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Abstract 

In this paper, we derive, the probability density function (pdf) and cumulative distribution function (CDF) of the skew 

type IV generalized logistic distribution GSLD IV (α, β, λ). The general statistical properties of the GSLD IV (α, β, λ). such 

as: the moment generating function (mgf), characteristic function (ch.f), Laplace and fourier transformations are obtained in 

explicit form. Expressions for the nth moment, skewness and kurtosis coefficients are discussed. The mean deviation about the 

mean and about the median are also obtained. We consider the general case by inclusion of location and scale parameters. 

The results of Asgharzadeh (2013) are obtained as special cases. Graphically illustration of some results have been 

represented. Further we present a numerical example to illustrate some results of this paper.  

Keywords: skew type IV generalized logistic distribution, moment generating function, skewness, kurtosis, mean deviation. 

1. Introduction 

A number of authors discussed important applications of the logistic distribution in many fields including survival 

analysis growth model public health and etc…. Several different forms of generalization of the logistic distribution have been 

proposed in the literature, and studied in Balakrishnan and leung (1988), Balakrishnan (1992) and Johnson et al (1995), i. e. 

types I,II,III and IV. The type IV generalized logistic distribution denoted by type IV GLD (𝛼, 𝛽) has been discussed in 

Johnson et al (1995), and Nassar and Elmasry (2012). The probability density function (pdf) of type IV GLD (𝛼, 𝛽) is given 

by 

𝑔(𝑥) =
1

𝐵(𝛼,𝛽)
𝑒−𝛽𝑥(1 + 𝑒−𝑥)−(𝛼+𝛽) ,                               − ∞ < 𝑥 < ∞  (1.1) 

where   𝐵(𝛼, 𝛽) = ∫ 𝑡𝑎−1(1 − 𝑡)𝛽−1 𝑑𝑡
1

0
   is the complete beta function,  𝛽  is the scale parameter and  𝛼  is the shape 

parameter. This distribution is symmetric for every 𝛼 . The type IV GLD (𝛼, 𝛽) is the just the family of logistic distribution 

generated from the beta distribution, proposed by Jones (2004). It is well known, in general, that a generalized model is more 

flexible than the ordinary model and it is preferred by many data analysis in analyzing statistical data.  

Let us introduce cumulative distribution function CDF of type IV GLD (𝛼, 𝛽) as proposed by Jones (2004), as follows 

𝐺(𝑥) =
1

𝐵(𝛼,𝛽)
∫ 𝑦𝛼−1(1 − 𝑦)𝛽−1 𝑑𝑦 

1

1+𝑒−𝑥

0
= 𝐼 1

1+𝑒−𝑥
(𝛼, 𝛽) ,                     − ∞ < 𝑥 < ∞              (1.2)  

where   𝐼𝑦(𝛼, 𝛽) =
𝐵𝑦(𝛼,𝛽)

𝐵(𝛼,𝛽)
    is the incomplete beta function ratio and the incomplete beta function is 

𝐵𝑦(𝑎, 𝑏) = ∫ 𝑡𝑎−1(1 − 𝑡)𝑏−1 𝑑𝑡
𝑦

0
   

The type IV GLD (𝛼, 𝛽)  generalizes the various forms of the logistic distribution. For example, if         𝛼 = 𝛽 = 1, we 

obtain the standard logistic distribution. Also for the case 𝛼 = 𝛽 , we have the type III generalized logistic distribution. 

Different properties  about this distribution has been studied by               Nassar and Elmasry (2012). 

Azzalini (1985) showed that any symmetric distribution was viewed as member of more general class of skewed 

distribution. The pdf of the skew normal distribution defined by Azzalini (1985) is given by  

𝑓(𝑥) =  2𝜙(𝑥) .  𝛷(𝜆𝑥)  ,                                  − ∞ < 𝑥 < ∞                                                      (1.3) 

where  𝜆 ∈ 𝑅  is the skewness parameter,  𝜙(𝑥)  and 𝛷(𝑥) are respectively the pdf and CDF of  𝑁(0,1). 
This idea can be applied to any symmetric distribution. A long the same line, the skew logistic distribution with the skewness 

parameter  𝜆  has been studied by many others ( see for example, Wahed and Ali (2001), Gupta et al (2002), Nadrajah and 

Kotz (2006)(2007), Nadrajah (2009), Gupta and Kundu (2010), and Chakraborty et al (2012)). 

Koessler and Kumar (2010), illustrate an application with respect to an adoptive test for two-sample scale problem based on 

U-statistics. Asgharzadeh et al (2013) introduced a generalized skew type III logistic distribution and obtained several 

mathematical properties of this distribution such as CDF and moments. Furthermore estimation of unknown parameters by 

using the method of maximum likelihood and fisher information matrix are investigated. Abd-Elfattah et al (2014) studied the 

skew type I generalized logistic distribution with skewness parameter  𝜆 and obtained some important statistic properties of 

this distribution. Moreover skewness and kurtosis coefficients are illustrated numerically and graphically.     

In this paper, we using type IV GLD (𝛼, 𝛽) to study the skew of type IV GLD (𝛼, 𝛽), with skewness parameter  𝜆 𝜖 𝑅  and 

will be denoted as GSLDIV (𝛼, 𝛽, 𝜆). This paper is organized as follows: in next section we drive the pdf and CDF of 
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GSLDIV (𝛼, 𝛽, 𝜆) in explicit forms. In section 3, we obtained the moment generating function (mgf), characteristic function 

(ch. f), Laplace and Fourier transformations. Expressions for nth moment including the first four moments, skewness and 

kurtosis coefficients are given in section 4. The mean deviation about the mean and median are discussed in Section 5. Some 

important properties are discussed in Section 6. Numerical example is given in section 7. Finally, Conclusion remarks are 

provided in section 8. Graphical illustration of pdf, CDF of GSLDIV (𝛼, 𝛽, 𝜆), skewness and kurtosis have been represented. 

