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Abstract 

           In this paper we introduce a new class of  functions  in topological spaces, namely, s*g-α-proper 

functions. Also,  we  study  the basic properties and characterizations of  these functions. One of the most  

important of equivalent definitions to the s*g-α-proper functions gives by using s*g-α-limit points of nets. 

Moreover we define and study s*g-α-perfect functions and s*g-α-compact functions in topological spaces and  

we  study  the relation  between  s*g-α-proper functions  and  each of proper functions, s*g-α-perfect functions, 

closed functions, s*g-α-closed functions and s*g-α-compact  functions and we give an example when the 

converse may not be true. 
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Introduction 

 

         Levine, N. [6] introduced the concept of semi open sets. Also,  Khan, M. and et.al. [5] introduced and 

investigated s*g-open sets by using the concept of semi-closed sets. Mahmood, S. and Tareq, J. [7] we 

introduced and study s*g-α-open sets and we can prove that the family of all s*g-α-open subsets of    a 

topological space ),X(  from a topology on X which is finer than  . The purpose of this paper is to introduce a 

new class of functions, namely, s*g-α-proper functions. We give the definition by depending on the definition of 

s*g-α-closed functions. Also, we give useful characterizations of s*g-α-proper functions. The second equivalent 

definition to s*g-α-proper functions by using s*g-α-limit points of nets is more interesting than the first 

equivalent definition. Moreover we study the relation between s*g-α-proper functions and certain types of 

functions such as proper functions, s*g-α-perfect functions, closed functions, s*g-α-closed functions and s*g-α-

compact functions and we give an example when the converse may not be true. Recall that a subset A of a 

topological space ),X(  is called a semi-open set if there exists an open subset U of X such that 

)U(clAU  [6]. The complement of a semi-open set is said to be semi-closed [6]. An s*g-open set is also 

called ĝ-open [9], s*-open [2] and w-open [8]. 

 

        1. Preliminaries 

 

1.1 Definition [5]: A subset A of a topological space ),X(  is called s*g-open if oAF   whenever  

AF and F is semi-closed in X. The complement of an s*g-open set is defined to be s*g-closed. 

 

        1.2 Definition [5]: Let ),X(  be a topological space and XA  . Then:  

        i) The s*g-closure of A, denoted by 
g*s

A  is the intersection of all s*g-closed subsets of X  which contains A. 

        ii) The s*g-interior of A, denoted by go*sA  is the union of all s*g-open subsets of X which are contained in A. 

 

1.3 Definition[7]: A subset A of a topological space ),X(   is called an s*g-α-open set if 

o

g*s
oAA  . The 

complement of an s*g-α-open set is defined to be s*g-α-closed. The family of all s*g-α-open subsets of X is 

denoted by  g*s . 

1.4 Definition [7]: A subset A of a topological space ),X(  is called an s*g-α-neighborhood of a point    x   in  X   

if  there  exists  an  s*g-α-open  set  U  in  X   such  that AUx  . The  family  of  all  s*g-α- 

neighborhoods of a point Xx  is denoted by )x(N g*s  . 

 

1.5 Proposition [7]: Let ),X(  be a topological space and B be a subset of X. Then B is s*g-α-closed in X if and 

only if  BB

go*s

 . 

 

        1.6 Definition [7]: Let ),X(   be a topological space and XA  . Then the s*g-α-closure of A, denoted by   

       
g*s

A  is the intersection of all s*g-α-closed subsets of X which contains A. 
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       1.7 Theorem [7]: Let ),X(  be a topological space and XB,A  . Then: 

        i) AAA
g*s




  

        ii) 
g*s

A  is an s*g-α-closed set in X . 

        iii) If BA  , then  



g*sg*s

BA . 

        iv) A is s*g-α-closed  iff  AA
g*s




. 

        v) 






g*s

g*s
g*s

AA . 

        vi) 



g*s

Ax  iff  for every s*g-α-open set U containing x, AU . 

       

       1.8 Proposition: Let ),X(  be a topological space and Y be an open subspace of X. If A is an s*g-α-closed set  

       in X, then YA  is an s*g-α-closed set in Y. 

 

       1.9 Proposition: Let ),X(  and ),Y(  be topological spaces. If XA  and YB  . Then if BA is an s*g-α- 

       closed set in YX , then A and B are s*g-α-closed sets in X and Y respectevely. 

 

       Proof: It is obvious. 

 

1.10 Definition [7]: Let ),X(  and ),Y(  be topological spaces. A function YX:f  is called s*g-α-irresolute if the 

inverse image of every s*g-α-open subset of Y is an s*g-α-open subset of X. 

 

1.11 Proposition [7]: Let ),X(  and ),Y(  be topological spaces. A function YX:f  is s*g-α-irresolute if the 

inverse image of every s*g-α-closed subset of Y is an s*g-α-closed subset of X. 

 

     1.12 Definition [4]: Let ),X(  and ),Y(  be topological spaces. A function YX:f  is called compact if the  

     inverse image of every compact set in Y is a compact set in X. 

 

     1.13 Definition: A family }U{ of s*g-α-open sets in a topological space ),X(  is called an s*g-α-open cover  

     of a subset A of X if 


 UA . 

     1.14 Definition: A topological space ),X(  is called an s*g-α-compact space if every s*g-α-open cover of X has  

     a finite subcover. 

 

     1.15 Definition: A subset A of a topological space ),X(  is called s*g-α-compact if every cover of A by s*g-α- 

     open subsets of X has a finite subcover. 

