Mathematical study of eco-epidemiological system

Rana Latief Tayeh and Raid Kamel Naji
Department of Mathematic, College of Science, University of Baghdad, Baghdad, Iraq.
email: rknaji@gmail.com, ranalateif@gmail.com

The research is financed by Asian Development Bank. No. 2006-A171

Abstract

In this paper, a mathematical model consisting of the prey- predator involving infectious disease in prey population, is proposed and analyzed. And this disease passed from a prey to predator through attacking of predator to prey. The model represented mathematically by the set of nonlinear differential equations. The existence, uniqueness and boundedness of the solution of this model are investigated. The local and global stability conditions of all possible equilibrium points are established. The occurrence of local bifurcation (such as saddle-node, transcritical and pitchfork) a long with Hopf bifurcation near each of the equilibrium points are discussed. Finally, numerical simulation is used to study the global dynamics of this model.

Keywords: eco-epidemiological model, SI epidemics disease, prey-predator model, stability analysis, Hopf bifurcation.

1. Introduction:

We consider the growth of two interdependent populations. Given two species, interdependence might arises due to the existence of the interaction between them. The most important models of this type are known preypredator models. Mathematical biologists have been working on merging two major areas of interest Ecology [13] and Epidemiology [4] for a long time. Diseases that affect the prey in particular may affect the entire preypredator system [5-7]. The main objective of these models, which known as eco-epidemiological models, is to investigate the effect of the disease on the dynamical behavior of the prey-predator systems. Prey-predatorpathogen models have been a topic of significant interest since the early1980s. Anderson and May [8] in 1982 constructed the way of merging ecological prey-predator models, which were initiated by Lotka and Volterra, and the epidemiological models that introduced by Kermack and McKendrick. Prey-predator interactions have fascinated mathematical biologists for a long time. Eco-epidemiology is comparatively a new branch in mathematical biology which simultaneously considers the ecological and epidemiological processes [9]. Hadeler and Freedman [10] introduced an eco-epidemiological model regarding prey-predator interactions with both prey and predator subject to disease. Further, it is well known that in nature there is no species lived alone rather than that there are hundreds or thousands of species interact with each other in any given environment. On the other hand densely populated areas are a good incubator for the spread of infectious diseases. Therefore, there is an increasing opportunity for the spread of diseases among the communities interacting with each other. However, many diseases are transmitted in the species not only through contact, but also directly from environment, such as, influenza, bird flu and others see for example [11-15]. However during the last four decades the ideas oriented to study the dynamical behavior of eco-epidemiological models, which represented by mathematical models merging of the two phenomena, that is means the demographics of interacting species and an epidemic evolution in different environment. In this paper a consideration to prey-predator model where the prey population infected by some infectious disease and these disease passed from a prey to predator through attacking or predation process. While the disease transmitted within the same species by contact, between susceptible individuals and infected individuals. In this paper a prey-predator model involving SI infection disease in both the prey and predator species is proposed and analyzed.

2. Mathematical model:

In this section an eco-epidemiological model is proposed for study. The model consists of a prey, whose total population density at time T is denoted by $N(T)$, interacting with predator whose total population density at time T is denoted by $P(T)$. The following assumptions are adopted in formulating the basic ecoepidemiological model:

1. There is an $S I$ epidemic disease in prey population divides the prey population into two classes namely $S(T)$ that represents the density of susceptible prey species at time T and $I(T)$ which represents the density of infected prey species at time T. Therefore at any time T, we have $N(T)=S(T)+I(T)$.
2. The disease is transmitted from a prey to predator during attacking of predator to prey, which divides the predator population into two classes namely $P_{1}(T)$ that represents the density of susceptible predator species at time T and $P_{2}(T)$ which represents the density of infected predator species at time T. Therefore at any time T, we have $P(T)=P_{1}(T)+P_{2}(T)$.
3. The susceptible prey is capable of reproducing in logistic fashion with carrying capacity $k>0$, intrinsic growth $r>0$.
4. The disease transmitted within the same species by contact with an infected individual at infection rates $\lambda_{1}>0$ and $\lambda_{2}>0$ for the prey and predator respectively.
5. In the absence of the prey the susceptible and infected predator decay exponentially with death rate $\gamma_{2}>0$.
6. The disease may causes mortality with a constant mortality rates $\gamma_{1}>0$ and $\gamma_{3}>0$ for prey and predator species respectively.
7. The susceptible predator consumes the susceptible and infected prey according to Lotka-Volterra type of functional response at constant consumption rates $c_{1}>0$ and $c_{2}>0$ for susceptible and infected respectively, while the infected predator can't attack the prey directly due to the its weakness
Considering the above basic assumptions the prey-predator model can be represented in the following set of differential equations.

$$
\begin{align*}
& \frac{d S}{d T}=r S\left(1-\frac{S+I}{k}\right)-c_{1} S P_{1}-\lambda_{1} S I=F_{1}\left(S, I, P_{1}, P_{2}\right) \\
& \frac{d I}{d T}=\lambda_{1} S I-c_{2} I P_{1}-\gamma_{1} I=F_{2}\left(S, I, P_{1}, P_{2}\right) \tag{1}\\
& \frac{d P_{1}}{d T}=-\lambda_{2} P_{1} P_{2}+e_{1} c_{1} S P_{1}+(1-m) e_{2} c_{2} I P_{1}-\gamma_{2} P_{1}=F_{3}\left(S, I, P_{1}, P_{2}\right) \\
& \frac{d P_{2}}{d T}=\lambda_{2} P_{1} P_{2}+m e_{2} c_{2} I P_{1}-\gamma_{2} P_{2}-\gamma_{3} P_{2}=F_{4}\left(S, I, P_{1}, P_{2}\right)
\end{align*}
$$

with $S(0)>0 ; I(0)>0 ; P_{1}(0)>0 ; P_{2}(0)>0 ; 0<e_{i}<1 ; i=1,2$ represent the conversion rates constants and $0 \leq m \leq 1$ represents the infection rate of susceptible predator that predation the infected prey. Cleary, system (1) included (12) parameters, which make the analysis difficult. So, in order to simplify the system the number of parameters is reduced by using the following dimensionless variables.

