net in A. To prove

that Xy —9-% >x. Let Ue Ngy,(X) to find dy eD such that x4 eU,vd>d, . Let dy=U =
vd>d, = d=MeNgy ,(x) ie. M2UeMcU = xg =x(d) =x(M) =xyy e MNACM
cU= xyeU = xgeU, Vd=d, . Thus xy —2% 5x.

1.24 proposition: Let (X,t) and (Y,t") be topological spaces. A function f:X — Y is s*g-a-irresolute iff

whenever (X4)4.p iSanetin X such that xy —=9"% 5 x , then f(x4)—-2"%>f(x)in Y.

Proof: It is obvious.

1.25 Definition [3]: Let (X,t)and (,t') be topological spaces, and f : X — Y be a function. Then f is called a

proper function if:
i) fis a continuous function.
i) fx1, :XxZ—>YxZ is closed for every topological space Z.

2. Properties of s*g-a-Closed Functions

In this section we introduce a new definition (to the best of our knowledge), namely, s*g-a-closed functions which
is weaker than closed functions, and prove some of the results which relate to this concept. Also, we explain the
relationship between an s*g-a-closed function and an s*g-a-compact function.

2.1 Definition: Let (X,t)and (Y,t') be topological spaces. A function f: X — Y is called an s*g-a-closed (resp. s*g-
a-open) function if the image of every closed (resp. open) subset of X is an s*g-a-closed (resp. s*g-a-open) setin Y.

2.2 Examples:
i) Let f:(R,u) > (R,n) be afunction which is defined by: f(x) =0,V xR . Then f is an s*g-a-closed
function.
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i) If F is an s*g-a-closed (not closed) set in X, then the inclusion function 1 : F — X is s*g-a-closed, but is not
a closed function.

Since every closed set is an s*g-a-closed set, then we have the following proposition.
2.3 Proposition: Every closed function is an s*g-a-closed function.
The converse of proposition (2.3) may not be true in general as shown by the following example.

2.4 Example: Let X ={a,b,c,d} and Y ={x,y,z} be sets and let t={¢,X,{a,b,c},{b,c},{a}}and

" ={¢, Y,{x}}be topologies on X and Y, respectively. So the sets in {X, o,{d},{a,d}{b,c,d}}are closed in X.
Also, the sets in {Y,,{y, z}.{z}.{y}} are s*g-a-closed sets in Y. Define the function f : X — Y by:
f(@)=f(c)=z, f(b)=x and f(d) =y. Notice that f is an s*g-a-closed function. But f is not a closed
function, since {d} is a closed set in X, but f({d}) ={y}is not a closed setinY.

2.5 Theorem: Let (X,t)and (Y,<") be topological spaces. A function f : X — Y is s*g-a-closed if and only if for each
subset B of Y and each open subset U of X containing f 2(B), there exists an s*g-a-open set V in Y containing B such
that f (V) c U.

Proof: = Suppose that B is an arbitrary subset of Y and U is an arbitrary open subset of X containing f’l(B) .
PutV =Y —f(X—U). Then by definition (2.1), V is an s*g-a-open set in Y. Since f’l(B) cUu
= X-Ucf(Y-B) = f(X-U)cY-B=BcY-f(X-U)= BcVand f*(V)cU.

Conversely, Let F be any closed set in X. Put B=Y —f(F), then we have f 1(B) = X —F. Since X—Fis

an open set in X, then by hypothesis there exists an s*g-a-open set VV in Y such that B Vand f (V) = X —F.
Therefore, we obtain f(F) =Y —V and hence f(F)is an s*g-a-closed set in Y. This shows that f is an s*g-a-
closed function.

2.6 Proposition: Let (X,t)and (Y, ") be topological spaces. A function f: X — Y is s*g-a-closed if and only
if F(A)°°* <f(A) foreach A X.

Proof: = suppose that f : X — Y is an s*g-a-closed function. Since f(A) = f(A)and A is a closed set in X,

——S*g—-a

then f(A) is s*g-a-closed in Y. Therefore f(A)s*g_a cf(A) =f(A). Hence f(A)s*g_a —f(A) for each

A < X. Conversely, assume that f(A)S*g_a —f(A) foreach Ac X. LetF be a closed subset of X, thus by

hypothesis F(F)°° < f(F) = f(F). But f(F) = F(F)° ° *, then f(F)=F(F)’ ° . Hence f(F) is an s*g-a-
closed setin Y. Thus f : X — Y is an s*g-a-closed function.