 

     1.16 Proposition: Every s*g-α-compact space is a compact space. 

 

        The converse of proposition (1.16) is not true in general as shown by the following example: 

1.17 Example: Let X  be  any infinite set and Xp , then }}p{,,X{  is a topology on X. Notice  that  

),X(  is a compact space. However, it is not an s*g-α-compact space, because }Xx:}x,p{{  is an s*g-α-open 

cover of X which has no finite subcover. 

 

1.18 Proposition: The s*g-α-irresolute image of an s*g-α-compact space is s*g-α-compact. 

 

Proof: It is obvious. 

 

1.19 Definition: A subset F of a topological space ),X(  is called compactly s*g-α-closed if KF is      a 

compact set in X for each s*g-α-compact set K in X. 

 

         Clearly every s*g-α-closed subset of a topological space ),X(  is compactly s*g-α-closed. But the converse 

is not true in general as shown by the following example: 
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1.20 Example: Let }c,b,a{X  and }}a{,X,{ be a topology on X. Therefore the sets in },b{,,X{   

}}c,b{},c{ are s*g-α-closed in X. Thus }a{ is a compactly s*g-α-closed set in X, but is not s*g-α-closed. 

 

1.21 Definition: A topological space ),X(  is called an s*g-α-K-space if every compactly s*g-α-closed subset of 

X is s*g-α-closed. 

 

1.22 Definition: Let Ddd )x(  be a net in a topological space ),X(  . Then Ddd )x(   s*g-α-converges to 

Xx (written xx
g*s

d  


) if for each s*g-α-neighborhood U of x, there is some Dd0   such that 0dd   

implies Uxd  . This is sometimes said Ddd )x(   s*g-α-converges to x if Ddd )x(   is eventually in every s*g-α-

neighborhood of x. The point x  is called an s*g-α-limit point of Ddd )x(  . 

  

1.23 Proposition: Let ),X(  be a topological space and XA  . If x is a point of X, then 



g*s

Ax  if and only 

if there exists a net Ddd )x(   in A such that xx
g*s

d  


. 

 

Proof:   Suppose that   a net Ddd )x(   in A such that xx
g*s

d  


. To prove that 



g*s

Ax . Let 

)x(NU g*s  , since xx
g*s

d  


  Dd0   such that Uxd  , 0dd  . But Axd  , Dd    

AU  , )x(NU g*s  . Hence by theorem ((1.7),(vi)), we get 



g*s

Ax . 

        Conversely, suppose that 



g*s

Ax . To prove that   a net Ddd )x(   in A such that xx
g*s

d  


. Since 




g*s
Ax , then by theorem ((1.7),(vi)), we get AN , )x(NN g*s  . Hence )x(ND g*s   is  a  

directed  set  by  inclusion. Since AN , )x(NN g*s    ANx N  . 

Define A)x(N:x g*s   by: Nx)N(x  , )x(NN g*s  . Thus )x(NNN g*s
)x(

  is a net in A. To prove 

that xx
g*s

N  


. Let )x(NU g*s   to find Dd0   such that Uxd  , 0dd   . Let Ud0     

0dd      )x(NMd g*s   i.e. UMUM   )M(x)d(xxd  MAMx M    

U   UxM     Uxd  , 0dd   . Thus xx
g*s

N  


. 

 

1.24 proposition: Let ),X(   and ),Y(   be topological spaces. A function YX:f  is s*g-α-irresolute iff  

whenever Ddd )x(   is a net in X  such that xx
g*s

d  


, then )x(f)x(f
g*s

d  


in Y. 

 

Proof: It is obvious. 

 

1.25 Definition [3]: Let ),X(  and ),Y(  be topological spaces, and YX:f   be a function. Then f is called a 

proper function if:  

i) f is a continuous function. 

ii) ZYZX:If Z   is closed for every topological space Z. 

 

2.  Properties of s*g-α-Closed Functions 

       In this section we introduce a new definition (to the best of our knowledge), namely, s*g-α-closed functions which 

is weaker than closed functions, and prove some of the results which relate to this concept. Also, we explain the 

relationship between an s*g-α-closed function and an s*g-α-compact function. 

2.1 Definition: Let ),X(  and ),Y(  be topological spaces. A function YX:f  is called an s*g-α-closed (resp. s*g-

α-open) function if the image of every closed (resp. open) subset of X is an s*g-α-closed (resp. s*g-α-open) set in Y. 

2.2 Examples: 

    i)  Let ),(),(:f   be a function which is defined by:  x,0)x(f . Then f is an s*g-α-closed 

        function. 
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    ii) If F is an s*g-α-closed (not closed) set in X, then the inclusion function XF:F  is s*g-α-closed, but is not   

         a closed function. 

 

     Since every closed set is an s*g-α-closed set, then we have the following proposition. 

 

2.3 Proposition: Every closed function is an s*g-α-closed function. 

 

          The converse of proposition (2.3) may not be true in general as shown by the following example. 

 

2.4 Example: Let }d,c,b,a{X   and  }z,y,x{Y   be  sets  and   let  {  ,X, }c,b,a{ , }c,b{ , }a{ } and 

}}x{,Y,{ be topologies on X and Y, respectively. So the sets in }}d,c,b{},d,a{},d{,,X{  are closed   in X. 

Also, the sets in }}y{},z{},z,y{,,Y{  are s*g-α-closed sets in Y. Define the function YX:f   by: 

z)c(f)a(f  , x)b(f   and y)d(f  . Notice that  f  is  an  s*g-α-closed function. But f is not a closed 

function, since }d{  is a closed set in X, but }y{})d({f  is not a closed set in Y. 

 

2.5 Theorem: Let ),X(  and ),Y(  be topological spaces. A function YX:f  is s*g-α-closed if and only if for each 

subset B of Y and each open subset U of X containing )B(f 1 , there exists an s*g-α-open set V in Y containing B such 

that U)V(f 1  . 