$$
t=r T, x=\frac{S}{k}, y=\frac{I}{k}, z=\frac{c_{1}}{r} P_{1}, w=\frac{\lambda_{2}}{r} P_{2}
$$

Thus we obtain:

$$
\begin{align*}
& \frac{d x}{d t}=x\left(1-x-\left(1+a_{1}\right) y-z\right)=f_{1}(x, y, z, w) \\
& \frac{d y}{d t}=y\left(a_{1} x-a_{2} z-b_{1}\right)=f_{2}(x, y, z, w) \\
& \frac{d z}{d t}=z\left(-w+b_{2} x+d_{1} y-d_{2}\right)=f_{3}(x, y, z, w) \tag{2}\\
& \frac{d w}{d t}=n_{1} z w+n_{2} y z-\left(d_{2}+l\right) w=f_{4}(x, y, z, w)
\end{align*}
$$

Where:

$$
\begin{gathered}
a_{1}=\frac{\lambda_{1}}{r} k, a_{2}=\frac{c_{2}}{c_{1}}, b_{1}=\frac{\gamma_{1}}{r}, b_{2}=\frac{e_{1} c_{1}}{r} k, d_{1}=(1-m) \frac{e_{2} c_{2}}{r} k \\
d_{2}=\frac{\gamma_{2}}{r}, n_{1}=\frac{\lambda_{2}}{c_{1}}, n_{2}=m \frac{e_{2} c_{2} \lambda_{2}}{c_{1} r} k, l=\frac{\gamma_{3}}{r}
\end{gathered}
$$

represent the dimensionless parameters of the system (2). Moreover the initial condition of system (2) may be taken as any point in the region R_{+}^{4}. The interaction functions in the right hand side of system (2) are continuously differentiable function on R_{+}^{4}, hence they are Lipschitizian. Therefore the solution of system (2) exists and is unique. Further, all the solutions of system (2) with non-negative initial condition are uniformly bounded as shown in the following theorem.
Theorem (1): All the trajectories of system (2), which initiate in R_{+}^{4} are uniformly bounded.
Proof: From the first equation of system (2) we obtain that

$$
\frac{d x}{d t} \leq x(1-x)
$$

Clearly by solving the above differential inequality we get

$$
\lim _{t \rightarrow \infty} \sup x(t) \leq 1
$$

Define the function $G(t)=x(t)+y(t)+z(t)+w(t)$ and then by taking its time derivative along the solution of system (2), gives

$$
\frac{d G}{d t} \leq x-\left(b_{1} y+d_{2} z+\left(d_{2}+l\right) w\right) \leq x-\mu(y+z+w)
$$

where $\mu=\min \left\{b_{1}, d_{2}\right\}$, then we get

$$
\frac{d G}{d t}=(1+\mu) x-\mu G \leq(1+\mu)-\mu G
$$

Now, by using Gronwall lemma, it obtains that:

$$
0<G(t) \leq G(0) e^{-\mu t}-\frac{1+\mu}{\mu}\left(e^{-\mu t}-1\right)
$$

Thus $G(t) \leq \frac{1+\mu}{\mu} \quad$ as $t \rightarrow \infty$ that is independent of the initial conditions and hence the proof is complete.

3. Existence of equilibrium points:

It is observed that, system (2) has at most seven biologically feasible equilibrium points, namely $E_{i}, \quad i=0,1,2,3,4,5,6$. The existence conditions for each of these equilibrium points are discussed in the following:

The vanishing equilibrium point $E_{0}=(0,0,0,0)$ always exists.
The axial equilibrium point $E_{1}=(1,0,0,0)$ always exists.
The predator free equilibrium point $E_{2}=\left(x_{2}, y_{2}, 0,0\right)$, where:

$$
\begin{equation*}
x_{2}=\frac{b_{1}}{a_{1}} \text { and } y_{2}=\frac{a_{1}-b_{1}}{a_{1}\left(1+a_{1}\right)} \tag{3a}
\end{equation*}
$$

exists uniquely in the interior of the first quadrant of $x y$-plane under the following necessary and sufficient condition:

$$
\begin{equation*}
a_{1}>b_{1} \tag{3b}
\end{equation*}
$$

The disease free equilibrium point $E_{3}=\left(x_{3}, 0, z_{3}, 0\right)$, where:

$$
\begin{equation*}
x_{3}=\frac{d_{2}}{b_{2}} \text { and } z_{3}=\frac{b_{2}-d_{2}}{b_{2}} \tag{4a}
\end{equation*}
$$

exists uniquely in the interior of the first quadrant of $x z$-plane under the following necessary and sufficient condition:

$$
\begin{equation*}
b_{2}>d_{2} \tag{4b}
\end{equation*}
$$

The infected prey free equilibrium point $E_{4}=\left(x_{4}, 0, z_{4}, w_{4}\right)$, where:

$$
\begin{equation*}
x_{4}=1-\frac{d_{2}+l}{n_{1}}, z_{4}=\frac{d_{2}+l}{n_{1}} \text { and } w_{4}=b_{2}-\left(\frac{b_{2}\left(d_{2}+l\right)}{n_{1}}+d_{2}\right) \tag{5a}
\end{equation*}
$$

exists uniquely in the interior of the first octant of $x z w$-space under the following necessary and sufficient condition:

$$
\begin{equation*}
n_{1}>d_{2}+l+\frac{n_{1} d_{2}}{b_{2}} \tag{5b}
\end{equation*}
$$