2.7 Proposition: Let (X,t)and (Y,t") be topological spaces. A bijective function f : X — Y is an s*g-a-
closed function if and only if f is an s*g-a-open function.

Proof: = Let f:X — Y be a bijective s*g-a-closed function and U be an open subset of X, thus U°® is closed.
Since f is s*g-a-closed, then f(U°) is s*g-a-closed in Y, thus (f(U®))° is s*g-a-open. Since f is a bijective
function, then (f(U°))® =f(U), hence f(U)is an s*g-a-open set in Y. Therefore f is an s*g-a-open function.
Conversely, let f: X — Y be abijective s*g-o-open function and F be a closed subset of X, thus F° is
open. Since f is s*g-a-open, then f(F°) is s*g-a-open in Y, thus (f(F%))° is s*g-a-closed. Since f is a bijective

function, then (f(F®))¢ =f(F), hence f(F) is an s*g-a-closed set in Y. Therefore f is an s*g-a-closed function.
2.8 Proposition: Let (X,t)and (Y,t') be topological spaces and f : X — Y be a function. If f(A)S*g_a =f(z\)
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for each A < X, then fis a continuous s*g-a-closed function.

Proof: To prove that f: X — Y is an s*g-a-closed function. Let F be a closed subset of X, then F=F. By

hypothesis ﬁs*gfa = f(l_:) =f(F), hence f(F)isan s*g-a-closed setin Y. Therefore f: X — Y is an s*g-a-

closed function. Now, to prove that f is a continuous function. Since f (A) = f(A)S*gfa c f(A) foreach Ac X,
thus by ([10], theorem (7.2)),f : X — Y is a continuous function.

2.9 Theorem: Let (X, 1), (Y, ") and (Z,1") be three topological spacesand f: X > Y ,g:Y — Z be two

functions. Then:
i) If fisclosed and g is s*g-a-closed, then g o f is s*g-a-closed.

ii) If gof is s*g-a-closed and f is continuous and onto, then g is s*g-a-closed.
iii) If gofiss*g-a-closed and g is one-to-one and s*g-a-irresolute, then f is s*g-a-closed.

Proof:
i) To prove that gof : X — Z is an s*g-a-closed function. Let F be a closed subset of X. Since f is

closed, then f(F) is aclosed setin Y. Butg isan s*g-a-closed function, then g(f(F)) is an s*g-a-
closed setin Z, hence (g o f)(F) is an s*g-a-closed setin Z. Thus gof : X — Z is an s*g-a-closed

function.
ii) To prove that g:Y — Z is an s*g-a-closed function. Let F be a closed subset of Y, since f is

continuous, then f*(F) is a closed set in X. Since go f is s*g-o-closed, then (gof)(f *(F)) =

g(f of 1(F)) is an s*g-o-closed set in Z. Since f is onto, then g(F) is an s*g-a-closed set in Z.
Thus g:Y — Z is an s*g-a-closed function.
iii) To prove that f : X —> Y is an s*g-a-closed function. Let F be a closed subset of X, since gof is s*g-

o-closed, then (gof)(F) is s*g-o-closed in Z. Since g is s*g-o-irresolute, then g*(gof(F)) =
(g’1 og)(f (F)) is an s*g-a-closed set in Y. Since g is one-to-one, then f(F) is an s*g-a-closed setin Y.
Thus f: X — Y is an s*g-a-closed function.

2.10 Corollary: Let (X,t)and (Y,1’) be topological spaces. If f: X — Y is an s*g-a-closed function, then the
restriction of f to a closed subset F of X is an s*g-a-closed function of F into Y.
Proof: Since F is a closed set in X, then the inclusion function 1 : F— X is a closed function. Since

f: X — Y isan s*g-a-closed function, then by theorem ((2.9),(i)), fo1z:F—Y isan s*g-a-closed function.
But f o1 =T |F, thus the restriction function f | F: F — Y is an s*g-a-closed function.

2.11 Proposition: Let (X,t) and (Y,1") be topological spaces, and f: X —Y be an s*g-a-closed

function. Then for each open subset T of Y, the function f :f71(T) - T which agrees with fon f (T) isalso
s*g-a-closed.