 

Proof:   Suppose that B is an arbitrary subset of Y and U is an arbitrary open subset of X containing )B(f 1 . 

Put )UX(fYV  . Then by definition (2.1), V is an s*g-α-open set in Y.  Since U)B(f 1    

 )BY(fUX 1     BY)UX(f   )UX(fYB    VB and U)V(f 1  .  

         Conversely, Let F be any closed set in X. Put )F(fYB  , then we have FX)B(f 1  . Since FX  is 

an open set in X, then by hypothesis there exists an s*g-α-open set V in Y such that VB and FX)V(f 1  . 

Therefore, we obtain VY)F(f  and hence )F(f is an s*g-α-closed set in Y. This shows that f is an s*g-α-

closed function. 

 

2.6 Proposition: Let ),X(  and ),Y(  be topological spaces. A function YX:f  is s*g-α-closed if and only  

if )A(f)A(f
g*s




 for each XA  . 

 

Proof:   suppose that YX:f  is an s*g-α-closed function. Since )A(f)A(f  and A  is a closed set in X,  

then )A(f is s*g-α-closed  in Y. Therefore  )A(f)A(f)A(f
g*sg*s




. Hence )A(f)A(f
g*s




  for each  

XA  .  Conversely, assume that )A(f)A(f
g*s




  for each XA  . Let F be a closed subset of X, thus by  

hypothesis  )F(f)F(f)F(f
g*s




. But 



g*s

)F(f)F(f , then 



g*s

)F(f)F(f . Hence )F(f  is an s*g-α- 

closed set in Y. Thus YX:f  is an s*g-α-closed function. 

 

2.7 Proposition: Let ),X(  and ),Y(   be topological spaces. A bijective function YX:f  is an s*g-α- 

closed function if and only if f is an s*g-α-open function.  

 

Proof:   Let YX:f  be a bijective s*g-α-closed function and U be an open subset of X, thus 
cU  is closed.  

Since  f  is  s*g-α-closed, then )U(f c  is s*g-α-closed in Y, thus cc ))U(f(  is  s*g-α-open. Since  f  is a bijective  

function, then )U(f))U(f( cc  , hence )U(f is an s*g-α-open set in Y. Therefore f is an s*g-α-open function. 

         Conversely, let YX:f   be  a bijective  s*g-α-open function and  F  be a closed subset of X, thus cF  is  

open. Since f is s*g-α-open, then )F(f c
is s*g-α-open in Y, thus 

cc ))F(f(  is s*g-α-closed. Since f  is a bijective  

function, then cc ))F(f( )F(f , hence )F(f  is an s*g-α-closed set in Y. Therefore f is an s*g-α-closed function. 

 

2.8 Proposition: Let ),X(  and ),Y(  be topological spaces and YX:f  be a function. If )A(f)A(f
g*s



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for each XA  , then f is a continuous s*g-α-closed function.  

 

Proof:  To  prove  that YX:f  is  an  s*g-α-closed function. Let F be a closed subset of X, then FF  . By  

hypothesis )F(f)F(f)F(f
g*s




, hence )F(f is an s*g-α-closed set in Y.  Therefore YX:f  is an s*g-α- 

closed function. Now, to prove that f is a continuous function. Since )A(f)A(f)A(f
g*s




  for each XA  ,  

thus by ([10], theorem (7.2)), YX:f   is a continuous function. 

 

2.9 Theorem: Let ),X(  , ),Y(  and ),Z(   be three topological spaces and YX:f  , ZY:g   be two  

functions. Then: 

i) If  f is closed and g is s*g-α-closed, then fg  is s*g-α-closed. 

ii) If fg  is s*g-α-closed and f is continuous and onto, then g is s*g-α-closed. 

iii) If fg  is s*g-α-closed and g is one-to-one and s*g-α-irresolute, then f is s*g-α-closed.  

 

Proof:  

i) To prove that ZX:fg   is  an  s*g-α-closed  function. Let F be  a closed  subset of X. Since f  is    

   closed, then )F(f  is  a closed set in Y. But g  is an  s*g-α-closed  function, then ))F(f(g is  an  s*g-α- 

   closed set in Z, hence )F)(fg(   is  an  s*g-α-closed set in Z. Thus ZX:fg   is  an  s*g-α-closed  

   function. 

ii) To prove that ZY:g   is  an  s*g-α-closed  function. Let F be a closed subset of Y, since f  is 

     continuous, then )F(f 1 is a closed set in X. Since fg  is s*g-α-closed, then  ))F(f)(fg( 1  

    ))F(ff(g 1  is an s*g-α-closed set in Z. Since f is onto, then )F(g is an s*g-α-closed set in  Z.  

     Thus ZY:g   is an s*g-α-closed function. 

iii) To prove that YX:f   is an s*g-α-closed function. Let F be a closed subset of X, since fg  is s*g- 

      α-closed,  then )F)(fg(   is  s*g-α-closed  in  Z.   Since  g  is   s*g-α-irresolute,  then   ))F(fg(g 1    

     ))F(f)(gg( 1  is an s*g-α-closed set in Y. Since g is one-to-one, then )F(f is an s*g-α-closed set in Y.  

     Thus YX:f  is an s*g-α-closed function. 

 

2.10 Corollary: Let ),X(  and ),Y(  be topological spaces. If YX:f  is an s*g-α-closed function, then the  

restriction of f to a closed subset F of X is an s*g-α-closed function of F into Y. 

Proof: Since  F is a closed set in X, then the inclusion function XF:F   is a closed function. Since 

YX:f  is an s*g-α-closed function, then by  theorem ((2.9),(i)),  YF:f F   is an s*g-α-closed function. 

