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Abstract 

In this paper the numerical solution of fractional diffusion wave equation is proposed. The fractional 

derivative will be in the Caputo sense. The proposed method will be based on shifted Legendre collocation 

scheme and sinc function approximation for time and space respectively. The problem is reduced to the problem 

into a system of algebraic equations after implementing this method. For demonstrating the validity and 

applicability of the proposed numerical scheme some examples are presented. 
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1.Introduction  

Many phenomena in engineering physics, chemistry, and other sciences can be described very 

successfully by models using mathematical tools from fractional calculus, i.e. the theory of derivatives and 

integrals of fractional non-integer order [Oldham & Spanier(1974); Gorenflo & Mainardi(1997)]. Fractional 

differential equations are generalized from classical integer-order ones, which are obtained by replacing integer-

order derivatives by fractional ones. Their advantages comparing with integer-order differential equations are the 

capability of simulating natural physical process and dynamic system more accurately [Chen(2007)].  

The analytic results on existence and uniqueness of solutions to fractional differential equations have 

been investigated by many authors, see, say [Kilbas & Trujillo (2006)]. Most  fractional differential equations do 

not have closed form solutions, so approximation and numerical techniques such as Laplace transform method 

[Podlubny(1999)], operational method [Luchko & Gorenflo(1999)], finite difference methods [Su & Xu(2010)], 

differential transform method [Odibat & Momani(2008)], wavelet method [Chen & Jin(2011)], Adomian’s 

decomposition method [Ray(2009)], variational iteration method [Inc(2008)], homotopy analysis method 

[Dehghan & Saadatmandi(2010)], homotopy perturbation method [Momani  & Odibat(2007)], tau method 

[Saadatmandi & Dehghan(2011)] and other methods [Podlubny & Chen(2009); Saadatmandi & Dehghan(2010)], 

must be used.  

Fractional partial differential equations can be classified into two principal kinds: space-fractional 

differential equation and time-fractional one. 

In the present paper, we shall consider the time-fractional diffusion- wave equation with variable 

coefficients: 

 

         
∂α u(x,t)

∂tα
= a(x, t)

∂2u x,t 

∂x2 + f x, t ,   a < 𝑥 < 𝑏,   0 < 𝑡 < 𝜏,                                          …(1) 

with initial conditions 

        u x, 0 = Ψ x ,            
∂u x,0 

∂t
= φ x      a < 𝑥 < 𝑏                                              …(2) 

and boundary conditions 

        u a, t = u b, t = 0,   0 < 𝑡 < 𝜏                                                        …(3) 

http://www.iiste.org/
http://www.iasj.net/iasj?func=search&query=au:%22Osama%20H.%20Mohammed%20%20%22&uiLanguage=en
mailto:mohammedsabri68@yahoo.com


Mathematical Theory and Modeling                                                                                                                                                  www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.5, No.1, 2015 

 

50 

Where x ∈  a, b  and t ∈  (0, τ  are space and time variables, respectively, the time fractional derivative 

is defined in the Caputo sense. a x, t  be a continuous function and f x, t , denotes the field variable where 

a ≤ x ≤ b and  0 < 𝛼 ≤ 2.   For 1< 𝛼 < 2, the fractional equ. (1) is known as the fractional diffusion-wave 

equation which fills the gaps between the diffusion equation and wave equation[Sun & Wu(2006)].  

  In this paper we develop a sinc-Legendre collocation method to solve numerically problem (1) - (3). 

Since a fractional derivative is a nonlocal operator, it is natural to consider a global scheme such as the 

collocation method for its numerical solution. The required approximate solution is expanded as a series with the 

elements of shifted Legendre polynomials in time and sinc functions in space with unknown coefficients. By 

utilizing the collocation technique and some properties of the shifted Legendre polynomials and sinc functions, 

the problem is reduced to the solution to a system of linear algebraic equations. And a matrix representation of 

the system is obtained to calculate the solution. 