The infected predator free equilibrium point $E_{5}=\left(x_{5}, y_{5}, z_{5}, 0\right)$, where:

$$
\begin{align*}
& x_{5}=\frac{d_{1}\left(a_{2}+b_{1}\right)-a_{2} d_{2}\left(1+a_{1}\right)}{d_{1}\left(a_{1}+a_{2}\right)-a_{2} b_{2}\left(1+a_{1}\right)} \\
& y_{5}=\frac{d_{2}\left(a_{1}+a_{2}\right)-b_{2}\left(a_{2}+b_{1}\right)}{d_{1}\left(a_{1}+a_{2}\right)-a_{2} b_{2}\left(1+a_{1}\right)} \tag{6a}\\
& z_{5}=\frac{d_{1}\left(a_{1}-b_{1}\right)+\left(1+a_{1}\right)\left(b_{1} b_{2}-a_{1} d_{2}\right)}{d_{1}\left(a_{1}+a_{2}\right)-a_{2} b_{2}\left(1+a_{1}\right)}
\end{align*}
$$

exists uniquely in the interior of the first octant of $x y z$-space under the following necessary and sufficient conditions:

$$
\left.\begin{array}{l}
n_{2}=0 \tag{6b}\\
\frac{d_{1}}{a_{2}\left(1+a_{1}\right)}>\frac{d_{2}}{a_{2}+b_{1}}>\frac{b_{2}}{a_{1}+a_{2}} \\
a_{1} d_{1}>b_{1} d_{1}+\left(1+a_{1}\right)\left(a_{1} d_{2}-b_{1} b_{2}\right)
\end{array}\right\}
$$

or

$$
\left.\begin{array}{l}
n_{2}=0 \\
\frac{d_{1}}{a_{2}\left(1+a_{1}\right)}<\frac{d_{2}}{a_{2}+b_{1}}<\frac{b_{2}}{a_{1}+a_{2}} \tag{6c}\\
a_{1} d_{1}+\left(1+a_{1}\right)\left(b_{1} b_{2}-a_{1} d_{2}\right)<b_{1} d_{1}
\end{array}\right\}
$$

The positive equilibrium point $E_{6}=\left(x_{6}, y_{6}, z_{6}, w_{6}\right)$, where:

$$
\begin{gather*}
w_{6}=\frac{n_{2} y_{6} z_{6}}{d_{2}+l-n_{1} z_{6}}, z_{6}=\frac{a_{1} x_{6}-b_{1}}{a_{2}} \\
y_{6}=\frac{\left(d_{2}+l-n_{1} z_{6}\right)\left(b_{2} x_{6}-d_{2}\right)}{z_{6}\left(d_{1} n_{1}+n_{2}\right)-d_{1}\left(d_{2}+l\right)} \tag{7a}
\end{gather*}
$$

while x_{6} represents a positive root of the following second order polynomial equation

$$
\begin{equation*}
A_{1} x^{2}+A_{2} x+A_{3}=0 \tag{7b}
\end{equation*}
$$

here

$$
\begin{gathered}
A_{1}=a_{1}\left[a_{2} n_{1} b_{2}\left(1+a_{1}\right)-\left(d_{1} n_{1}+n_{2}\right)\left(a_{1}+a_{2}\right)\right] \\
A_{2}=\left(n_{1} d_{1}+n_{2}\right)\left[a_{2}\left(a_{1}+b_{1}\right)+2 a_{1} b_{1}\right]+d_{1} a_{2}\left(d_{2}+l\right)\left(a_{2}+a_{1}\right) \\
\quad-a_{2}\left(1+a_{1}\right)\left[a_{2} b_{2}\left(d_{2}+l\right)+n_{1}\left(a_{1} d_{2}+b_{1} b_{2}\right)\right]
\end{gathered}
$$

$$
\begin{aligned}
A_{3}=a_{2} & d_{2}\left(1+a_{1}\right)\left[a_{2}\left(d_{2}+l\right)+n_{1} b_{1}\right] \\
& -\left(a_{2}+b_{1}\right)\left[b_{1}\left(n_{1} d_{1}+n_{2}\right)+d_{1} a_{2}\left(d_{2}+l\right)\right]
\end{aligned}
$$

Consequently, straightforward computation shows that E_{6} exists uniquely in the Int. R_{+}^{4} if and only if the following conditions are hold.

$$
\begin{align*}
& \left.\begin{array}{l}
a_{1} x_{6}>b_{1} \\
d_{2}+l>n_{1} z_{6} \\
b_{2} x_{6}>d_{2} \text { with } n_{2} z_{6}>d_{1}\left(d_{2}+l-n_{1} z_{6}\right) \\
\text { OR } \\
b_{2} x_{6}<d_{2} \text { with } n_{2} z_{6}<d_{1}\left(d_{2}+l-n_{1} z_{6}\right)
\end{array}\right\} \\
& \left.\begin{array}{l}
A_{1}>0 \text { with } A_{3}<0 \\
\text { OR } \\
A_{1}<0 \text { with } A_{3}>0
\end{array}\right\}
\end{align*}
$$