But F|ff F  , thus the restriction function YF:F|f  is an s*g-α-closed function.  

 

2.11 Proposition:  Let ),X(   and ),Y(   be  topological  spaces,  and  YX:f   be  an  s*g-α-closed 

function. Then for each open subset T of Y, the function T)T(f:f 1
T   which agrees with f on )T(f 1  is also 

s*g-α-closed.  

 

Proof: Let  F  be  a closed  subset  of  )T(f 1 ,  then  there  is  a closed  subset  1F  of  X  such  that F  

)T(fF 1
1

 .  Since T)F(f)F(f 1T   and )F(f 1 is s*g-α-closed in Y and T is an open subset of Y, then by 

proposition  (1.8), T)F(f 1   is an s*g-α-closed set in T .Thus Tf  is an s*g-α-closed function.  

 

2.12 Remark:  If  YX:f   is  an  s*g-α-closed  function  and  YT   is  not  an  open  set. Then 

T)T(f:f 1
T 

 is not necessarily an s*g-α-closed function as the following example shows.  

 

2.13 Example: In example (2.4), let }z,y{T  , notice  that  T is  not  open in  Y  and }T,{T  , then 

}d,c,a{)T(f 1    and  }}c,a{},c{},a{,),T(f{ 1

)T(f 1  
 .  Define  the  function T)T(f:f 1

T    by: 

http://www.iiste.org/


Mathematical Theory and Modeling                                                                                                                                                  www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.5, No.1, 2015 

 

 74 

)x(f)x(fT  , )T(fx 1 . Notice that the subset }d{  of )T(f 1  is closed in )T(f 1 , but }y{})d({fT   is not 

an s*g-α-closed set in T, since }y{T)))}y{((( T
go*s

TT  .  Thus Tf is not an s*g-α-closed function. 

 

       The product of two s*g-α-closed functions is not necessarily an s*g-α-closed function as shown by the 

following example:  

 

2.14 Example: Let ),(),(:f1   be a function which is defined by: ,0)x(f1   x . And  let 

),(),(:I   be a function which is defined by: ,x)x(I   x  where I is the identity function 

on  .  Clearly 1f  and I  are s*g-α-closed functions, but   :If1  such that 

)y,0()y,x)(If( 1   for each )y,x(  is not an s*g-α-closed function, since the set  )y,x{(A  

}1yx:  is closed in  , but }0/{}0{)A)(If( 1   is not s*g-α-closed in  . 

 

2.15 Theorem: Let 111 YX:f   and 222 YX:f   be two functions. If 212121 YYXX:ff   is s*g-α-

closed, then 1f  and 2f  are also s*g-α-closed functions. 

 

Proof: Suppose that 212121 YYXX:ff   is an s*g-α-closed function. To prove that 111 YX:f   is s*g-

α-closed. Let F be a closed subset of 1X , to prove that )F(f1 is an s*g-α-closed set in 1Y . Suppose that   

)F(fG 1      2XF    is   a   closed    set    in  21 XX  .   Since  21 ff    is   s*g-α-closed,  then 

 )XF)(ff( 221 )X(f)F(f 221  )X(fG 22  is  s*g-α-closed  in 21 YY    i.e.  

go*s

)X(fG 22   

)X(fG 22 . But by proposition (1.9), we have: 

go*s

G 
g*s

)X(f 22 
g*s

)X(fG 22  )X(fG 22    

GG

go*s

 .  Therefore by proposition (1.5), )F(fG 1  is an s*g-α-closed set in 1Y .  Thus 1f  is an s*g-α-

closed function. By the same way we can prove that 2f is an s*g-α-closed function. Thus 1f  and 2f  are s*g-α-

closed functions. 

 

       2.16 Definition: Let ),X(  and ),Y(  be topological spaces.  A function YX:f  is called s*g-α-compact if  

       the inverse image of every s*g-α-compact set in Y is a compact set in X. 

 

       2.17 Proposition:Let ),X(  , ),Y(   and ),Z(    be three topological spaces and YX:f  , ZY:g   be two  

       functions. Then: 

       i) If f is compact and g is s*g-α-compact, then fg   is s*g-α-compact. 

       ii) If fg   is s*g-α-compact and f is continuous and onto, then g is s*g-α-compact. 

       iii) If fg  is s*g-α-compact and g is s*g-α-irresolute and one-to-one, then f is s*g-α-compact. 

 

   Proof: The proof is similar of theorem (2.9). 

   

   2.18 Remark: s*g-α-closed function and s*g-α-compact function are in general independent. Consider the  

   following examples: 

 

   2.19 Examples:(i) Let }c,b,a{YX   and  }}c,a{,X,{ and  }}b{,Y,{ , and  let ),Y(),X(:f    

   be a function which is defined by: a)c(f)a(f   and b)b(f  . Since X and Y are finite spaces, then )K(f 1 is   

   a compact set in X for each s*g-α-compact subset K of Y. Hence f is an s*g-α-compact function, but f is not  an   

   s*g-α-closed function, since }b{  is  a closed  set in X, but }b{})b({f   is  not  an s*g-α-closed  set  in Y,  since   

   }b{Y}b{
go*s

 . 

    (ii) Let ),(  be the usual topological space and let ),(),(:f   be a function which is defined by:  

          x,0)x(f . Then f is an s*g-α-closed function, but f is not an s*g-α-compact function, since }0{  

         is an s*g-α-compact set in  , but  })0({f 1  is  not compact in .     
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   2.20 Proposition: Let ),X(  be a topological space and ),Y(   be an s*g-α-K-space. Then every continuous  

   s*g-α-compact function YX:f   is an s*g-α-closed function. 