2.Fractional Derivative and Integration  

  In this section, we shall review the basic definitions and properties of fractional integral and derivatives, 

which are used further in this paper[Kilbas & Trujillo (2006)]. 

Definition(1):-  The Riemann-Liouville fractional integral operator of order  v > 0, is defined as             

  Iv f x =
1

Γ v 
  x − t v−1f t dt,    v > 0, 𝑥 > 0.  

x

0
                                                   …(4) 

                             I0f x = f(x) 

Definition(2):- The Riemann-Liouville fractional derivative operator of order v > 0,is defined as  

  Dx
v f x =

1

Γ n−v 

dn

dx n  (x − t)n−v−1x

0
f t dt,    v > 0, 𝑥 > 0.0                                    …(5) 

Where n is an integer and n − 1 < 𝑣 ≤ 𝑛. 

Definition(3):-  The Caputo fractional derivative operator of order v > 0,  is defined as 

                    Dx
v f x =

1

Γ n−v 
 (x − t)n−v−1 dn

dx n

x

0
f t dt,    v > 0, 𝑥 > 0c                                 …(6) 

Where n is an integer and n − 1 < 𝑣 ≤ 𝑛. 

Caputo fractional derivative has an useful property: 

      Iv Dx
v f x = f x −  f (k)(0+n−1

k=0 )
xk

k!

c                                                                   …(7) 

Where n is an integer and n − 1 < 𝑣 ≤ 𝑛. 

Also, for the Caputo fractional derivative we have 

Dc
x
v xβ =   

0                          for  β ∈ N0  and  β <   v                                   
Γ(β+1)

Γ(β+1−v)
xβ−v ,           for β ∈ N0   and   β ≥  v  or  β ∉ N and β >  v .

                               …(8)              

We use the ceiling function  v  to denote the smallest integer greater than or equal to v, and the floor function  v  

to denote the largest integer less than or equal to v. Also N =  1,2, …   and  N0 =  0,1,2, …  . 

Recall that for v = 0,   the Caputo differential operator concides with the usual differential operator of an integer 

order. Similar to the integer-order differentiation, the Caputo fractional differentiation is a linear operator; i.e. 

 

  Dc
x
v λf x + μg x  = λ Dc

x
v f x + μ Dc

x
v g x                                … (9) 

 

Where   and    are constants. 
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3.Sinc functions 

Sinc function prosperities are discussed thoroughly in [Stenger(1993)]. In this section an overview of  

the basic formulation of the Sinc function required for subsequent application is presented.  

The sinc function is defined on the whole real by  

 Sinc x =  
sin (πx)

πx
, 𝑥 ≠ 0

1        , 𝑥 = 0
                                                                                        …(10) 

For each integer k and the mesh size  h > 0 , the sinc basis functions are defined on R by  

 

  Sk h, x ≡ Sinc  
x−kh

h
 =  

sin (
π

h
(x−kh ))

π

h
(x−kh )

, 𝑥 ≠ 𝑘ℎ,

1                 , 𝑥 = 𝑘ℎ.

                                                    …(11) 

If a function f(x) is defined on ℛ, then for h > 0 the series 

  C f, h  x =  f(kh)Sinc  
x−kh

h
 ,∞

k=−∞                                                                    …(12) 

is called the Whittaker cardinal expansion of f whenever this series converges. The properties of the Whittaker 

cardinal expansion have been extensively studied in [Lund & Bowers(1992)]. These properties are derived in the 

infinite strip DS of the complex ω-plane, where for d > 0, 

  DS =  ω = t + is:   S < 𝑑 ≤
π

2
 ,                                    …(13) 

To construct the approximation over the finite interval  a, b , which is used in this paper, we consider the one-to-

one conformal map 

  ω = ϕ z = In  
Z−a

b−Z
 ,  

which maps the eye-shaped region 

  DE =  z = x + iy:   arg(
Z−a

b−Z
) < 𝑑 ≤

π

2
 ,                                                              …(14) 

onto the infinite strip DS . We also define the range of Ψ = ϕ−1 on the real line as 