It should be noted that some known results of Asgharzadeh et al (2013), and Abd-Elfattah et al (2014)  are obtained as special 

cases. 

2. Probability density function and Cumulative distribution function of GSLD IV (𝛂, 𝛃, 𝛌) 

In this section we derive a form of pdf and CDF of GSLDIV (𝛼, 𝛽, 𝜆). Using (1.1),(1.2), and (1.3), we define the pdf of 

GSLDIV (𝛼, 𝛽, 𝜆) as follows: 

Definition (2.1): we say that the random variable X is distributed according to GSLDIV (𝛼, 𝛽, 𝜆), if its pdf is given by  

𝑓(𝑥, 𝛼, 𝛽, 𝜆) =  2𝑔(𝑥) .  𝐺(𝜆𝑥)  ,                                           − ∞ < 𝑥 < ∞        (2.1) 

where 𝜆 ∈ 𝑅 is the skewness parameter,  𝑔(𝑥)  and  𝐺(𝑥) are the pdf and CDF of type IV  GLD (𝛼, 𝛽) given in (1.1) and 

(1.2). 

Throughout the rest of this paper ( unless otherwise stated ), we shall assume that λ > 0 since the corresponding results for 

 λ < 0  can be obtained using the fact that -X has GSLDIV (𝛼, 𝛽, −𝜆). 

The pdf of GSLDIV (𝛼, 𝛽, 𝜆) given by (2.1) can be expressing in other forms (a) a double series representation (b) a triple 

series representation as given in the following lemma. 

Lemma (2.1): if X be a random variable having GSLDIV (α, β, λ), then its pdf is given by  

(a)𝑓(𝑥, 𝛼, 𝛽, 𝜆) =  

{
 
 

 
 

2

𝐵2(𝛼,𝛽)(1+𝑒−𝑥)(𝛼+𝛽)
. 𝐴(𝑖, 𝑗). 𝑒−(𝛽+𝜆𝑗)𝑥  ,                         𝑥 > 0 

2

𝐵2(𝛼,𝛽)(1+𝑒𝑥)(𝛼+𝛽)
. 𝐴(𝑖, 𝑗). 𝑒[(𝑖+𝑗+𝛼)𝜆+𝛼]𝑥  ,                 𝑥 < 0

    (2.2) 

(b)𝑓(𝑥, 𝛼, 𝛽, 𝜆) =  

{
 
 

 
 

2

𝐵2(𝛼,𝛽)
 . ∑ (−𝛼−𝛽

𝑘
)∞

𝑘=0  . 𝐴(𝑖, 𝑗). 𝑒−𝐵2𝑥  ,                         𝑥 > 0 

2

𝐵2(𝛼,𝛽)
 . ∑ (−𝛼−𝛽

𝑘
)∞

𝑘=0  . 𝐴(𝑖, 𝑗). 𝑒𝐵1𝑥 ,                           𝑥 < 0

                        (2.3) 

 

where,  𝐴(𝑖, 𝑗) =  ∑ ∑
(−1)𝑖

𝑖+𝛼

∞
𝑗=0

∞
𝑖=0 (𝛽−1

𝑖
) (−𝑖−𝛼

𝑗
), 

𝐵1 = (𝑖 + 𝑗 + 𝛼)𝜆 + 𝛼 + 𝑘,     and        𝐵2 = 𝛽 + 𝑘 + 𝜆𝑗             (2.4) 

Proof: 

(a) The pdf  𝑔(𝑥)  given in (1.1) can be written in the form 

𝑔(𝑥) =

{
 
 

 
 

1

𝐵(𝛼,𝛽)
 . 𝑒−𝛽𝑥  . (1 + 𝑒−𝑥)−(𝛼+𝛽),                𝑥 > 0 

1

𝐵(𝛼,𝛽)
 . 𝑒𝛼𝑥  . (1 + 𝑒𝑥)−(𝛼+𝛽) ,                     𝑥 < 0

                   (2.5) 

Using the binomial expansion for  (1 + 𝑒−𝑥)−(𝛼+𝛽)  in (2.5), we get 

𝑔(𝑥) =

{
 
 

 
 

1

𝐵(𝛼,𝛽)
 . ∑ (−𝛼−𝛽

𝑘
)∞

𝑘=0  . 𝑒−(𝛽+𝑘)𝑥,                 𝑥 > 0 

1

𝐵(𝛼,𝛽)
 . ∑ (−𝛼−𝛽

𝑘
)∞

𝑘=0  . 𝑒(𝛼+𝑘)𝑥  ,                   𝑥 < 0

                   (2.6) 

Now, utilizing the binomial expansion for (1 − 𝑦)𝛽−1and (1 + 𝑒−𝑥)−(𝑖+𝛼) in (1.2) with elementary calculations, we can 

obtain   
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𝐺(𝜆𝑥) =

{
 
 

 
 

1

𝐵(𝛼,𝛽)
 . 𝐴(𝑖, 𝑗). 𝑒−𝜆𝑗𝑥 ,                            𝑥 > 0 

1

𝐵(𝛼,𝛽)
 . 𝐴(𝑖, 𝑗). 𝑒(𝑖+𝑗+𝛼)𝜆𝑥   ,                   𝑥 < 0

         (2.7) 

Substituting from (2.5) and (2.7) into (2.1) the result of part (a) of double series representation for the pdf 𝑓(𝑥, 𝛼, 𝛽, 𝜆) is 
obtained. 