 

   Proof: Let F be a closed set in X, to prove that )F(f  is an s*g-α-closed set in Y. Let K be an s*g-α-compact set    

   in Y. Since f is an s*g-α-compact function, then )K(f 1 is a compact set in X. Since )K(fF 1 is a compact set  

   in X and f is continuous, then by ([10], theorem (17.7)), ))K(fF(f 1 is a compact set in Y. But ))K(fF(f 1  

  K)F(f  , thus K)F(f  is a compact set in Y. Therefore by definition (1.19), )F(f is a compactly s*g-α-closed  

  set in Y. Since Y is an s*g-α-K-space, then by definition (1.21), )F(f  is  an s*g-α-closed set in Y. Hence f  is  an   

  s*g-α-closed function. 

 

  2.21 Proposition: Any one-to-one s*g-α-closed function is an s*g-α-compact function. 

 

   Proof: Let ),Y(),X(:f   be a one-to-one s*g-α-closed function and K be an s*g-α-compact set in Y. To   

   prove that )K(f 1 is a compact set in X. Let }U{  be any open cover of )K(f 1 , then 



  U)K(f 1 and  

   U is an open set in X for each  . Hence )K(fX)U( 1c 



  , therefore )KY(fU 1c  



 . Since  

    f is a one-to-one function, then  KY))KY(f(f)U(f)U(f 1cc  







    )U(fY(K c




 . 

    Since f is an s*g-α-closed function and cU  is a closed set in X for each  , then )U(f c
 is an s*g-α-closed   

    set in Y  for each  . Thus  )}U(fY{ c  is an s*g-α-open cover of K. Since K is s*g-α-compact, then   

   n
1i

c )}U(fY{
i     is   a  finite   subcover   of    )}U(fY{ c    i.e.   )U(fY(K

n

1i

c

i


        )K(f 1  

   )))U(f(fX(

n

1i

c1

i



 

n

1i

i
U



 . So, n
1i}U{

i   is a finite subcover of }U{  . Hence )K(f 1 is a compact set    

   in X . Thus YX:f   is an s*g-α-compact function. 

   2.22 Corollary: Let ),X(   be a topological space and ),Y(   be an s*g-α-K-space. Then a one-to-one   

   continuous function YX:f   is an s*g-α-closed function if and only if f is an s*g-α-compact function. 

 

   Proof: It is obvious. 

 

   2.23 Definition: Let ),X(  and ),Y(  be topological spaces. A function YX:f  is called an s*g-α-  

   homeomorphism if: 

   i) f is bijective. 

   ii) f is continuous. 

   iii) f is s*g-α-closed (resp. s*g-α-open). 

 

    3.  Properties of s*g-α-Proper Functions 

           In this section we introduce a new definition (to the best of our knowledge), namely, s*g-α-proper functions. 

Also, we study the basic properties and characterizations of these functions. Moreover we study the relation between 

s*g-α-proper functions and certain types of functions such as proper functions, s*g-α-perfect functions, closed 

functions, s*g-α-closed functions and s*g-α-compact functions. 

 

        3.1 Definition: Let ),X(  and ),Y(  be topological spaces, and YX:f   be a function. Then f is called an  

        s*g-α-proper function if:  

        i) f is a continuous function. 

    ii) ZYZX:If Z   is s*g-α-closed for every topological space Z. 

 

   3.2 Examples: 

   i) Let ),(),(:f  be a function which is defined by:  x,0)x(f . Notice that f is an s*g-α- 
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       closed function, but f  is  not s*g-α-proper, since for the usual topological  space ),(  , the  function    

       :If  such that )y,0()y,x)(If(   for each )y,x(  is not an s*g-α-closed  

      function. 

ii) An inclusion function XF:F   is s*g-α-proper if and only if F is an s*g-α-closed set in X. 

 

       Since every closed function is an s*g-α-closed function, then we have the following proposition: 

 

    3.3 Proposition: Every proper function is an s*g-α-proper function. 

 

           The converse of proposition (3.3) may not be true in general as shown by the following example:  

 

    3.4 Example: Let }c,b,a{YX  and  let }X},c,a{},a{,{  and }Y},a{,{ be topologies on X and  

    Y, respectively. Define the function YX:f   by: a)a(f  , b)b(f   and c)c(f  . Therefore f is an s*g-α- 

    proper function, but f is not a proper function, since f is not a closed function. 

 

    3.5 Proposition: Every s*g-α-proper function is an s*g-α-closed function. 

 

    Proof: Let YX:f  be an s*g-α-proper function, then the function ZYZX:If Z   is s*g-α-closed for  

each topological space Z. Let }t{Z  , then X}t{XZX   and Y}t{YZY   and  we  can replace 

ZIf   by  f . Thus YX:f   is an s*g-α-closed function. 

 

    3.6 Remark: The converse of proposition (3.5) may not be true in general. Observe that in examples ((3.2),(i)) 

    , ),(),(:f  is an s*g-α-closed function, but is not an s*g-α-proper function. 

 

   3.7 Theorem: Let ),X(  and ),Y(  be topological spaces, and  YX:f  be a continuous, one-to-one 

function. Then f is an s*g-α-proper function if and only if f is an s*g-α-closed function. 

  

Proof:   By proposition (3.5) . 