  Γ =  Ψ t ∈ DE : − ∞ < 𝑡 < +∞ =  0, +∞ , 

Thus we may define the inverse images of the real line and of the evenly spaced nodes   kh k=−∞
k=+∞   as 

  xK = Φ−1 kh =
a+bekh

1+ekh ,               k = 0, ∓1, ∓2, …                                                …(15)  

Hence the numerical process developed in the domain containing the whole real line can be carried over to 

infinite interval by the inverse map. The basis functions on (a, b) are taken to be the composite translated sinc 

functions, 

  Sk x ≡ S k, h °ϕ x = Sinc  
ϕ x −kh

h
 ,                                                               …(16) 

Where  S k, h °ϕ x  is defined by S k, h  ϕ x  .   
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Definition(4):-  Let B(DE) be the class of functions f which are analytic in DE , satisfy 

    f z dZ  0,                t  ±∞,
Φ−1 t+L 

 

Where L =  iv:  v < 𝑑 ≤
π

2
 ,  and on the boundary of DE ,  (denoted ∂DE),  satisfy 

  N F =   f z dZ < ∞.
∂DE

 

Interpolation for function in B(DE) is defined in the following theorem which is proved in [Stenger(1993)]. 

Theorem(1)  (Interpolation, see [Stenger(1993); Lund & Bowers(1992)]. If fϕ′  ϵ B(DE)  then for all x ϵ Γ 

   f x −   f xK SK (x)∞
k=−∞  ≤

N(fϕ′ )

2πdsinh (πd
h )

≤ 2
N(fϕ′ )

πd
e−πd

h  . 

Moreover, if  f x  ≤ Ce−β Φ(x) ,   x ∈ Γ, for some positive constants C and β, and if the selection 

 h =  
πd

βN
≤

2πd

ln 2
 ,     then    f x −   f xK SK (x)N

k=−N  ≤ C2 N exp − πdβN ,   x ∈ Γ, 

Where C2 depends only on f, d and β. 

The above expressions show Sinc interpolation on B(DE)   converges exponentially. We also require derivatives 

of composite Sinc functions evaluated at the nodes. The expressions required for the present discussion 

are[Stenger(1993)]. 

  δk,j
(0)

=       SK(x)  x=xj
   =  

1,    𝑘 = 𝑗,
0,   𝑘 ≠ 𝑗,

                                                                      … (17) 

  δk,j
(1)

=  
d

dΦ
  SK (x)  x=xj

=  
0        ,     𝑘 = 𝑗,

(−1)j−k

j−k
,   𝑘 ≠ 𝑗,

                                                              …(18) 

  δk,j
(2)

=
d2

dΦ2
  SK (x)  x=xj

=  

−π2

3
        ,     𝑘 = 𝑗,

−2(−1)j−k

(j−k)2 ,   𝑘 ≠ 𝑗,

                                                        …(19) 

4.The Shifted Legendre Polynomials  

 The well-known Legendre polynomials are defined on the interval [−1,1] and can be determined with 

the aid of the following recurrence formulae [Saadatmandi & Dehghan(2011)] as  

  Li+1 z =
2i+1

i+1
zLi t −

i

i+1
Li−1 z ,                    i = 1,2, …,   .          

where L0 z = 1 and L1 z = z. We also define the so-called shifted Legendre polynomials on the interval [0, L] 

by using the change of variable z =
2x

L
− 1. So Shifted Legendre polynomials Li(

2x

L
− 1) are denoted by Li

h (x).  