(b) Employing (2.1), (2.6), and (2.7), one can obtain the triple series representation given in (2.3). 

It is clear that if we take  𝛼 = 𝛽, the result of Asgharzadeh (2013) is obtained as special case. 

The calculations through this paper are based on the generalized hypergeometric function  𝑚𝐹𝑛 defined by    

𝑚𝐹𝑛(𝜏1, 𝜏2, … , 𝜏𝑚; 𝒱1, 𝒱2, … , 𝒱𝑛; 𝑥)=∑
(𝜏1)𝑘(𝜏2)𝑘…(𝜏𝑚)𝑘    .   𝑥

𝑘

(𝒱1)𝑘(𝒱2)𝑘…(𝒱𝑛)𝑘    .  𝑘!
∞
𝑘=0  

and (c)k = c(c + 1)…… (c + k − 1) denotes the ascending factorial. The properties of this special functions being used can 

be found in Gradshteyn and Ryzhik (2000). 

(a) (b) 

  

(c) (d) 

 
 

Figure 1: The shapes of pdf of GSLDIV (𝛂, 𝛃, 𝛌) (a) when (=2,=2, =2 Thick line), (=2,=2, =5 Dashed line), and 

(=2,=2, =10 Dashed &Thick line). (b) when (=1,=2, =2 Thick line), (=2,=2, =5 Dashed line), and                  

(=2,=2, =10 Dashed &Thick line). (c) when [=1, =1 and   (-15, 15)]. (d) when[=1, =2 and   (−15, 15)]. 

 

 

Theorem (2.1): if X is a GSLDIV (α, β, λ) random variable, then its CDF is given by  

(a)𝐹(𝑥, 𝛼, 𝛽, 𝜆) =  

{
 
 

 
 

2

𝐵2(𝛼,𝛽)
. 𝐴(𝑖, 𝑗). [

𝐴1−𝐴2𝑒
−(𝛽+𝜆𝑗)𝑥

𝛽+𝜆𝑗
+

𝐴3

(𝑖+𝑗+𝛼)𝜆+𝛼
]  ,                      𝑥 > 0 

2

𝐵2(𝛼,𝛽)
. 𝐴(𝑖, 𝑗).

𝐴4𝑒
[(𝑖+𝑗+𝛼)𝜆+𝛼]𝑥

(𝑖+𝑗+𝛼)𝜆+𝛼
  ,                                                 𝑥 < 0

   (2.8) 

3 2 1 0 1 2 3 4
x

0.2

0.4

0.6
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PDF
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x
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(b)𝐹(𝑥, 𝛼, 𝛽, 𝜆) =   

{
 
 

 
 1 −

2

𝐵2(𝛼,𝛽)
 . ∑ (−𝛼−𝛽

𝑘
)∞

𝑘=0  . 𝐴(𝑖, 𝑗).
𝑒−𝐵2𝑥

𝐵2
  ,                          𝑥 > 0 

2

𝐵2(𝛼,𝛽)
 . ∑ (−𝛼−𝛽

𝑘
)∞

𝑘=0  . 𝐴(𝑖, 𝑗).
𝑒𝐵1𝑥

𝐵2
 ,                                      𝑥 < 0

               (2.9) 

where  𝐴(𝑖, 𝑗),  𝐵1,  𝐵2 are given by (2.4), 

𝐴1 = 2𝐹1(𝛼 + 𝛽, 𝛽 + 𝜆𝑗, 𝛽 + 𝜆𝑗 + 1,−1), 
𝐴2 = 2𝐹1(𝛼 + 𝛽, 𝛽 + 𝜆𝑗, 𝛽 + 𝜆𝑗 + 1,−𝑒

−𝑥), 
𝐴3 = 2𝐹1(𝛼 + 𝛽, 𝛼 + (𝑖 + 𝑗 + 𝛼)𝜆, 𝛼 + (𝑖 + 𝑗 + 𝛼)𝜆 + 1,−1),       and 

𝐴4 = 2𝐹1(𝛼 + 𝛽, 𝛼 + (𝑖 + 𝑗 + 𝛼)𝜆, 𝛼 + (𝑖 + 𝑗 + 𝛼)𝜆 + 1,−𝑒
𝑥) 

Proof:  

The proof of this theorem has two cases separately, when  x ≥ 0  and x < 0, as follows: 

(a) Firstly, when x ≥ 0, employing the double series representation of the pdf given in (2.2), the CDF of GSLDIV (α, β, λ) 
can be written as  

𝐹(𝑥, 𝛼, 𝛽, 𝜆) = 𝑃(𝑋 ≤ 𝑥) = ∫ 𝑓(𝑥, 𝛼, 𝛽, 𝜆) 𝑑𝑥
𝑥

−∞

=  𝐹(0) +
2

𝐵2(𝛼, 𝛽)
 . 𝐴(𝑖, 𝑗) .  𝐼(𝑥) 

Where   𝐼(𝑥)  is the integral given by 

 𝐼(𝑥) = ∫
𝑒−(𝛽+𝜆𝑗)𝑥

(1+𝑒−𝑥)(𝛼+𝛽)
 𝑑𝑥

𝑥

0
                                                       (2.10) 