Proof: Let F be aclosed subset of f*(T), then there is aclosed subset F, of X such that F=

FNf (T). Since f-(F)=f(FR)NT and f(F)is s*g-a-closed in Y and T is an open subset of Y, then by
proposition (1.8), f(F)NT isans*g-a-closed setin T .Thus f; is an s*g-a-closed function.

2.12 Remark: If f:X —>Y is an s*g-a-closed function and T <Y is not an open set. Then
fr :f71(T) - T is not necessarily an s*g-a-closed function as the following example shows.

2.13 Example: In example (2.4), let T ={y,z}, notice that T is not openin Y and t; ={¢, T}, then
f1(T)={a,c,d} and T ={f (T, ,{a}.{c}.{a,c}}. Define the function f; :f *(T) > T by:
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fr(x) = f(x),Vxef(T). Notice that the subset {d} of f (T) isclosed inf *(T), but f; ({d}) ={y} is not

an s*g-a-closed set in T, since ((({7})T ST*QO)T =T ¢ {y}. Thus f; is not an s*g-a-closed function.

The product of two s*g-a-closed functions is not necessarily an s*g-a-closed function as shown by the
following example:

2.14 Example: Let f; : (R, ) — (R, 1) be a function which is defined by: f;(x) =0, V xe R . And let

ly; : (R,1) > (R, ) be a function which is defined by: 1 (X) =%, V X e R where |, is the identity function
on R. Clearly f, and Iy are s*g-o-closed functions, but f;xlgz :RxR—>RxNR such that
(Fy x1g)(X, ¥) = (0,y) for each (X,y) € RxR is not an s*g-a-closed function, since the set A={(x,y) €
RxR:xy=2Lisclosed in RxR, but (f; x 145 )(A) ={0}x R/{0}is not s*g-a-closed in RxR.

2.15 Theorem: Let f; : X; > Y; and f, : X, =Y, be two functions. If f; xf, : X; x X, =Y, xY, is s*g-a-
closed, then f; and f., are also s*g-a-closed functions.

Proof: Suppose that f; xf, : X; x X, —Y; xY, is an s*g-a-closed function. To prove that f; : X; —Y; is s*g-
a-closed. Let F be a closed subset of X;, to prove that f, (F) is an s*g-a-closed set in Y; . Suppose that
G=f,(F) = FxX, is a closed set in X;xX,. Since f;xf, is s*g-a-closed, then

__s*go s*go s*go

G xf,(X,). But by proposition (1.9), we have: G x f,(Xy) < Gxf,(X,) < Gxfy(X,) =

s*go

G < G. Therefore by proposition (1.5), G =f,(F) is an s*g-a-closed setin Y. Thus f, is an s*g-o-

closed function. By the same way we can prove that f, is an s*g-a-closed function. Thus f1 and f2 are s*g-o-
closed functions.

2.16 Definition: Let (X,t)and (Y, ") be topological spaces. A function f : X — Y is called s*g-a-compact if
the inverse image of every s*g-a-compact set in Y is a compact set in X.

2.17 Proposition:Let (X,1), (Y,t") and (Z,1") be three topological spacesand f: X —> Y ,g:Y — Z be two
functions. Then:

i) If f is compact and g is s*g-a-compact, then gof is s*g-a-compact.

ii) If gof is s*g-a-compact and f is continuous and onto, then g is s*g-a-compact.

iii) If gofiss*g-a-compact and g is s*g-a-irresolute and one-to-one, then f is s*g-a-compact.

Proof: The proof is similar of theorem (2.9).

2.18 Remark: s*g-a-closed function and s*g-a-compact function are in general independent. Consider the
following examples:

2.19 Examples:(i) Let X =Y ={a,b,c} and t={¢,X,{a,c}}and ' ={¢,Y,{b}}, and let f:(X,1) > (Y,1")

be a function which is defined by: f(a) =f(c) =a and f(b) =b. Since X and Y are finite spaces, thenf (K) is
a compact set in X for each s*g-a-compact subset K of Y. Hence f is an s*g-a-compact function, but f is not an
s*g-a-closed function, since {b} is aclosed setin X, but f({b}) ={b} is not an s*g-a-closed set inY, since

o

{} =Y z{b}.