4. Local stability analysis of system (2):

In this section, the local stability analysis of system (2) around each of the above equilibrium points are discussed through computing the Jacobian matrix $J(x, y, z, w)$ of system (2) at each of them which given by:

$$
J=\left(\begin{array}{cccc}
1-2 x-\left(1+a_{1}\right) y-z & -x\left(1+a_{1}\right) & -x & 0 \tag{8}\\
a_{1} y & a_{1} x-a_{2} z-b_{1} & -a_{2} y & 0 \\
b_{2} z & d_{1} z & b_{2} x+d_{1} y-w-d_{2} & -z \\
0 & n_{2} z & n_{1} w+n_{2} y & n_{1} z-\left(d_{2}+l\right)
\end{array}\right)
$$

The Local stability analysis at E_{0} :
The Jacobian matrix of system (2) at E_{0} can be written as:

$$
J_{0}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \tag{9}\\
0 & -b_{1} & 0 & 0 \\
0 & 0 & -d_{2} & 0 \\
0 & 0 & 0 & -\left(d_{2}+l\right)
\end{array}\right)
$$

Clearly, J_{0} has three negative eigenvalues $\lambda_{y}=-b_{1}, \lambda_{z}=-d_{2}, \lambda_{w}=-\left(d_{2}+l\right)$ and one positive eigenvalue in the x-direction $\left(\lambda_{x}=1\right)$, so the equilibrium point E_{0} is unstable saddle point.

The Local stability analysis at E_{1} :

The Jacobian matrix of system (2) at E_{1} can be written as:

$$
J_{1}=\left(\begin{array}{cccc}
-1 & -\left(1+a_{1}\right) & -1 & 0 \tag{10a}\\
0 & a_{1}-b_{1} & 0 & 0 \\
0 & 0 & b_{2}-d_{2} & 0 \\
0 & 0 & 0 & -\left(d_{2}+l\right)
\end{array}\right)
$$

Clearly, J_{1} has the following eigenvalues:

$$
\lambda_{1 x}=-1, \lambda_{1 y}=a_{1}-b_{1}, \lambda_{1 z}=b_{2}-d_{2}, \lambda_{1_{w}}=-\left(d_{2}+l\right)
$$

Therefore all the eigenvalues have negative real parts and hence the equilibrium point E_{1} is locally asymptotically stable in the Int. R_{+}^{4} provided that the following conditions are satisfied:

$$
\begin{align*}
& b_{1}>a_{1} \tag{10b}\\
& d_{2}>b_{2} \tag{10c}
\end{align*}
$$

The Local stability analysis at E_{2} :

The Jacobian matrix of system (2) at E_{2} can be written as:

$$
J_{2}=\left(\begin{array}{cccc}
-x_{2} & -x_{2}\left(1+a_{1}\right) & -x_{2} & 0 \tag{11a}\\
\frac{a_{1}\left(1-x_{2}\right)}{1+a_{1}} & 0 & \frac{a_{2}\left(x_{2}-1\right)}{1+a_{1}} & 0 \\
0 & 0 & b_{2} x_{2}+\frac{d_{1}\left(1-x_{2}\right)}{1+a_{1}}-d_{2} & 0 \\
0 & 0 & \frac{n_{2}\left(1-x_{2}\right)}{1+a_{1}} & -\left(d_{2}+l\right)
\end{array}\right)
$$

The characteristic equation of this Jacobian matrix is given by:

$$
\begin{aligned}
\left\lfloor\lambda_{2}^{2}+x_{2} \lambda_{2}\right. & \left.+x_{2}\left(a_{1}-b_{1}\right)\right\rfloor \\
& \times\left[\left(b_{2} x_{2}+\frac{d_{1}\left(1-x_{2}\right)}{1+a_{1}}-d_{2}-\lambda_{2 z}\right)\left(-d_{2}-l-\lambda_{2 w}\right)\right]=0
\end{aligned}
$$

We obtain that:

$$
\left.\begin{array}{l}
\lambda_{2 x, y}=\frac{-x_{2} \pm \sqrt{x_{2}^{2}-4\left(a_{1}-b_{1}\right) x_{2}}}{2} \tag{11b}\\
\lambda_{2 z}=b_{2} x_{2}+\frac{d_{1}\left(1-x_{2}\right)}{1+a_{1}}-d_{2}, \lambda_{2 w}=-\left(d_{2}+l\right)
\end{array}\right\}
$$

Therefore all the eigenvalues have negative real parts and hence the equilibrium point E_{2} is locally asymptotically stable in the Int. R_{+}^{4} provided that the following condition is satisfied:

$$
\begin{equation*}
d_{2}>b_{2} x_{2}+\frac{d_{1}\left(1-x_{2}\right)}{1+a_{1}} \tag{11c}
\end{equation*}
$$

The Local stability analysis at E_{3} :

The Jacobian matrix of system (2) at E_{3} can be written as:

$$
J_{3}=\left(\begin{array}{cccc}
-x & -x_{3}\left(1+a_{1}\right) & -x_{3} & 0 \tag{12a}\\
0 & \left(a_{1}+a_{2}\right) x_{3}-\left(a_{2}+b_{1}\right) & 0 & 0 \\
b_{2}\left(1-x_{3}\right) & d_{1}\left(1-x_{3}\right) & 0 & x_{3}-1 \\
0 & n_{2}\left(1-x_{3}\right) & 0 & n_{1}\left(1-x_{3}\right)-\left(d_{2}+l\right)
\end{array}\right)
$$

The characteristic equation of this Jacobian matrix is given by:

$$
\begin{aligned}
{\left[\left(a_{1}+a_{2}\right) x_{3}-\left(a_{2}+b_{1}\right)-\lambda_{3 y} \mid[\right.} & \left.n_{1}\left(1-x_{3}\right)-\left(d_{2}+l\right)-\lambda_{3 w}\right] \\
& \times\left[\lambda_{3}^{2}+x_{3} \lambda_{3}+x_{3}\left(b_{2}-d_{2}\right)\right]=0
\end{aligned}
$$