        Conversely, assume that YX:f   is an s*g-α-closed function. To prove that f is s*g-α-proper i.e. to 

prove that ZYZX:Ifh Z   is s*g-α-closed for every topological space Z. Let C be any closed set in 

ZX . To prove that D)C(h   is an s*g-α-closed set in ZY . Let cD)s,y(      )D(h)s,y(h c11     

)D(h)s,y()If( c11
Z

   )D(h)s,y)(If( c11
Z

1    c1 C}s{)y(f  ,  

where cC  is an open set in ZX . Since f is a one-to-one s*g-α-closed function, then by proposition (2.21), 

)y(f 1  is a compact set in X. Hence by ([10], theorem (17.6)) there are open sets U in X and V in Z such that 

c1 CVU}s{)y(f    U)y(f 1   and V}s{  . Since f and ZI  are s*g-α-closed, then by theorem 

(2.5), there are s*g-α-open sets U  in Y and V  in Z such that U}y{  , V}s{  , U)U(f 1   and 

V)V(I
1

Z 


  cDVU)s,y(     cD  is an s*g-α-open set in ZY    D is an s*g-α-closed in 

ZY . Hence ZYZX:If Z  is an s*g-α-closed function. Thus YX:f   is an s*g-α-proper function. 

 

3.8 Corollary: Every s*g-α-homeomorphism is an s*g-α-proper function. 

 

              The converse of corollary (3.8) may not be true in general as shown by the following example:  

 

3.9 Example: Let ),()],1,0([:f   be a function which is defined by: x)x(f  , ]1,0[x  where   is 

the relative usual topology on [0,1]. Clearly that f is an s*g-α-proper function, but is not s*g-α-homeomorphism. 

 

3.10 Theorem: Let ),X(   and ),Y(   be topological spaces, and YX:f   be a continuous, function. Then 

the following statements are equivalent: 

i) f is an s*g-α-proper function. 

ii) f is an s*g-α-closed function and )y(f 1 is a compact set in X for each Yy . 

iii)  If Ddd )x(   is a net in X and Yy  is an s*g-α-limit point of the net Ddd ))x(f(   , then there is a   

      cluster point Xx  of Ddd )x(   such that y)x(f  . 
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Proof: )iii(  .  If f is an s*g-α-proper function, then by proposition (3.5), f is an s*g-α-closed function. Also, 

by ([1], theorem (3.1.12)),  )y(f 1 is a compact set in X  for each Yy .  

)iiiii(  .  Let Ddd )x(   be a net in X and Yy be an s*g-α-limit point of a net Ddd ))x(f(   in  Y. To       

prove  that   there   is  a  cluster   point  Xx   of  Ddd )x(    such  that y)x(f  .  Claim  )y(f 1 , if   

 )y(f 1    )X(fy  c))X(f(y , since  X is a closed set in X and f is s*g-α-closed, then )X(f  is    

 an s*g-α-closed set in Y. Thus c))X(f(  is an s*g-α-open set in Y. Therefore Ddd ))x(f(   is eventually in    

c))X(f( .  But Dd),X(f)x(f d  ,   then  c))X(f()X(f  ,   and   this   is  a   contradiction.  Thus 

 )y(f 1  . 

          Now, suppose that the statement (iii) is not true, that means, for all )y(fx 1  there exists an open set 

xU  in  X  contains x  such that Ddd )x(   is not  frequently in xU .  Notice that  


 
)y(fx

1

1

}x{)y(f  
)y(fx

x
1

U


. 

Therefore  the family )}y(fx:U{ 1
x

  is an open cover of )y(f 1 . Since )y(f 1  is a compact set, then there 

exists n21 x,........,x,x  such that 
n

1i

x
1

i
U)y(f



    



 
n

1i

c
x

1 )U()y(f
i

  



 )U()y(f

n

1i

c
x

1

i . But 

Ddd )x(   is not frequently in n,...1i,U
ix  , thus Ddd )x(   is not frequently in  

n

1i

x i
U



. Since 
n

1i

x i
U



is an 

open set in X, then 
n

1i

c
x i

U



is a closed set in X. Thus 
n

1i

c
x )U(f

i



 is an s*g-α-closed set in Y.  Claim 


n

1i

c
x )U(fy

i



 , if 
n

1i

c
x )U(fy

i



 , then there exists 
n

1i

c
x i

Ux



 such that y)x(f  , thus 
n

1i

x i
Ux



 , but 

)y(fx 1 , therefore )y(f 1  is not a subset of 
n

1i

x i
U



, and this is a contradiction. Hence 
n

1i

c
x )U(fy

i



  and  

by  theorem ((1.7),(vi)), there is an  s*g-α-open  set  A  in  Y  such   that   Ay    and    




n

1i

c
x )U(fA

i
     





 ))U(f(f)A(f

n

1i

c
x

11

i    





 
n

1i

c
x

1 )U()A(f
i

 
n

1i

x
1

i
U)A(f



  . But Ddd ))x(f(   is eventually in A, then Ddd ))x(f(   is   

frequently in A, thus Ddd )x(   is frequently in )A(f 1  and then Ddd )x(   is frequently in 
n

1i

x i
U



, this is a 

contradiction. Thus there is a cluster point )y(fx 1  of Ddd )x(   such that y)x(f  . 

)iiii(  . To prove that ZYZX:If Z   is an s*g-α-closed function for every topological space  Z. Let  

F  be a closed subset of ZX  and G)F)(If( Z  . To  prove that  G  is  an s*g-α-closed  set in ZY . Let 




g*s
G)z,y( ,  then by proposition (1.23), there exists a net Dddd )}z,y{(   in  G  such that 

)z,y()z,y(
g*s

dd  


. Thus there is a net Dddd )}z,x{(   in F such that ),z,y()z,x)(If( ddddZ   Dd . 