(if) Let (R, ) be the usual topological space and let f : (R, ) — (R, ) be a function which is defined by:
f(x)=0,V xeR. Then f is an s*g-a-closed function, but f is not an s*g-a-compact function, since {0}

is an s*g-a-compact set in R, but f 1({0}) =R is not compact in‘R .
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2.20 Proposition: Let (X, t) be a topological space and (Y,t") be an s*g-a-K-space. Then every continuous
s*g-a-compact function f : X — Y is an s*g-a-closed function.

Proof: Let F be a closed set in X, to prove that f(F) is an s*g-a-closed set in Y. Let K be an s*g-a-compact set
in Y. Since f is an s*g-a-compact function, then f ~(K) is a compact set in X. Since Ff (K) is a compact set

in X and f is continuous, then by ([10], theorem (17.7)), f (FN f ™ (K)) is a compact set in Y. But f(FNf ™ (K))
=f(F)NK, thus f(F)N Kisacompact set in Y. Therefore by definition (1.19), f (F) is a compactly s*g-a-closed
setin Y. Since Y is an s*g-a-K-space, then by definition (1.21), f(F) is an s*g-a-closed setin Y. Hence f is an
s*g-a-closed function.

2.21 Proposition: Any one-to-one s*g-a-closed function is an s*g-a-compact function.

Proof: Let f : (X,t) = (Y,1") be a one-to-one s*g-a-closed function and K be an s*g-a-compact setin Y. To

prove that f *(K) is a compact set in X. Let {U_},., be any open cover of f1(K), then f *(K) < U U, and
aeA
U, is an open set in X for each o€ A . Hence (U U,)® < X-f(K), therefore ﬂug c f (Y -K). Since
aeA aeA
f is a one-to-one function, then ﬂf(u;) =f(ﬂ US)cffH(Y-K)cY-K= Kc U(Y—f(ug) .
aeA aeA aeA

Since f is an s*g-a-closed function and U, is a closed set in X for each o€ A, then f(U¢) is an s*g-a-closed
setinY foreach ae A. Thus {Y —f(US)},ca is an s*g-a-open cover of K. Since K is s*g-a-compact, then

n

I{Y-f(Ug )}, is a finite subcover of {Y—-f(Ug)},n ie KgU(Y—f(Ugi) = f1K)c
i=1

n n

U(X—f’l(f(UgLi ) U U, - So, {U, }H is a finite subcover of {U,,},., . Hence f~*(K)is a compact set

i=1 i=1

in X . Thus f: X — Y is an s*g-a-compact function.

2.22 Corollary: Let (X,1) be a topological space and (Y,t') be an s*g-a-K-space. Then a one-to-one

continuous function f : X — Y is an s*g-a-closed function if and only if f is an s*g-a-compact function.
Proof: It is obvious.

2.23 Definition: Let (X,t)and (,t’) be topological spaces. A function f : X — Y is called an s*g-o-

homeomorphism if:

i) fis bijective.

ii) fis continuous.

iii) f is s*g-a-closed (resp. s*g-a-open).

3. Properties of s*g-a-Proper Functions

In this section we introduce a new definition (to the best of our knowledge), namely, s*g-a-proper functions.
Also, we study the basic properties and characterizations of these functions. Moreover we study the relation between
s*g-a-proper functions and certain types of functions such as proper functions, s*g-a-perfect functions, closed
functions, s*g-a-closed functions and s*g-a-compact functions.

3.1 Definition: Let (X,t)and (Y,") be topological spaces, and f : X — Y be a function. Then f is called an
s*g-a-proper function if:

i) f is a continuous function.

i) fxl, : XxZ—>YxZ is s*g-a-closed for every topological space Z.

3.2 Examples:
i) Letf : (R, ) — (R, 1) be a function which is defined by: f(x) =0,V x € R . Notice that f is an s*g-a-
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closed function, but f is not s*g-a-proper, since for the usual topological space (R, ), the function
fxlg i RxR > RxR such that (f x14;)(x,y) =(0,y) for each (x,y) € RxR is not an s*g-a-closed

function.
ii) An inclusion function 1g : F — X is s*g-a-proper if and only if F is an s*g-a-closed set in X.

Since every closed function is an s*g-a-closed function, then we have the following proposition:
3.3 Proposition: Every proper function is an s*g-a-proper function.
The converse of proposition (3.3) may not be true in general as shown by the following example:

3.4 Example: Let X =Y ={a,b,c}and let T ={¢,{a}.{a,c}, X} and ' ={¢,{a}, Y} be topologies on X and
Y, respectively. Define the function f: X —Y by: f(a) =a, f(b)=b and f(c) =c. Therefore f is an s*g-o-
proper function, but f is not a proper function, since f is not a closed function.