Substituting  𝑍 =  𝑒−𝑥   the integral  𝐼(𝑥) reduce to 

 𝐼(𝑥) = ∫
𝑍𝛽+𝜆𝑗−1

(1 + 𝑍)(𝛼+𝛽)
 𝑑𝑧

1

𝑒−𝑥
 

        = ∫
𝑍𝛽+𝜆𝑗−1

(1+𝑍)(𝛼+𝛽)
 𝑑𝑧 −

1

0
∫

𝑍𝛽+𝜆𝑗−1

(1+𝑍)(𝛼+𝛽)
 𝑑𝑧 =  𝐼1 −  𝐼2

𝑒−𝑥

0
                              (2.11) 

To evaluate the integrals  Ι1 and Ι2, we use the formula (3.194.1)  in Gradshteyn and Ryzhik (2000) , which stated as follows  

∫
𝑥𝜇−1

(1+𝑏𝑥)𝒱
𝑑𝑥 =

𝑢𝜇

𝜇

𝑢

0
2𝐹1(𝒱, 𝜇, 1 + 𝜇,−𝑏𝑢)                                   (2.12) 

Then, the integrals  𝛪1 and  𝛪2  can be calculated as  

 𝛪1 =
𝐴1

𝛽+𝜆𝑗
,                           𝛪2 =

𝐴2𝑒
−(𝛽+𝜆𝑗)𝑥

𝛽+𝜆𝑗
                        (2.13) 

From (2.10),(2.11), and (2.13), we get  

𝐹(𝑥) =  𝐹(0) +
2

𝐵2(𝛼,𝛽)
 . 𝐴(𝑖, 𝑗) . [

𝐴1

𝛽+𝜆𝑗
−
𝐴2𝑒

−(𝛽+𝜆𝑗)𝑥

𝛽+𝜆𝑗
]         (2.14) 

Similarly,  𝐹(0) can be calculated as above and we can evaluate it as follows 

𝐹(0) = ∫ 𝑓(𝑥, 𝛼, 𝛽, 𝜆) 𝑑𝑥
0

−∞
=

2

𝐵2(𝛼,𝛽)
 . 𝐴(𝑖, 𝑗) .  𝛪3                 (2.15) 

Where  𝐼3 is the integral given by 

 𝐼3 = ∫
𝑒[(𝑖+𝑗+𝛼)𝜆+𝛼]𝑥

(1+𝑒𝑥)(𝛼+𝛽)
 𝑑𝑥

0

−∞
   = ∫

𝑍(𝑖+𝑗+𝛼)𝜆+𝛼−1

(1+𝑍)(𝛼+𝛽)
 𝑑𝑧 =

1

0

𝐴3

(𝑖+𝑗+𝛼)𝜆+𝛼
                                 (2.16) 

Substituting from (2.16) into (2.15) we have  

𝐹(0) =
2

𝐵2(𝛼,𝛽)
 . 𝐴(𝑖, 𝑗) .

𝐴3

(𝑖+𝑗+𝛼)𝜆+𝛼
         (2.17) 

Combining (2.14), and (2.17) the result for x ≥ 0 is yielded 

(b)  Second case: when  x < 0,  by similar calculation and using (2.12), we get  

𝐹(𝑥, 𝛼, 𝛽, 𝜆) = ∫ 𝑓(𝑥, 𝛼, 𝛽, 𝜆) 𝑑𝑥
𝑥

−∞

=  
2

𝐵2(𝛼, 𝛽)
 . 𝐴(𝑖, 𝑗) .  𝐼4 

where  𝐼4 = ∫
𝑒[(𝑖+𝑗+𝛼)𝜆+𝛼]𝑥

(1+𝑒𝑥)(𝛼+𝛽)
 𝑑𝑥

𝑥

−∞
 

                = ∫
𝑍(𝑖+𝑗+𝛼)𝜆+𝛼−1

(1 + 𝑍)(𝛼+𝛽)
 𝑑𝑧

𝑒𝑥

0

=
𝐴4𝑒

[(𝑖+𝑗+𝛼)𝜆+𝛼]𝑥

(𝑖 + 𝑗 + 𝛼)𝜆 + 𝛼
 

Consequentially for  x < 0,  the CDF, 𝐹(𝑥, 𝛼, 𝛽, 𝜆)  is given by  

𝐹(𝑥, 𝛼, 𝛽, 𝜆) =
2

𝐵2(𝛼, 𝛽)
 . 𝐴(𝑖, 𝑗) .

𝐴4𝑒
[(𝑖+𝑗+𝛼)𝜆+𝛼]𝑥

(𝑖 + 𝑗 + 𝛼)𝜆 + 𝛼
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which complete the proof of part (a) of this theorem. In the same manner part (b) of this theorem can be also obtained by 

using the triple series form of the pdf,  𝑓(𝑥, 𝛼, 𝛽, 𝜆) given in (2.3). If we put  𝛼 = 𝛽,  the results of Asgharzadeh (2013) are 

obtained as special cases. 

Properties of GSLD IV (𝜶,𝜷, 𝝀) 

Some properties of GSLD IV (𝛼, 𝛽, 𝜆) can be obtained from (2.1) as follows: 

(i)  When 𝛼 = 𝛽 = 1,  𝑓(𝑥, 𝛼, 𝛽, 𝜆) reduces to the standard skew logistic pdf. 

(ii) When λ = 0,  𝑓(𝑥, 𝛼, 𝛽, 𝜆) reduces to the type IV generalized logistic pdf. 

(iii)When 𝛼 = 𝛽, 𝑓(𝑥, 𝛼, 𝛽, 𝜆) reduces to the type III generalized skew logistic distribution (𝛼, 𝜆)  
 [see Asgharzadeh et al (2013)]. 