Since )z,y())z(I),x(f(
g*s

dZd  


, then  y)x(f
g*s

d  


 and  zz
g*s

d  


, hence by hypothesis there 

is a point Xx  such that xxd   and y)x(f  . Since zz
g*s

d  


, then zzd  . Therefore xx
ud   and 

zz
ud     )z,x()z,x(

uu dd  .  Since )}z,x{(
uu dd  is a  net  in  F  and  F is   closed,  thus  by  ([10], theorem 

(11.7)),  FF)z,x(    G)z,x)(If()z,y( Z  . Thus  GG
g*s



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  



g*s

GG  . Hence G is  an  s*g-α-closed set in ZY . Therefore ZYZX:If Z  is an s*g-α-closed 

function for every topological space Z. Thus YX:f   is an s*g-α-proper function. 

 

3.11 Corollary: Let ),X(   be a topological space and }p{ be a space consisting of a single point. Then a 

function }p{X:f  is s*g-α-proper if and only if X is a compact space. 

 

Proof: It is obvious. 

 

       3.12 Definition: If the function ),Y(),X(:f  is s*g-α-proper and ),X(  is a 2T -space, then f is called an  

       s*g-α-perfect function.       

 

   3.13 Corollary: Every s*g-α-perfect function is an s*g-α-proper function. 

 

   3.14 Remark: The converse of corollary (3.13) may not be true in general. Consider the following example: 

 

   3.15 Example: Let ),(),(:f .cof.cof   be the identity function, where .cof  be the cofinite topology on    

    . Then f is an s*g-α-homeomorphism and by corollary (3.8), f is s*g-α-proper. Since ),(
..cof is not a 2T - 

   space, then f is not an s*g-α-perfect function.  

 

   3.16 Theorem: Let ),X(  , ),Y(   and ),Z(   be topological spaces, and YX:f  , ZY:g   be continuous  

   functions. Then: 

   i) If  f is proper and g is s*g-α-proper, then fg  is s*g-α-proper. 

   ii) If fg  is s*g-α-proper and f is onto, then g is s*g-α-proper. 

   iii) If fg  is s*g-α-proper and g is one-to-one and s*g-α-irresolute, then f is s*g-α-proper. 

 

          Proof:  

i)  It  is  clear  that  ZX:fg    is  a   continuous   function.  Let Ddd )x(   be  a  net   in  X  such  that  

    Zz)x)(fg(
g*s

d  
 . Since  g  is an s*g-α-proper  function  and z))x(f(g

g*s
d  


,  then  by   

    theorem (3.10), there is a point Yy  such  that y)x(f d   and z)y(g  . Since f is a proper function,  

    then by [3], there  is  a  point Xx  such that  xxd   and  y)x(f  . Hence there is Xx  such that  

   xxd  and ))x(f(g)x)(fg(  z)y(g  . Thus ZX:fg   is an s*g-α-proper function. 

ii) Let Ddd )y(   be a net in Y such that Zz)y(g
g*s

d  


. Since Ddd )y(   is  a  net in Y  and  f  is  

     onto,  then  there  is  a net  Ddd )x(    in   X  such   that  dd y)x(f  , Dd .   Hence  ))x(f(g d  

    z)x)(fg(
g*s

d  
 .  Since fg  is s*g-α-proper, then by theorem (3.10), there is a point Xx   

     such  that  xxd   and  z)x)(fg(  .  Since   f  is  continuous,  then  by  ([10],  theorem  (11.8)),     

    )x(f)x(f d  . Hence there is a point Y)x(f  such that )x(fyd  and z)x)(fg())x(f(g   . Thus  

    ZY:g   is an s*g-α-proper function. 

iii) Let Ddd )x(    be  a  net  in  X  such  that  Yy)x(f
g*s

d  


. Since g is s*g-α-irresolute, then by   

       proposition (1.24), )y(g))x(f(g
g*s

d  


. But fg  is s*g-α-proper, then by theorem  (3.10), there   

       is a point Xx  such  that xxd  and )y(g)x)(fg(  . Since )y(g))x(f(g)x)(fg(  and since 

       g is one-to-one, then y)x(f  . Thus YX:f   is an s*g-α-proper function. 

 

3.17 Corollary: Let ),X(   and ),Y(   be topological spaces. If YX:f  is an s*g-α-proper function, then the 

restriction of f to a closed subset F of  X  is an s*g-α-proper function of F into Y. 

 

Proof:  Since F is a closed set in X, then  the  inclusion function XF:F   is a proper function. Since 

YX:f  is an s*g-α-proper function,  then  by  theorem ((3.16),(i)), YF:f F  is an s*g-α-proper  function.  

But  F|ff F  ,  thus   the  restriction function YF:F|f   is an s*g-α-proper function. 
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3.18 Corollary: Let ),X(   and ),Y(   be topological spaces. If YX:f  is an s*g-α-perfect function, then the 

restriction of  f  to a closed subset  F of  X  is an s*g-α-perfect function of F into Y. 

                                                                                                                     

    Proof: It is obvious. 

 

3.19 Proposition: Let ),X(  and ),Y(  be topological spaces and YX:f  be an s*g-α-proper function. Then 

for each open subset  T of  Y, the function T)T(f:f 1
T   which agrees with f on )T(f 1  is also s*g-α-proper.  

 

Proof:  Since YX:f  is continuous, then so is Tf .   To prove that ZTZ)T(f:If 1
ZT    is s*g-α-

closed for every topological space Z. Since f is s*g-α-proper, then ZYZX:If Z   is s*g-α-closed for 

every topological space Z. Since ZTZZT )If(If   and ZT  is an open subset of ZY , then by 

proposition (2.11), ZT If   is an s*g-α-closed  function. Thus T)T(f:f 1
T   is an s*g-α-proper  

function. 

 

3.20 Corollary: Let ),X(  and ),Y(  be topological  spaces and YX:f  be an s*g-α-perfect function. Then 

for each open subset  T of  Y, the function T)T(f:f 1
T   which agrees with f on )T(f 1  is also s*g-α-perfect.  