3.5 Proposition: Every s*g-a-proper function is an s*g-a-closed function.

Proof: Let f: X — Y be an s*g-a-proper function, then the function fx1, : XxZ — Y xZ is s*g-a-closed for
each topological space Z. Let Z={t},then XxZ=Xx{t}=X and YxZ=Yx{t}=Y and we can replace
fxl, by f.Thus f:X—Y isans*g-a-closed function.

3.6 Remark: The converse of proposition (3.5) may not be true in general. Observe that in examples ((3.2),(i))
(R, ) = (R, ) is an s*g-a-closed function, but is not an s*g-a-proper function.

3.7 Theorem: Let (X,t)and (Y,") be topological spaces, and f : X — Y be a continuous, one-to-one
function. Then f is an s*g-a-proper function if and only if f is an s*g-a-closed function.

Proof: = By proposition (3.5) .
Conversely, assume that f: X — Y is an s*g-a-closed function. To prove that f is s*g-a-proper i.e. to
prove that h=f x1, : XxZ —> Y xZ is s*g-a-closed for every topological space Z. Let C be any closed set in

XxZ. To prove that h(C) =D is an s*g-a-closed set in YxZ. Let (y,5)eD® = h7(y,s)eh (D) =
(Fx12)(y,5)eh (D) = (F 1,7 )(y,s)eh (D) = fH(y)x{s}=C°,

where C°® is an open set in Xx Z. Since f is a one-to-one s*g-o-closed function, then by proposition (2.21),
f’l(y) is a compact set in X. Hence by ([10], theorem (17.6)) there are open sets U in X and V in Z such that
fLy)x{stcUxVcC® = f(y)cU and {s}< V. Since f and I, are s*g-a-closed, then by theorem
(2.5), there are s*g-a-open sets U’ in Y and V' in Z such that {y}cU’, {s}< V', f1(U)cU and
Iz’l(V’)c;V = (y,8)eU xV' D’ = D° is an s*g-o-open set in YxZ = D is an s*g-a-closed in
YxZ.Hence fxl, :XxZ—YxZis an s*g-a-closed function. Thus f : X — Y is an s*g-a-proper function.

3.8 Corollary: Every s*g-a-homeomorphism is an s*g-a-proper function.
The converse of corollary (3.8) may not be true in general as shown by the following example:

3.9 Example: Let f: (0], 1) — (R,n) be a function which is defined by: f(x)=x,V x €[01] where p’ is
the relative usual topology on [0,1]. Clearly that f is an s*g-a-proper function, but is not s*g-a-homeomorphism.

3.10 Theorem: Let (X,t) and (Y,1") be topological spaces, and f:X — Y be a continuous, function. Then
the following statements are equivalent:
i) fis an s*g-a-proper function.
ii) f is an s*g-a-closed function and f *(y) is a compact set in X for each y e Y .
iii) If (Xg4)gep iS@netin Xand yeY isan s*g-a-limit point of the net (f(X4))q4cp . then there is a
cluster point x € X of (X4)g4ep Such that f(x)=y.
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Proof: (i —ii). If fis an s*g-a-proper function, then by proposition (3.5), f is an s*g-a-closed function. Also,
by ([1], theorem (3.1.12)), f*(y) isa compact setin X foreachyeY .
(it > iii). Let (X4)g4ep beanetin Xand y e Y be an s*g-a-limit point of a net (f(X4))4ep in Y. TO
prove that there is a cluster point xeX of (Xq)qp Such that f(x)=y. Claim f*(y)=¢, if
fly)=¢ = yef(X)= ye(f(X)), since Xisaclosed setin X and f is s*g-a-closed, then f(X) is
an s*g-a-closed set in Y. Thus (f(X)) is an s*g-a-open set in Y. Therefore (f(X4))4p is eventually in
(fX))°¢. But f(xq)ef(X), vdeD, then fOX)NE(X))® =#¢, and this is a contradiction. Thus
fiy=¢ .