We obtain that:

$$
\left.\begin{array}{l}
\lambda_{3 x, z}=\frac{-x_{3} \pm \sqrt{x_{3}^{2}-4\left(b_{2}-d_{2}\right)} x_{3}}{2}, \tag{12b}\\
\lambda_{3 y}=x_{3}\left(a_{1}+a_{2}\right)-\left(a_{2}+b_{1}\right), \lambda_{3 w}=n_{1}\left(1-x_{3}\right)-\left(d_{2}+l\right)
\end{array}\right\}
$$

Therefore all the eigenvalues have negative real parts and hence the equilibrium point E_{3} is locally asymptotically stable in the Int. R_{+}^{4} provided that the following conditions are satisfied:

$$
\begin{equation*}
x_{3}<\frac{\left(a_{2}+b_{1}\right)}{\left(a_{1}+a_{2}\right)} \text { and } n_{1}<\frac{\left(d_{2}+l\right)}{\left(1-x_{3}\right)} \tag{12c}
\end{equation*}
$$

The Local stability analysis at E_{4} :

The Jacobian matrix of system (2) at E_{4} can be written as

$$
\begin{equation*}
J_{4}=\left(a_{i j}\right)_{4 \times 4} \tag{13a}
\end{equation*}
$$

where:

$$
\begin{aligned}
& a_{11}=-x_{4}<0, a_{12}=-x_{4}\left(1+a_{1}\right)<0, a_{13}=-x_{4}<0, a_{14}=0 \\
& a_{21}=0, a_{22}=a_{1}-\left(b_{1}+z_{4}\left(a_{1}+a_{2}\right)\right), a_{23}=0, a_{24}=0 \\
& a_{31}=b_{2} z_{4}>0, a_{32}=d_{1} z_{4}>0, a_{33}=0, a_{34}=-z_{4}<0 \\
& a_{41}=0, a_{42}=n_{2} z_{4}>0, a_{43}=n_{1} w_{4}>0, a_{44}=0
\end{aligned}
$$

Then the characteristic equation of J_{4} can be written as:

$$
\begin{equation*}
\left(a_{22}-\lambda_{4 y}\right)\left[\lambda_{4}^{3}+L_{1} \lambda_{4}^{2}+L_{2} \lambda_{4}+L_{3}\right]=0 \tag{13b}
\end{equation*}
$$

here

$$
L_{1}=-a_{11}, L_{2}=-\left(a_{13} a_{31}+a_{34} a_{43}\right), L_{3}=a_{11} a_{34} a_{43}
$$

Further, it is easy to verify that $\Delta=L_{1} L_{2}-L_{3}=a_{11} a_{13} a_{31}$. Clearly, the eigenvalue $\lambda_{4 y}$ in y-direction has negative real part if and only if the following condition holds.

$$
\begin{equation*}
a_{1}<b_{1}+z_{4}\left(a_{1}+a_{2}\right) \tag{13c}
\end{equation*}
$$

However, $L_{i}>0, \forall i=1,3$ and $\Delta>0$. So, according to Routh-Hawirtiz criterion the equilibrium point E_{4} is locally asymptotically stable.

The Local stability analysis at E_{5} :

The Jacobian matrix of system (2) at E_{5} can be written as

$$
\begin{equation*}
J_{5}=\left(b_{i j}\right)_{4 \times 4} \tag{14a}
\end{equation*}
$$

where:

$$
\begin{aligned}
& b_{11}=-x_{5}<0, b_{12}=-x_{5}\left(1+a_{1}\right)<0, b_{13}=-x_{5}<0, b_{14}=0 \\
& b_{21}=a_{1} y_{5}>0, b_{22}=0, b_{23}=-a_{2} y_{5}<0, b_{24}=0 \\
& b_{31}=b_{2} z_{5}>0, b_{32}=d_{1} z_{5}>0, b_{33}=0, b_{34}=-z_{5}<0 \\
& b_{41}=0, b_{42}=0, b_{43}=0, b_{44}=n_{1} z_{5}-\left(d_{2}+l\right)
\end{aligned}
$$

Then the characteristic equation of J_{5} can be written as:

$$
\begin{equation*}
\left(b_{44}-\lambda_{5 w}\right)\left\lfloor\lambda_{5}^{3}+D_{1} \lambda_{5}^{2}+D_{2} \lambda_{5}+D_{3}\right\rfloor=0 \tag{14b}
\end{equation*}
$$

here:

$$
\begin{aligned}
& D_{1}=-b_{11}, D_{2}=-\left(b_{12} b_{21}+b_{13} b_{31}+b_{23} b_{32}\right) \\
& D_{3}=b_{11} b_{23} b_{32}-b_{12} b_{23} b_{31}-b_{21} b_{32} b_{13}
\end{aligned}
$$

Further, it is easy to verify that

$$
\Delta=D_{1} D_{2}-D_{3}=b_{11}\left(b_{12} b_{21}+b_{13} b_{31}\right)+b_{12} b_{23} b_{31}+b_{21} b_{32} b_{13}
$$

Not that, according to the element of J_{5}, it easy to verify that:

$$
\begin{aligned}
& D_{1}=x_{5}>0 \\
& D_{3}=x_{5} y_{5} z_{5}\left(d_{1}\left(a_{1}+a_{2}\right)-a_{2} b_{2}\left(1+a_{1}\right)\right) \\
& \Delta=x_{5}\left[x_{5}\left(a_{1}\left(1+a_{1}\right) y_{5}+b_{2} z_{5}\right)+y_{5} z_{5}\left(a_{2} b_{2}\left(1+a_{1}\right)-a_{1} d_{1}\right)\right]
\end{aligned}
$$