(iv) If X has GSLDIV (𝛼, 𝛽, 𝜆), then -X has GSLDIV (𝛼, 𝛽, −𝜆). 

(v) 𝑓(𝑥, 𝛼, 𝛽, 𝜆) +  𝑓(𝑥, 𝛼, 𝛽, −𝜆) = 2𝑔(𝑥),    for all   𝑥 ∈ 𝑅. 

(vi) 𝑓(𝑥, 𝛼, 𝛽, 𝜆) ⟶ 2𝑔(𝑥)𝐼{𝑥 ≥ 0}  as  𝜆 ⟶ ∞, and   
      𝑓(𝑥, 𝛼, 𝛽, 𝜆) ⟶ 2𝑔(𝑥)𝐼{𝑥 ≤ 0}  as   𝜆 ⟶ −∞    for all  𝛼 > 0, 𝛽 > 0. 

(vii) 𝑓(𝑥, 𝛼, 𝛽, 𝜆) ⟶ 0  as  𝑥 ⟶ ∓∞    for all  𝛼 > 0, 𝛽 > 0 and 𝜆 ∈ 𝑅. 

 

(a) (b) 

  
 
 
 
 
 
 

(c) 

 
 
 
 
 
 

(d) 
 

 
 

Figure 2: The shapes of CDF of GSLDIV (𝛂, 𝛃, 𝛌) (a) when (=1,=1,=20 Thick line), (=1,=1,=10 Dashed line), 

(=1,=1,=9 Dotted line), (=1,=1,=9 Dotted &Dashed line), and (=1,=1, =8 Dashed &Thick line). (b) when 

(=2,=1,=20 Thick line), (=2,=1,=10 Dashed line), (=2,=1,=9 Dotted line), (=2,=1,=9 Dotted &Dashed 

line), and (=2,=1, =8 Dashed &Thick line). (c) when [=1, =1 and   (0, 10)]. (d) when[=2, =1 and   (0, 

10)]. 

3. Moment generating function and characteristic function 
In this section, we derive the moment generating function (mgf) and the characteristic function (ch.f) of the random variable 

X with GSLDIV (α, β, λ). We consider the triple series representation of the pdf, f(x, α, β, λ) given by (2.3). 

Theorem (3.1): The mgf of the random variable X with GSLDIV (α, β, λ) is given by  

𝛭𝑋(𝑡) =
2

𝐵2(𝛼,𝛽)
 . ∑ (−𝛼−𝛽

𝑘
)∞

𝑘=0  . 𝐴(𝑖, 𝑗). [
1

𝐵1+𝑡
+

1

𝐵2−𝑡
]                     (3.1) 

Proof: Let  𝑓(𝑥, 𝛼, 𝛽, 𝜆)  be the pdf of  GSLDIV (α, β, λ)  given by (2.3), then 

𝛭𝑋(𝑡) = 𝛦(𝑒
𝑡𝑋) = ∫ 𝑒𝑡𝑥

∞

−∞

 𝑓(𝑥, 𝛼, 𝛽, 𝜆)𝑑𝑥 =
2

𝐵2(𝛼, 𝛽)
 .∑ (

−𝛼 − 𝛽

𝑘
)

∞

𝑘=0

 . 𝐴(𝑖, 𝑗). [ 𝛪5 + 𝛪6] 

where  

 𝛪5 = ∫ 𝑒[𝐵1+𝑡]𝑥  𝑑𝑥
0

−∞
=

1

𝐵1+𝑡
 ,         and 

 𝛪6 = ∫ 𝑒−(𝐵2−𝑡)𝑥   𝑑𝑥
∞

0
=

1

𝐵2−𝑡
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which prove the theorem. 

Remark(3.1) 

if the random variable X has  GSLDIV (α, β, λ), then its characteristic function ∅𝑥(𝑡) is given by  

∅𝑥(𝑡) =
2

𝐵2(𝛼, 𝛽)
 .∑ (

−𝛼 − 𝛽

𝑘
)

∞

𝑘=0

 . 𝐴(𝑖, 𝑗). [
1

𝐵1 + 𝑢𝑡
+

1

𝐵2 − 𝑢𝑡
] 

Where, u = √−1  is the complex imaginary part. 

Other useful properties of GSLDIV (α, β, λ)are the Laplace and Fourier Transforms, which are given by the following remark 

(3.2) and remark (3.3), for the triple series representation of pdf given in (2.3). 

Remark (3.2)  

The Laplace Transform of the random variable X having GSLDIV (α, β, λ)is: 

𝐿(𝑡) = 𝛦(𝑒−𝑡𝑥)  =
2

𝐵2(𝛼, 𝛽)
 .∑ (

−𝛼 − 𝛽

𝑘
)

∞

𝑘=0

 . 𝐴(𝑖, 𝑗). [
1

𝐵1 − 𝑡
+

1

𝐵2 + 𝑡
] 

Remark (3.3)  

The Fourier Transform of the random variable X having GSLDIV (α, β, λ)is: 

𝐹𝑜(𝑡) = 𝛦(𝑒−𝑢𝑡𝑥)  =
2

𝐵2(𝛼, 𝛽)
 .∑ (

−𝛼 − 𝛽

𝑘
)

∞

𝑘=0

 . 𝐴(𝑖, 𝑗). [
1

𝐵1 − 𝑢𝑡
+

1

𝐵2 + 𝑢𝑡
] 

where  𝐴(𝑖, 𝑗),  𝐵1, and  𝐵2 are given by (2.4). 