Now, suppose that the statement (iii) is not true, that means, for all x e f*(y) there exists an open set

U, in X contains x such that (x4)q.p is not frequently in U, . Notice that f*(y)= U{x}g UUX .
xef 4(y) xef(y)

Therefore the family {U, :x ef (y)} is an open cover of f(y) . Since f *(y) is a compact set, then there

n n
(Xg)gep is not frequently in U, ,vi=1..n, thus (Xq)gcp Is not frequently in U U,, . Since UUXi is an
i=1 i=1

n n
open set in X, then ﬂuii is a closed set in X. Thus f(ﬂ Uf(i) is an s*g-a-closed set in Y. Claim
i=1 i=1

n n n n
yef(ﬂuil), if yef(nuil), then there exists XEﬂU§i such that f(x) =y, thus erUXi , but

i-1 i=1 i=1 =1

n n
x e f1(y), therefore f(y) is not a subset of UUX. , and this is a contradiction. Hence yef(ﬂ U‘;I) and
i=1 i=1

n
by theorem ((1.7),(vi)), there is an s*g-o-open set A in Y such that yeA and Aﬂf(ﬂ U§|)=¢ =
i=1

FHANFHE(U ) =0 =

i=1

f‘l(A)ﬂ(ﬁ Us)=¢= f’l(A)gLnJUXi .But (F(Xy))gep is eventually in A, then (F(X4))gep i
i=1 i=1

n

frequently in A, thus (X4)4cp 1S frequently in f’l(A) and then (Xd)deD is frequently in UUXi , this is a
i=1

contradiction. Thus there is a cluster point x e f *(y) of (Xg)gep Suchthat f(x)=y.

(ili > i) . Toprovethat f x1, : XxZ — Y xZ is an s*g-a-closed function for every topological space Z. Let

F be a closed subset of XxZ and (fx1,)(F)=G.To provethat G is an s*g-a-closed setin Y xZ. Let

(y,2) e@s*g_a , then by proposition (1.23), there exists a net {(Y4,Z4)}4ep in G such that

(yd,zd)ﬂ)(y, z) . Thus there is a net {(X4,Z4)}q4ep in Fsuch that (fx1;)(Xy4,24) =(Yq4,24), VdeD.
Since (F(Xg), 17 (z4) —2%5(y,z) , then f(x;)—2% >y and z4— 9% 57, hence by hypothesis there

isa point x € X such that x4 ccx and f(x) =y . Since z4 — 9% 57, then zy —z. Therefore x4 —x and
zg, >Z = (Xg,,2q4,) > (x,2). Since {(Xq,,24,)} isa net in F and Fis closed, thus by ([10], theorem

AL7), (2 eF=F= (12)=(xI,)(x2)<G.Ths G ' “ <G
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= G :Es*gfa .Hence G is an s*g-a-closed setinY xZ. Therefore f x|, : XxZ — Y x Zis an s*g-a-closed
function for every topological space Z. Thus f: X — Y is an s*g-a-proper function.

3.11 Corollary: Let (X,t) be a topological space and {p}be a space consisting of a single point. Then a
function f : X — {p}is s*g-a-proper if and only if X is a compact space.

Proof: It is obvious.

3.12 Definition: If the function f : (X, t) — (Y, t’) is s*g-a-proper and (X,t)isa T,-space, then fis called an
s*g-a-perfect function.

3.13 Corollary: Every s*g-a-perfect function is an s*g-a-proper function.
3.14 Remark: The converse of corollary (3.13) may not be true in general. Consider the following example:

3.15 Example: Let f: (R, 1) = (R, 15.) be the identity function, where T be the cofinite topology on
R . Then f is an s*g-a-homeomorphism and by corollary (3.8), f is s*g-a-proper. Since (R, 7 ) isnota T,-
space, then f is not an s*g-a-perfect function.

3.16 Theorem: Let (X,1),(Y,t") and (Z,1") be topological spaces, and f : X — Y ,g:Y — Z be continuous
functions. Then:

i) If fis proper and g is s*g-a-proper, then gof is s*g-a-proper.

ii) If gof is s*g-a-proper and f is onto, then g is s*g-a-proper.

iii) If gof is s*g-a-proper and g is one-to-one and s*g-a-irresolute, then f is s*g-a-proper.