Clearly, the eigenvalue $\lambda_{5 w}$ in w-direction has negative real part if and only if the following condition holds.

$$
\begin{equation*}
n_{1} z_{5}<d_{2}+l \tag{14c}
\end{equation*}
$$

However, according to existence condition (6b) $D_{i}>0, \forall i=1,3$ and $\Delta>0$ if and only if

$$
\begin{equation*}
a_{2} b_{2}\left(1+a_{1}\right) \geq a_{1} d_{1} \tag{14d}
\end{equation*}
$$

So, according to Routh-Hawirtiz criterion the equilibrium point E_{5} is locally asymptotically stable. While, according to existence condition (6c) we have $D_{3}<0$. So, according to Routh-Hawirtiz criterion the equilibrium point E_{5} is unstable.

The Local stability analysis at E_{6} :

The Jacobian matrix of system (2) at E_{6} can be written as

$$
\begin{equation*}
J_{6}=\left\lfloor j_{i j}\right\rfloor_{4 \times 4} \tag{15a}
\end{equation*}
$$

where:

$$
\begin{gathered}
j_{11}=1-\left(2 x_{6}+\left(1+a_{1}\right) y_{6}+z_{6}\right), j_{12}=-x_{6}\left(1+a_{1}\right)<0, j_{13}=-x_{6}<0, j_{14}=0 \\
j_{21}=a_{1} y_{6}>0, j_{22}=0, j_{23}=-a_{2} y_{6}<0, j_{24}=0 \\
j_{31}=b_{2} z_{6}>0, j_{32}=d_{1} z_{6}>0, j_{33}=0, j_{34}=-z_{6}<0 \\
j_{41}=0, j_{42}=n_{2} z_{6}>0, j_{43}=n_{1} w_{6}+n_{2} y_{6}>0, j_{44}=n_{1} z_{6}-\left(d_{2}+l\right)<0
\end{gathered}
$$

Then the characteristic equation of J_{6} can be written as:

$$
\begin{equation*}
\lambda_{6}^{4}+C_{1} \lambda_{6}^{3}+C_{2} \lambda_{6}^{2}+C_{3} \lambda_{6}+C_{4}=0 \tag{15b}
\end{equation*}
$$

here:

$$
\begin{aligned}
& C_{1}=-\left(j_{11}+j_{44}\right) \\
& C_{2}=-\left(j_{12} j_{21}+j_{13} j_{31}+j_{23} j_{32}+j_{34} j_{43}-j_{11} j_{44}\right) \\
& C_{3}=j_{11} \Gamma_{1}+j_{23} \Gamma_{2}-j_{12} \Gamma_{3}+j_{13}\left(j_{31} j_{44}-j_{21} j_{32}\right) \\
& C_{4}=\Gamma_{2}\left(j_{13} j_{21}-j_{11} j_{23}\right)+j_{12} \Gamma_{4}
\end{aligned}
$$

Consequently:

$$
\begin{aligned}
\Delta_{1} & =C_{1} C_{2}-C_{3} \\
& =j_{11}\left(j_{13} j_{31}-j_{44} \Gamma_{5}\right)+j_{11} j_{12} j_{21}+j_{34} j_{43} j_{44}+j_{23} j_{34} j_{42}+\Gamma_{6}
\end{aligned}
$$

and

$$
\Delta_{2}=C_{3}\left(C_{1} C_{2}-C_{3}\right)-C_{1}^{2} C_{4}=B_{1}+B_{2}+B_{3}+B_{4}+B_{5}+B_{6}
$$

here:

$$
\begin{gathered}
B_{1}=\left[j_{11} j_{13} j_{31}+j_{11} j_{12} j_{21}+j_{23} j_{34} j_{42}+\Gamma_{6}\right]\left[j_{23} \Gamma_{2}+j_{12} j_{21} j_{44}\right] \\
B_{2}=\left[j_{11}\left(j_{13} j_{31}-j_{44} \Gamma_{5}\right)+j_{34} j_{43} j_{44}+j_{23} j_{34} j_{42}+\Gamma_{6}\right] \\
\times\left[j_{44} j_{13} j_{31}+j_{11} j_{34} j_{43}\right] \\
B_{3}=\left[j_{11} j_{13} j_{31}+j_{12} j_{21} j_{11}+j_{34} j_{43} j_{44}+j_{23} j_{34} j_{42}+\Gamma_{6}\right] \\
\times\left[j_{23} \Gamma_{7}-j_{13} j_{21} j_{32}\right]
\end{gathered}
$$

$$
\begin{aligned}
& B_{4}=j_{44}\left[j_{23} j_{34} j_{43} \Gamma_{2}+2 j_{11} j_{21} j_{34} \Gamma_{8}-j_{11} j_{44} j_{12} j_{21}\left(j_{11}+j_{44}\right)\right] \\
& B_{5}=-\left(j_{11}+j_{44}\right)\left(j_{23} j_{11}^{2} j_{34} j_{42}+j_{44}^{2} \Gamma_{6}\right) \\
& B_{6}=j_{21}\left(j_{34} j_{42} j_{13}\left(j_{11}^{2}+j_{44}^{2}\right)+j_{13} j_{31} j_{12} j_{11} j_{44}\right)
\end{aligned}
$$

with:

$$
\begin{aligned}
& \Gamma_{1}=j_{34} j_{43}+j_{23} j_{32}<0 \\
& \Gamma_{2}=j_{32} j_{44}-j_{34} j_{42}=z_{6}\left(z_{6}\left(d_{1} n_{1}+n_{2}\right)-d_{1}\left(d_{2}+l\right)\right) \\
& \Gamma_{3}=j_{23} j_{31}-j_{21} j_{44} \\
& \quad=-y_{6}\left[a_{2} b_{2} z_{6}+a_{1}\left(n_{1} z_{6}-\left(d_{2}+l\right)\right)\right] \\
& \Gamma_{4}=j_{21} j_{34} j_{43}+j_{23} j_{31} j_{44} \\
& \quad=-y_{6} z_{6}\left[a_{1}\left(n_{1} w_{6}+n_{2} y_{6}\right)+a_{2} b_{2}\left(n_{1} z_{6}-\left(d_{2}+l\right)\right)\right] \\
& \Gamma_{5}=j_{11}+j_{44}=1-2 x_{6}-\left(1+a_{1}\right) y_{6}-z_{6}+n_{1} z_{6}-\left(d_{2}+l\right) \\
& \Gamma_{6}=j_{13} j_{21} j_{32}+j_{31} j_{12} j_{23}=x_{6} y_{6} z_{6}\left(a_{2} b_{2}\left(1+a_{1}\right)-a_{1} d_{1}\right) \\
& \Gamma_{7}=j_{11} j_{32}-j_{12} j_{31}=z_{6}\left(d_{1}\left(1-2 x_{6}-\left(1+a_{1}\right) y_{6}-z_{6}\right)+b_{2}\left(1+a_{1}\right) x_{6}\right) \\
& \Gamma_{8}=j_{13} j_{42}-j_{12} j_{43}=x_{6}\left(\left(1+a_{1}\right)\left(n_{1} w_{6}+n_{2} y_{6}\right)-n_{2} z_{6}\right)
\end{aligned}
$$

Now, according to existence conditions (7c) we have two cases:
Case 1: if the second part of condition (7c) holds then we have $C_{i}>0, i=1,3,4$ and $\Delta_{2}>0$ if and only if the following conditions hold:

$$
\begin{align*}
& 1<2 x_{6}+\left(1+a_{1}\right) y_{6}+z_{6} \tag{15c}\\
& \frac{a_{2} b_{2} z_{6}}{a_{1}}<d_{2}+l-n_{1} z_{6}<\frac{a_{1}\left(n_{1} w_{6}+n_{2} y_{6}\right)}{a_{2} b_{2}} \tag{15d}\\
& n_{1} w_{6}+n_{2} y_{6}<\frac{n_{2} z_{6}}{1+a_{1}} \tag{15e}\\
& \frac{b_{2}\left(1+a_{1}\right) x_{6}}{2 x_{6}+\left(1+a_{1}\right) y_{6}+z_{6}-1}<d_{1} \leq \frac{a_{2} b_{2}\left(1+a_{1}\right)}{a_{1}} \tag{15f}
\end{align*}
$$

So, according to Routh-Hawirtiz criterion the equilibrium point E_{6} is locally asymptotically stable.
Case 2: if the first part of the condition (7c) holds then we have $C_{i}>0, i=1,3,4$ and $\Delta_{2}>0$ if and only if in addition to the conditions (15c)-(15f) hold the following condition should be satisfy.

$$
\begin{equation*}
\Gamma_{2}<\min \left\{H_{1}, H_{2}, H_{3}, H_{4}\right\} \tag{15~g}
\end{equation*}
$$

here

$$
\begin{aligned}
H_{1}=\frac{j_{11} \Gamma_{1}-j_{12} \Gamma_{3}+j_{13}\left(j_{31} j_{44}-j_{21} j_{32}\right)}{-j_{23}}, & H_{2}=\frac{-j_{12} \Gamma_{4}}{\left(j_{13} j_{21}-j_{11} j_{23}\right)}, \\
H_{3}=\frac{-j_{12} j_{21} j_{44}}{j_{23}}, \quad H_{4}=\frac{j_{11} j_{21}\left(j_{44} j_{12} \Gamma_{5}-2 j_{34} \Gamma_{8}\right)}{j_{23} j_{34} j_{43}} &
\end{aligned}
$$

So, according to Routh-Hawirtiz criterion the equilibrium point E_{6} is locally asymptotically stable.

5. Global stability analysis of system (2):

In this section the global stability for the equilibrium points of system (2) is investigated by using the Lyapunov method as shown in the following theorems.
Theorem (2): Assume that the equilibrium point E_{1} of system (2) is locally asymptotically stable in the R_{+}^{4}, and the following conditions are satisfied:

$$
\begin{equation*}
b_{2}<\frac{n_{1} d_{1}+n_{2}}{n_{1} a_{2}}<d_{2} \tag{16a}
\end{equation*}
$$

$$
\begin{equation*}
b_{1}>1+a_{1} \tag{16b}
\end{equation*}
$$

Then E_{1} is globally asymptotically stable in the R_{+}^{4}.
Proof: Consider the following function:

$$
V_{1}=c_{1}(x-1-\ln x)+c_{2} y+c_{3} z+c_{4} w
$$

Where $c_{i} ; i=1,2,3,4$ are positive constants to be determined. Clearly $V_{1}: R_{+}^{4} \rightarrow R$ is C^{1} positive definite function. Now, by calculating the derivative of V_{1} and choosing the positive constants as below:

$$
c_{1}=c_{2}=\frac{n_{1} d_{1}+n_{2}}{a_{2}} ; \quad c_{3}=n_{1} ; \quad c_{4}=1
$$

We obtain that:

$$
\begin{aligned}
\dot{V}_{1} \leq & -\frac{n_{1} d_{1}+n_{2}}{a_{2}}(x-1)^{2}+\frac{n_{1} d_{1}+n_{2}}{a_{2}}\left(1+a_{1}-b_{1}\right) y \\
& +\frac{n_{1} d_{1}+n_{2}-n_{1} a_{2} d_{2}}{a_{2}} z-\frac{n_{1} d_{1}+n_{2}-n_{1} a_{2} b_{2}}{a_{2}} x z
\end{aligned}
$$

According to conditions (16a)-(16b) we get $\stackrel{\bullet}{1}_{1}<0$. Therefore E_{1} is globally asymptotically stable in the R_{+}^{4}. And hence the proof is complete.