Shifted Legendre polynomials of x can be determined with the aid of the formula: 

  Li+1
h  x =

 2i+1 (2x−h)

 i+1 h
Li

h x −
i

i+1
Li−1

h  x ,    i = 1,2, …   .                                      …(20) 

where L0
h  x = 1  and L1

h  x =
(2x−1)

h
.   The analytic form of the n-degree shifted Legendre polynomials given by 

  Li
τ t =  (−1)i+kn

k=0
 i+k !

 i−k !(k!)2τk tk ,           i = 1,2, …   .                                           …(21) 

Note that Li
τ 0 = (−1)i  and Li

τ L = 1  for all integer i. 
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5. Sinc-Legendre method 

In order to solve problem (1)–(3) we consider um ,n  as an approximate solution of equ. (1)   namely u(x, t).  

  um,n x, t =   cij Si x Lj
τ t .n

j=0
m
i=−m                                                                     …(22) 

where   limx a Sk (x) = limx b Sk x = 0 . 

It is noticed that the above conditions guarantee boundary conditions to be satisfied. 

Caputo’s fractional derivative of order v > 0 for the shifted Legendre polynomials Li
τ t    

 [Saadatmandi & Azizi(2012)] is given by  

  Dc
0
v Li

τ t =  bi,ktk−v ,      i =  v  ,  v + 1, … ,i
k= v                                                 …(23) 

  Dc
0
v Li

τ t = 0,         i = 0,1, … ,  v − 1,      v > 0                                                    …(24) 

Where  

  bi,k = (−1)i+k  i+k !

 i−k ! k !τk Γ(k−v+1)
                                                                            …(25) 

Lemma1[Saadatmandi & Azizi(2012)]   Let 1 < 𝑣 < 2 and 𝑥𝑘  be spatial collocation points given in (15). Then 

the following relations hold: 

 

 
∂v um ,n (xk ,t)

∂tv =   ckj bjr tr−vj
r=1 ,n

j=1                                 …(26) 

 
∂um ,n (xk ,t)

∂x
=   cij qik

 1 
Lj

τ t n
j=0 ,m

i=−m                                                                       …(27) 

 
∂2um ,n (xk ,t)

∂x2 =   ckj qik
 2 

Lj
τ t n

r=0 ,m
i=−m                                                                    …(28) 

Where       qik
 1 

= ϕ′ xk δi,k
 1 

,       and          qik
 2 

= ϕ′′  xk δi,k
 1 

+ (ϕ′ xk )2δi,k
 2 

,      

 And           𝑏𝑗𝑟 = (−1)𝑗 +𝑟  𝑗 +𝑟 !

 𝑗−𝑟 ! 𝑟 !Γ(𝑟−𝑣+1)𝜏𝑟  ,  

 for the proof of equations (26)-(28) see [Saadatmandi & Azizi(2012)]. 

Now, we substitute 𝑢𝑚 ,𝑛  in equ. (1) and conclude  

 
∂v um ,n (x,t)

∂tv = a(x, t)
∂2um ,n (x,t)

∂x2 + f x, t ,   a < 𝑥 < 𝑏,   0 < 𝑡 < 𝜏,                            …(29) 

We set 𝑥 = 𝑥𝑘  in equ. (29) and now substituting equations (26)-(28) into equ. (29) yields  

   ckj bjr tr−α − a xk , t 
j
r=2   ckj qik

 2 
Lj

τ t n
j=0 + f xk , tℓ    m

i=−m
n
i=2 ,                    …(30) 

               k = −m, … , m, ℓ = 1, … , n. 

For suitable collocation points we use the shifted Legendre roots 𝑡ℓ , ℓ = 1, … , 𝑛 + 1 of  𝐿ℓ+1 𝑡 . we applay the 

collocation method to equ. (30), we have  

                 ckj bjr tℓ
r−v − a xk , tℓ 

j
r=2   ckj qik

 2 
Lj

τ tℓ 
n
j=0 + f xk , tℓ  

  
 

m
i=−m

n
i=2 ,                …(31) 

From equ. (2) and equ. (22) we have  
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  cij Si x n

j=0
m
i=−m Lj

τ 0 = Ψ x 

  cij Si(x)n
j=0

m
i=−m Lj

τ τ = φ(x)
                                                                   …(32) 

if we set  𝑥 = 𝑥𝑗    and using equ. (17) we obtain 

  
  cij (−1)jn

j=0
m
i=−m = Ψ xk ,                          k = −m, … , m.

  cij (−1)j−1 j(j+1)

τ

n
j=0

m
i=−m = φ(xk)             k = −m, … , m.