4. Skewness and Kurtosis coefficients 

The skewness coefficient is measured by  γ1 =
M3

σ3
,  and the kurtosis coefficient is measured by γ2 =

M4

σ4
 , where M3 and M4 

are the third and fourth moments about the mean and,  σ   is the standard deviation of the random variable X having GSLDIV 

(α, β, λ). We firstly derive the nth moment of the random variable X having pdf given in (2.3) by the following theorem. 

Theorem (4.1)  

The nth moment of the SGLDIV(α, β, λ)random variable X is 

(a) If n is even order, we have 

𝛦(𝑋𝑛) =
4 (𝑛!)

𝐵2(𝛼, 𝛽)
 .∑ (

−𝛼 − 𝛽

𝑘
)

∞

𝑘=0

 .
𝐴(𝑖, 𝑗)

(𝐵2)
𝑛+1

 

(b) If n is odd order, we have 

𝛦(𝑋𝑛) =
2 (𝑛!)

𝛽2(𝛼, 𝛽)
∑(

−𝛼 − 𝛽

𝑘
)

∞

𝑘=0

. 𝐴(𝑖, 𝑗). [
1

(𝐵2)
𝑛+1 −

1

(𝐵1)
𝑛+1] 

Proof: 

Since,      Ε(𝑋𝑛) =  ∫ 𝑥𝑛
∞

−∞
 𝑓(𝑥, α, β, λ) 𝑑𝑥 

 (a) If n is even order, we have 

Ε(𝑋𝑛) = 2∫ 𝑥𝑛
∞

0

 𝑓(𝑥, α, β, λ) 𝑑𝑥 

using the triple series representation of 𝑓(𝑥, 𝛼, 𝛽, 𝜆) given in (2.3), and by elementary calculation, we get the result 

(b) If n is odd order, we have 

Ε(𝑋𝑛) = ∫ 𝑥𝑛
0

−∞

 𝑓(𝑥, α, β, λ) 𝑑𝑥 + ∫ 𝑥𝑛
∞

0

 𝑓(𝑥, α, β, λ) 𝑑𝑥 

Employing (2.3), and evaluating the integrals, we obtain the result.  

The first four moments of X can be obtained as follows 

𝐸(𝑋) =
2

𝛽2(𝛼, 𝛽)
∑(

−𝛼 − 𝛽

𝑘
)

∞

𝑘=0

. 𝐴(𝑖, 𝑗). [
1

(𝐵2)
2 −

1

(𝐵1)
2] 

Ε(𝑋2) =
8

𝐵2(𝛼, 𝛽)
 .∑ (

−𝛼 − 𝛽

𝑘
)

∞

𝑘=0

 .
𝐴(𝑖, 𝑗)

(𝐵2)
3  

Ε(𝑋3) =
12

𝛽2(𝛼, 𝛽)
∑ (

−𝛼 − 𝛽

𝑘
)

∞

𝑘=0

. 𝐴(𝑖, 𝑗). [
1

(𝐵2)
4
−

1

(𝐵1)
4
] 

Ε(𝑋4) =
96

𝐵2(𝛼, 𝛽)
 .∑ (

−𝛼 − 𝛽

𝑘
)

∞

𝑘=0

 .
𝐴(𝑖, 𝑗)

(𝐵2)
5  

Therefore, using this four moments, we can easily obtain the variance  σ2, the skewness coefficient  γ1  and kurtosis 

coefficient  γ2 , which will be illustrated here numerically in section(7). If (α =  β) the results of Asgharzadeh et al (2013) are 

obtained as special cases. 
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(a) (b) 

  
(c) (d) 

 
 

Figure 3: Illustrates the shapes of (a) the expectation value E(X) of GSLDIV (𝛂, 𝛃, 𝛌), when  ϵ (0, 10),  = 1 and α =1 

(Thick line) and α =2 (dotted line). (b) the variance var(X) , when  ϵ (1, 6),  = 1 and α =1 (Thick line) and α =2 

(dotted line). (c) the skewness coefficient, when  ϵ (-1, 5),  = 1 and α =1 (Thick line) and α =2 (dotted line). (d) the 

kurtosis coefficient, when  ϵ (-1, 10),  = 1 and α =1 (Thick line) and α =1.5 (dashed line). 

5. Mean Deviation 

The mean deviation about the mean μ denoted by  Δ1(X) and about the median  Μ  denoted by  Δ2(X)  are defined by  

Δ1(𝑋) = ∫ |𝑥 − 𝜇|
∞

−∞
 𝑓(𝑥, α, β, λ) 𝑑𝑥,       and 

Δ2(𝑋) = ∫ |𝑥 − 𝛭|
∞

−∞
 𝑓(𝑥, 𝛼, 𝛽, 𝜆) 𝑑𝑥  

Receptivity, where  μ = Ε(𝑋)  is the expectation of a random variable X having GSLDIV (𝛼, 𝛽, 𝜆) 

Theorem (5.1): 

The mean deviation about the mean  μ  of a random variable X having GSLD IV (𝛼, 𝛽, 𝜆) is giving as: 

Δ1(𝑋) = {

Δ11(𝜇) , 𝑖𝑓 𝜇 ≤ 0

Δ12(𝜇) , 𝑖𝑓 𝜇 ≥ 0
 

 

where, 

Δ11(𝜇) =
2

𝐵2(𝛼,𝛽)
 . ∑ (−𝛼−𝛽

𝑘
)∞

𝑘=0  . 𝐴(𝑖, 𝑗). [
1

𝐵1
2 (2𝑒

𝜇𝐵1 − 1) +
1

𝐵2
2] − 𝜇, 

Δ12(𝜇) =
2

𝐵2(𝛼,𝛽)
 . ∑ (−𝛼−𝛽

𝑘
)∞

𝑘=0  . 𝐴(𝑖, 𝑗). [
1

𝐵2
2 (2𝑒

𝜇𝐵2 − 1) +
1

𝐵1
2] + 𝜇, 

Proof: 