 

    Proof: It is obvious. 

 

3.21 Proposition: If 111 YX:f   is a proper function and 222 YX:f   is an s*g-α-proper function. Then 

212121 YYXX:ff   is an s*g-α-proper function. 

 

Proof: Let  Z  be any topological space. We can  write Z21 Iff   by  the composition of Z2Y IfI
1

   and 

ZX1 IIf
2
  . Since 1f  is  proper, then ZX1 IIf

2
   is  closed.  Since 2f   is  s*g-α-proper, then   Z2Y IfI

1
   

is s*g-α-closed, hence by theorem ((2.9),(i)), )IIf()IfI( ZX1Z2Y 21
   is  s*g-α-closed. But Z21 Iff   

)IIf()IfI( ZX1Z2Y 21
    Z21 Iff   is s*g-α-closed. Thus 21 ff    

is an s*g-α-proper function. 

 

3.22 Theorem: Let 111 YX:f   and 222 YX:f   be functions such that 212121 YYXX:ff   

 is an s*g-α-proper function. Then 1f  and 2f  are s*g-α-proper. 

 

Proof: Let Z be any topological space. To prove that ZYZX:If 22Z2   is s*g-α-closed. Let F be a 

closed set in ZX2   and )F)(If(G Z2  . To prove that G is s*g-α-closed in ZY2  . Since 1X , then  

FX1   is   closed  in  ZXX 21  .  Since  21 ff    is   s*g-α-proper,  then   )FX)(Iff( 1Z21  

G)X(f 11   is s*g-α-closed in ZYY 21   i.e.  
0g*s

G)X(f 1   G)X(f 11  . But by proposition (1.9), we   have  

g*s

)X(f 11 
g*s

G 
g*s

G)X(f 11   G)X(f 11    GG
g*s




. Hence by proposition (1.5), 

)F)(If(G Z2   is an s*g-α-closed set in ZY2  . Therefore Z2 If   is an s*g-α-closed function. Thus 2f  is an 

s*g-α-proper function. By the same way we can prove that 1f  is an s*g-α-proper function. 

 

3.23 Proposition: If X is any compact topological space and Y is any topological space, then the projection 

YYX:pr2   is an s*g-α-proper function. 

 

Proof: 2pr factorizes into YXYYX
fIh Y 


, where )x,y()y,x(h  . h is a homeomorphism, hence 

h is proper. Since X is a compact space, then by corollary (3.11), }p{X:f   is s*g-α-proper, since 

YY:IY  is proper, then by proposition (3.21), Y}p{YXY
fIY  


is s*g-α-proper. Therefore by 

theorem ((3.16),(i)), h)fI(pr Y2  is an s*g-α-proper function. 
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        Now, we shall explain the relationships between the s*g-α-proper functions and the s*g-α-compact 

functions. 

   3.24 Proposition: Every s*g-α-proper function is an s*g-α-compact function. 

 

   Proof: Let ),Y(),X(:f   be an s*g-α-proper function. To prove that f  is an s*g-α-compact function.  

   Let K be an s*g-α-compact subset of Y and let }U{  be any open cover of )K(f 1 . Since f is an s*g- 

   α-proper function, then  by theorem (3.10), )k(f 1  is  a compact set in X  for each  Kk . But  )k(f 1  

   



  U)K(f 1 ,thus there exists kn such that 

k

i

n

1i

1 U)k(f




  . Let 

k

i

n

1i

k UU



 , thus k
1 U)k(f  .  

   Notice that for each Kk , ))U\X(f\Y(k k .  Hence  ))U\X(f\Y(K

Kk

k


 , but  K  is  an  s*g-α- 

  compact set in Y and the sets ))U\X(f\Y( k  are s*g-α-open.  Thus there exists j21 k,....,k,k  such that 

  ))U\X(f\Y(K

j

1

k



 . Hence 

j

1

k
1 U)K(f






 . Therefore )K(f 1  is a compact set in X. Hence the  

   function ),Y(),X(:f  is an s*g-α-compact function. 

 

       The converse of proposition (3.24) may not be true in general. Consider the following example: 

 

  3.25 Example: Let ),(),(:f   be a function from the usual topological space ),(  to a topological  

  space ),(  , where }}0{,,{  such that x)x(f   for each x . Then f is not an s*g-α-proper function,   

  since }0{  is a closed set in ),(  , but }0{})0({f  is not an s*g-α-closed set in ),(  . While f is an s*g-α- 

  compact function. 

     

  3.26 Proposition: Let ),Y(),X(:f   be a continuous function such that Y is an s*g-α-K-space. Then f is   

  an s*g-α-proper function if and only if f is an s*g-α-compact function. 

 

  Proof:  By proposition (3.24), every s*g-α-proper function is an s*g-α-compact function.   

            Conversely, since f is an s*g-α-compact function and }y{ is an s*g-α-compact set in Y, then by definition  

   (2.16), )y(f 1  is a compact set in X for each Yy . Now, to prove that f is an s*g-α-closed function. Let F be a  

  closed set in X, to prove that )F(f  is an s*g-α-closed set in Y. Suppose that K is an s*g-α-compact set in Y, then    

  )K(f 1 is a compact set in X. But )K(fF 1  is a compact set in X and f is continuous, then by  ([10], theorem    

   (17.7)), ))K(fF(f 1  is a compact set in Y. Since K)F(f))K(fF(f 1   , then K)F(f  is a compact set in    

  Y. Therefore by definition (1.19), )F(f is a compactly s*g-α-closed set in Y. Since Y is an s*g-α-K-space, then by  

  definition (1.21), )F(f is an s*g-α-closed set in Y. Thus by theorem (3.10), f is an s*g-α-proper function. 
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