Proof:

i) It is clear that gof:X —Z is a continuous function. Let (X4)4p be @ net in X such that
(g0f)(Xd)ﬂ>ZeZ. Since g is an s*g-a-proper function and g(f(xd))&)z, then by
theorem (3.10), there is a point y € Y such that f(x4) <y and g(y) =z. Since fis a proper function,
then by [3], there is a point X € X such that x4 «cx and f(x) =y . Hence there is x € X such that
Xgqocxand (gof)(x) =g(f(x)) =g(y) =z. Thus gof : X — Z is an s*g-a-proper function.

ii) Let (Yq)gep beanetinY such that g(yd)%z e Z.Since (Yq)gep iS @ netinY and f is
onto, then there is anet (X4)gep IN X such that f(xy) =Yy, VdeD. Hence g(f(xq)) =
(9of)(xq) — 9%, 7. Since gof is s*g-o-proper, then by theorem (3.10), there is a point x e X
such that x4 cx and (gof)(x)=z. Since f is continuous, then by ([10], theorem (11.8)),
f(xq) oc T(X) . Hence there is a point f(x) € Y such that y, oc f(x) and g(f(x)) =(gof)(X)=z. Thus
g:Y — Z is an s*g-a-proper function.

iii) Let (Xq)gep e @ net in X such that f(xd)%ye Y . Since g is s*g-a-irresolute, then by
proposition (1.24), g(f (xd))%g(y) . But gof is s*g-a-proper, then by theorem (3.10), there
isa point x € X such that x4 ocxand (gof)(x) =g(y). Since (gof)(x) =9g(f(x)) = g(y) and since
g is one-to-one, then f(x) =y . Thus f: X — Y isan s*g-a-proper function.

3.17 Corollary: Let (X,t) and (Y,t) be topological spaces. If f: X — Y is an s*g-a-proper function, then the
restriction of f to a closed subset F of X is an s*g-a-proper function of Finto Y.

Proof: Since F is a closed set in X, then the inclusion function i :F— X is a proper function. Since
f: X — Yis an s*g-a-proper function, then by theorem ((3.16),(i)), f o 1z : F— Y is an s*g-a-proper function.
But foi=f|F, thus the restriction function f|F:F— Y isan s*g-a-proper function.
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3.18 Corollary: Let (X,t) and (Y,t') be topological spaces. If f: X — Y is an s*g-a-perfect function, then the
restriction of f to a closed subset F of X is an s*g-a-perfect function of Finto Y.

Proof: It is obvious.

3.19 Proposition: Let (X,t)and (Y,1’) be topological spaces and f : X — Y be an s*g-a-proper function. Then
for each open subset T of Y, the function f :f71(T) > T which agrees with f on f *(T) is also s*g-a-proper.

Proof: Since f:X — Y is continuous, then so is f; . To prove that f; xI, A YT)xZ—>TxZ is s*g-o-
closed for every topological space Z. Since f is s*g-a-proper, then fxI,:XxZ —YxZ is s*g-a-closed for
every topological space Z. Since f;xl,=(fxl,)r and TxZ is an open subset of YxZ, then by

proposition (2.11), f; x 1, is an s*g-a-closed function. Thus f; £ 71(T) > T is an s*g-a-proper
function.

3.20 Corollary: Let (X,t)and (,1’) be topological spacesand f : X — Y be an s*g-a-perfect function. Then
for each open subset T of Y, the function f; :f ™(T) — T which agrees with fon f ™(T) is also s*g-a-perfect.

Proof: It is obvious.

3.21 Proposition: If f; : X; —Y; is a proper function and f, : X, — Y, is an s*g-a-proper function. Then
T xfy 1 Xy x X, —> Y, %Y, is an s*g-a-proper function.

Proof: Let Z be any topological space. We can write f, xf, x1; by the composition of Iy, xf, x1, and
fyx 1y, x17 . Since f, is proper, then f; x1, x1; is closed. Since f, is s*g-a-proper,then Iy xf, x1;
is s*g-a-closed, hence by theorem ((2.9),(i)), (Iy, xf; x 1) o (fy x 1y x 1) is s*g-o-closed. But f; xf, x 1,
=(ly, xfy x1z) o (fy <1y, x17) = f; xf, x1; is s*g-a-closed. Thus f, xf,

is an s*g-a-proper function.

3.22 Theorem: Let f, : X; = Y; and f, : X, — Y, be functions such that f; xf, : X; x X, - Y; xY,
is an s*g-a-proper function. Then f; and f, are s*g-a-proper.