Δ1(X)  can be written in following form given by Nadarajah (2009) as: 

Δ1(𝑋) = 2𝜇𝐹(𝜇) − 𝜇 − ∫ 𝑥
𝜇

−∞
 𝑓(𝑥, 𝛼, 𝛽, 𝜆) 𝑑𝑥 + ∫ 𝑥

∞

𝜇
 𝑓(𝑥, 𝛼, 𝛽, 𝜆) 𝑑𝑥                                   (5.1) 

The proof is depending on two separately cases, when  μ ≤ 0  and when μ > 0 , the calculations are employing the triple 

series form of the pdf given in (2.3). Now, if μ ≤ 0 , we have  

𝐹(𝜇) =
2

𝐵2(𝛼,𝛽)
 . ∑ (−𝛼−𝛽

𝑘
)∞

𝑘=0  . 𝐴(𝑖, 𝑗).
1

𝐵1
. 𝑒𝜇𝐵1                                                     (5.2) 

The integrals in (5.1) can be obtained as following 

∫ 𝑥
𝜇

−∞
 𝑓(𝑥, 𝛼, 𝛽, 𝜆) 𝑑𝑥 =

2

𝐵2(𝛼,𝛽)
 . ∑ (−𝛼−𝛽

𝑘
)∞

𝑘=0  . 𝐴(𝑖, 𝑗).  𝛪6                     (5.3) 

where, 

 𝛪6 = ∫ 𝑥
𝜇

−∞
𝑒𝑥𝐵1  𝑑𝑥 =

1

𝐵1
(𝜇 −

1

𝐵1
)𝑒𝜇𝐵1           (5.4) 

From equations (5.3) and (5.4) we get  

0 2 4 6 8 10

0.5

1.0

1.5

2.0

E X

2 3 4 5 60

5

10

15

20

Variance X

1 1 2 3 4 5

3

2

1

1

Skewness

1.0 0.5 0.5 1.0 1.5 2.0

1

2

3

4

5

6

Kurtosis
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∫ 𝑥
𝜇

−∞
 𝑓(𝑥, 𝛼, 𝛽, 𝜆) 𝑑𝑥 =

2

𝐵2(𝛼,𝛽)
 . ∑ (−𝛼−𝛽

𝑘
)∞

𝑘=0  . 𝐴(𝑖, 𝑗).
1

𝐵1
(𝜇 −

1

𝐵1
)𝑒𝜇𝐵1       (5.5) 

Similarly, we have  

∫ 𝑥
∞

𝜇
 𝑓(𝑥, 𝛼, 𝛽, 𝜆) 𝑑𝑥 =

2

𝐵2(𝛼,𝛽)
 . ∑ (−𝛼−𝛽

𝑘
)∞

𝑘=0  . 𝐴(𝑖, 𝑗). [
1

𝐵1
(𝜇 −

1

𝐵1
) 𝑒𝜇𝐵1 −

1

𝐵1
2 +

1

𝐵2
2]      (5.6) 

Substituting from (5.2),(5.5), and (5.6) in (5.1) the result of  Δ11(𝜇)  is obtained. 

The second case, for  μ > 0,  we get 

𝐹(𝜇) = 1 −
2

𝐵2(𝛼,𝛽)
 . ∑ (−𝛼−𝛽

𝑘
)∞

𝑘=0  . 𝐴(𝑖, 𝑗).
1

𝐵2
. 𝑒−𝜇𝐵2                                                    (5.7) 

The integrals in (5.1) are evaluating as: 

∫ 𝑥
𝜇

−∞
 𝑓(𝑥, 𝛼, 𝛽, 𝜆) 𝑑𝑥 =

2

𝐵2(𝛼,𝛽)
 . ∑ (−𝛼−𝛽

𝑘
)∞

𝑘=0  . 𝐴(𝑖, 𝑗). [
1

𝐵2
2 +

1

𝐵2
(𝜇 +

1

𝐵2
) 𝑒𝜇𝐵2 −

1

𝐵1
2]      (5.8) 

∫ 𝑥
∞

𝜇
 𝑓(𝑥, 𝛼, 𝛽, 𝜆) 𝑑𝑥 =

2

𝐵2(𝛼,𝛽)
 . ∑ (−𝛼−𝛽

𝑘
)∞

𝑘=0  . 𝐴(𝑖, 𝑗).
1

𝐵2
(
1

𝐵2
− 𝜇) 𝑒𝜇𝐵2                (5.9) 

Employing (5.7),(5.8), and (5.9) in (5.1) the results of  Δ12(𝜇) is obtained, which complete the proof of theorem. 

6. Transformation of variables 

In practice, one often works with the family of distribution generated by linear transformation 𝑍 = 𝜇 +  𝜂𝑋, where X has 

GSLDIV(𝛼, 𝛽, 𝜆). The random variable 𝑍 gives the general class of the GSLDIV(𝛼, 𝛽, 𝜆) by inclusion of the location 

parameter 𝜇 and the scale parameter 𝜂. It is easy to see that the random variable 𝑍 having also GSLDIV(𝛼, 𝛽, 𝜆, 𝜇, 𝜂). 
 