                                 …(33) 

Equations (30) and (33) provide  𝑛 + 1 (2𝑚 + 1)  linear equations. Using these equations we obtain the 

unknown coefficient 𝑐𝑖𝑗 ,       𝑖 = 1,2, … ,2𝑚 + 1, 𝑗 = 1,2, … , 𝑛 + 1.                                    

And therefore the approximate solution 𝑢𝑚 ,𝑛  can be obtained from equ. (22). 

  

6.Numerical examples 

In this section we shall consider some tested examples in order to justify the accuracy and efficiency of 

the proposed method. 

 

Example 1.  Consider the following time-fractional diffusion equation 

 
∂v um ,n (x,t)

∂xv =
∂2u x,t 

∂x2 + sin πx ,      0 < 𝑥 < 1, 0 < 𝑡 ≤ 1,     

Where  the initial conditions 

   𝑢 𝑥, 0 = 𝑢𝑡(x,0) = 0, 

And the boundary conditions 

   𝑢 0, 𝑡 = 𝑢 1, 𝑡 = 0.  

The exact solution to this problem is [Mao & Shi(2014)].  

`   𝑢 𝑥, 𝑡 =
1

𝜋2 [1 − 𝐸𝑣(−𝜋2𝑡𝑣)] sin 𝜋𝑥 . 

where 𝐸𝑣 𝑧 =  
𝑧𝑘

Γ(𝑣𝑘+1)

∞
𝑘=0   is the one-parameter Mittag-Leffler function. 

following Figure.1 represent a comparision between the exact and the numerical solution given by the proposed 

method for  m = 15 and n = 8,  Furthermore Fig.2 show the absolute error function  u x, t − um,n(x, t)  

obtained by the present method. we solve the above problem with v = 1.7 by using the method described in 

section 5, we choose β = 1 and d =
π

2
 and this leads to h =

π

 2m
 . 
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Example 2.  Consider the following fractional diffusion equation with the Caputo fractional derivative  

∂v um ,n x, t 

∂xv
−

∂2u x, t 

∂x2
=

2

Γ 3 − v 
t2−αsin 2πx + 4π2t2sin 2πx , 0 < 𝑥 < 1,   0 < 𝑡 ≤ 1,    

The initial condition  

u x, 0 = 0,    0 < 𝑥 < 1,    

And the boundary conditions 

 u 0, t = u 1, t = 0,    0 < 𝑡 ≤ 1, 

It is remarkable that the initial conditions of this example can be considered as a special case of equ.(2) and the 

exact solution for this problem is given by [Ren & Sun(2013)] as:   𝑢 𝑥, 𝑡 = 𝑡2sin 2𝜋𝑥 . 
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Figure 1: Comparison of the numerical and exact solution in the domain [0,1] × [0,1] for Example 1. 
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Figure 3: Comparison of the numerical and exact solution for Example 2 
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Figure 2: Plot of the absolute error for Example 1 
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To solve the above problem with v = 0.7 by using the method described in section 5, we choose β = 1 and 

d =
π

2
 and this leads to h =

π

 2m
, Fig.3 gives the Numerical and exact solution on the whole computational 

domain with m = 15, n = 8. A good agreement of the numerical solution with the exact one is achieved. 

Furthermore Fig.4 show the absolute error function  u x, t − um,n (x, t)  obtained by the present method. 

 

 

 

 

 

 

 

 

 

7. Conclusion 

In this paper, we develop and analyze the efficient numerical algorithm for the fractional diffusion 

wave-equation Based on the collocation technique, the sinc functions and shifted Legendre polynomials are used 

to reduce the problem to the solution of a system of linear algebraic equations. From the computational point of 

view, the solution obtained by this method is in excellent agreement with the exact one. 
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