Proof: Let Z be any topological space. To prove that f, x1, : X, xZ —> Y, xZ is s*g-o-closed. Let F be a
closed set in X, xZ and G =(f, x1;)(F). To prove that G is s*g-a-closed in Y, xZ. Since X; # ¢, then
X, xF is closed in X;xX,xZ. Since f; xf, is s*g-a-proper, then (f; xf, x1,)(X;xF)=

s*g0

f,(X1)xG iss*g-a-closed in Y; xY, xZ ie. f(X;)xG < f;(X;)xG . But by proposition (1.9), we have

s*go geo . s*ge ___s*go

f(X;) x G c L(X)xG < f(X)xG = G <G. Hence by proposition (1.5),
G = (f, x1;)(F) is an s*g-a-closed set in Y, x Z. Therefore f, x|, is an s*g-a-closed function. Thus f, is an
s*g-a-proper function. By the same way we can prove that f; is an s*g-a-proper function.

3.23 Proposition: If X is any compact topological space and Y is any topological space, then the projection
pr, : XxY — Y is an s*g-a-proper function.

Proof: pr, factorizes into Xx Y —Y xX—" 5y where h(x,y) = (y,x) . h is a homeomorphism, hence

h is proper. Since X is a compact space, then by corollary (3.11), f:X —>{p} is s*g-a-proper, since

Iy xf

Iy 1Y > Yis proper, then by proposition (3.21), YxX———Y x{p}= Y is s*g-a-proper. Therefore by
theorem ((3.16),(i)), pr, = (Iy xT) o his an s*g-a-proper function.
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Now, we shall explain the relationships between the s*g-a-proper functions and the s*g-a-compact
functions.
3.24 Proposition: Every s*g-a-proper function is an s*g-a-compact function.
Proof: Let f: (X,t) = (Y,1') be an s*g-a-proper function. To prove that f is an s*g-a-compact function.
Let K be an s*g-a-compact subset of Y and let {U} .. be any open cover of f1(K). Since f is an s*g-
o-proper function, then by theorem (3.10), f (k) is a compact setin X foreach k e K.But f (k) =

N N
f 1K) < UU& thus there exists n , such that f_l(k)EUUai . LetU, :LJU(Xi ,thusf (k) c U, .

aeA i=1 i=1

Notice that for each ke K, ke (Y\f(X\U,)). Hence Kc U(Y\f(X\Uk)),but K is an s*g-a-
keK

compact set in Y and the sets (Y \f(X\U,)) are s*g-o-open. Thus there exists ki, k5,....k; such that

j i
Kc U(Y \ (XN Uy, )) . Hence f 1(K) < U Uy, - Therefore f *(K) is a compact set in X. Hence the

a=1 o=1

function f: (X, 1) — (Y, ') is an s*g-a-compact function.
The converse of proposition (3.24) may not be true in general. Consider the following example:

3.25 Example: Let f : (R,1) > (R, 1) be a function from the usual topological space (R, 1) to a topological
space (R, 1), where ©={d, R,{0}}such that f(x) =x for each x e R . Then f is not an s*g-a-proper function,
since {0} is a closed set in (R, ) , but f({0}) ={0}is not an s*g-a-closed set in (R, t). While fis an s*g-a-
compact function.

3.26 Proposition: Let f: (X,1) — (Y,t") be a continuous function such that Y is an s*g-a-K-space. Then f is
an s*g-a-proper function if and only if f is an s*g-a-compact function.

Proof: = By proposition (3.24), every s*g-a-proper function is an s*g-a-compact function.
Conversely, since f is an s*g-a-compact function and {y} is an s*g-a-compact set in Y, then by definition

(2.16),f’1(y) is a compact set in X for each y € Y. Now, to prove that f is an s*g-a-closed function. Let F be a
closed set in X, to prove that f(F) is an s*g-a-closed set in Y. Suppose that K is an s*g-a-compact set in Y, then

f 1(K) is a compact set in X. But FNf(K) is a compact set in X and f is continuous, then by ([10], theorem

(17.7)), f(FNf1(K)) is acompact setin Y. Since f(FNf 1(K)) = f(F) N K, then f(F) K is a compact set in
Y. Therefore by definition (1.19), f (F) is a compactly s*g-a-closed set in Y. Since Y is an s*g-a-K-space, then by
definition (1.21), f(F) is an s*g-a-closed set in Y. Thus by theorem (3.10), f is an s*g-a-proper function.
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