Theorem (6.1):  
Let X be a random variable having GSLDIV(𝛼, 𝛽, 𝜆) , and 𝑍 = 𝜇 + 𝜂𝑋. Then the nth  moment of the random variable  𝑍  is 
given by           

  𝐸(𝑍)𝑛 = ∑ (𝑛
𝑗
) 𝜇𝑛−𝑗𝑛

𝑗=0 𝜂𝑗𝐸(𝑋𝑗) 

By elementary calculation, we can prove the theorem. Therefore by illustrating the first four moments of a random variable X 

given in section (4) 

(i) 𝐸(𝑍)       =  𝜇 + 𝜂𝐸(𝑋) 
(ii) 𝑣𝑎𝑟(𝑍) =  𝜂2 𝑣𝑎𝑟(𝑋) 
(iii) 𝛾1(𝑍)   =  𝜂

3 𝛾1(𝑋) 
(iv) 𝛾2(𝑍)   =  𝜂

4 𝛾2(𝑋) 
7. Numerical Example 

In this section, we express the flexibility of the distribution to account for wide ranges of the skewness and the kurtosis 

coefficients γ1, γ2 respectively. The mean deviation about the mean is also given for (𝛽 = 1 and different values of 𝛼 and 𝜆). 

 
α 

0 1 2 3 4 15 20 

1 0.00397921 -1.06715 0.688399 0.879374 0.963878 1.55392 1.95642 

2 0 1.21645×10
-9

 1.09019×10
-8

 1.09019×10
-8

 1.61090×10
-7

 0.00431492 0.00546951 

3 -2.32976×10
-14

 -8.25856×10
-16

 -1.26204×10
-15

 -1.84072×10
-15

 -2.43318×10
-15

 3.00771×10
-13

 1.75283×10
-12

 

4 -5.85248×10
-21

 -4.05034×10
-21

 -6.90184×10
-21

 -1.08120×10
-20

 -1.57064×10
-20

 -1.04786×10
-19

 -5.93160×10
-20

 

15 -2.20439×10
-60

 -6.82711×10
-60

 -1.41885×10
-59

 -2.42661×10
-59

 -3.70563×10
-59

 -3.56666×10
-58

 -6.10366×10
-58

 

20 -1.01189×10
-72

 -3.32695×10
-72

 -7.03555×10
-72

 -1.21327×10
-71

 -1.86177×10
-71

 -1.81517×10
-70

 -3.11053×10
-70

 

Table 1: Skewness coefficients of GSLDIV(𝛂, 𝛃, 𝛌) for  = 2. 

  
α 

0 1 2 3 4 15 20 

1 -0.0000178965 8.43576 4.34649 4.35356 4.61145 8.41985 11.4415 

2 -0.000217223 1.14279×10
-11

 1.00814×10
-10

 6.48378×10
-10

 3.12726×10
-9

 0.00238411 0.00325009 

3 -7.07013×10
-20

 -3.09378×10
-22

 -3.70565×10
-22

 2.15101×10
-22

 4.08639×10
-21

 4.13294×10
-17

 3.80039×10
-16

 

4 -1.51547×10
-29

 -2.62460×10
-30

 -5.20149×10
-30

 -9.65149×10
-30

 -1.62266×10
-29

 2.16821×10
-27

 2.13053×10
-26

 

15 -1.41954×10
-89

 -7.25928×10
-89

 -2.13505×10
-88

 -4.73348×10
-88

 -8.88671×10
-88

 -2.61773×10
-86

 -5.85189×10
-86

 

20 
-3.84837×10

-

108
 

-2.20924×10
-

107
 

-6.71880×10
-

107
 

-1.51348×10
-

106
 

-2.86799×10
-

106
 

-8.65918×10
-

105
 

-1.94078×10
-

104
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Table 2: Kurtosis coefficients of GSLDIV(𝛂, 𝛃, 𝛌) for  = 2. 

 
α 

0 1 2 3 4 15 

1 1.49214×10
-13

 4.3259×10
14

 6.56916×10
62

 7.83093×10
101

 3.87547×10
139

 8.26094×10
665

 

2 1.66624×10
15813

 9.83283×10
47637

 8.68520×10
42835

 1.42721×10
36948

 4.00755×10
32627

 1.12668×10
34922

 

3 
2.20260×10

4735296

3
 

9.28478×10
57099403

 
1.50457×10

4556817

2
 

2.78712×10
3700061

2
 

7.07169×10
3097385

0
 

2.85089×10
1147529

9
 

4 
2.31443×10

9538625

0
 

8.23480×10
10933742

2
 

1.31518×10
8668566

9
 

2.06428×10
7019979

6
 

1.64426×10
5867195

0
 

1.25610×10
2132769

5
 

Table 3: Mean deviation about the mean of GSLDIV(𝛂, 𝛃, 𝛌) for  =2. 
8. Conclusion 

From figure 3, table 1 and table 2, we see that (i) the expectation value E(X) increases as  increases and decreases as α 

increases. (ii) var(x) decreases as || increases and decreases as α increases. (iii) Skewness coefficient  γ1 increases as  

increases and decreases as α increase. (iv) kurtosis coefficients  γ2  initially decreases before increasing as || increases and 

decreases as α increases. (v) from for the standard logistic distribution  γ1 = 0 and  γ2 =2  which means it is symmetric 

platykurtic (vi) from table 3, it is clear that the mean deviation about the mean increases when  increases and α increases. 

(vii) the flexibility of SGLD(,α, ) in terms of accommodating more general types of skewness than the ordinary SDL() is 

illustrated by computing moments and, in particular, skewness and kurtosis coefficients. 
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