Theorem (3): Assume that the equilibrium point E_{2} of system (2) is locally asymptotically stable in the R_{+}^{4}, and the following conditions are satisfied:

$$
\begin{align*}
& \frac{n_{1} d_{2} a_{2}}{n_{1} d_{1}+n_{2}}>a_{2} y_{2}+\frac{a_{1} x_{2}}{1+a_{1}} \tag{17a}\\
& n_{1} b_{2}<1 \tag{17b}
\end{align*}
$$

Then E_{2} is globally asymptotically stable in the R_{+}^{4}.
Proof: Consider the following function:

$$
V_{2}=e_{1}\left(x-x_{2}-x_{2} \ln \frac{x}{x_{2}}\right)+e_{2}\left(y-y_{2}-y_{2} \ln \frac{y}{y_{2}}\right)+e_{3} z+e_{4} w
$$

Where $e_{i} ; i=1,2,3,4$ are positive constants to be determined. Clearly $V_{2}: R_{+}^{4} \rightarrow R$ is C^{1} positive definite function. Now, by calculating the derivative of V_{2} and choosing the positive constants as below:

$$
e_{1}=\frac{a_{1}\left(n_{1} d_{1}+n_{2}\right)}{a_{2}\left(1+a_{1}\right)} ; \quad e_{2}=\frac{n_{1} d_{1}+n_{2}}{a_{2}} ; \quad e_{3}=n_{1} ; \quad e_{4}=1
$$

We obtain that:

$$
\begin{aligned}
\stackrel{V}{V}_{2} \leq & -\frac{a_{1}\left(n_{1} d_{1}+n_{2}\right)}{a_{2}\left(1+a_{1}\right)}\left(x-x_{2}\right)^{2}+\left(\frac{n_{1} d_{1}+n_{2}}{a_{2}}\left(\frac{a_{1} x_{2}}{1+a_{1}}+a_{2} y_{2}\right)-n_{1} d_{2}\right) z \\
& +\left(n_{1} b_{2}-1\right) x z
\end{aligned}
$$

According to conditions (17a)-(17b) we get $\dot{V}_{2}<0$. Therefore E_{2} is globally asymptotically stable in the R_{+}^{4}. And hence the proof is complete.

Theorem (4): Assume that the equilibrium point E_{3} of system (2) is locally asymptotically stable in the R_{+}^{4}, and the following conditions are satisfied:

$$
\begin{equation*}
n_{1} z_{3}<d_{2}+l \tag{18a}
\end{equation*}
$$

$$
\begin{equation*}
\frac{a_{1}\left(n_{1} d_{1}+n_{2}\right)}{n_{1} a_{2}}<b_{2}\left(1+a_{1}\right)<\frac{d_{1} z_{3}}{x_{3}} \tag{18b}
\end{equation*}
$$

Then E_{3} is globally asymptotically stable in the R_{+}^{4}.
Proof: Consider the following function:

$$
V_{3}=h_{1}\left(x-x_{3}-x_{3} \ln \frac{x}{x_{3}}\right)+h_{2} y+h_{3}\left(z-z_{3}-z_{3} \ln \frac{z}{z_{3}}\right)+h_{4} w
$$

Where $h_{i} ; i=1,2,3,4$ are positive constants to be determined. Clearly $V_{3}: R_{+}^{4} \rightarrow R$ is C^{1} positive definite function. Now, by calculating the derivative of V_{3} and choosing the positive constants as below:

$$
h_{1}=n_{1} b_{2} ; \quad h_{2}=\frac{n_{1} d_{1}+n_{2}}{a_{2}} ; \quad h_{3}=n_{1} ; \quad h_{4}=1
$$

We obtain that:

$$
\begin{aligned}
\stackrel{V}{3}_{3} & =-n_{1} b_{2}\left(x-x_{3}\right)^{2}+\left(n_{1}\left(b_{2} x_{3}\left(1+a_{1}\right)-d_{1} z_{3}\right)-\frac{n_{1} d_{1}+n_{2}}{a_{2}} b_{1}\right) y \\
& +\left(n_{1} z_{3}-\left(d_{2}+l\right)\right) w+\left(a_{1} \frac{n_{1} d_{1}+n_{2}}{a_{2}}-n_{1} b_{2}\left(1+a_{1}\right)\right) x y
\end{aligned}
$$

According to conditions (18a)-(18b) we get $\stackrel{\bullet}{3}_{3}<0$. Therefore E_{3} is globally asymptotically stable in the R_{+}^{4}. And hence the proof is complete.

Theorem (5): Assume that the equilibrium point E_{4} of system (2) is locally asymptotically stable in the R_{+}^{4}, and the following condition is satisfied:

$$
\begin{equation*}
\frac{a_{1}\left(n_{1} d_{1}+n_{2}\right)}{n_{1} a_{2}}<b_{2}\left(1+a_{1}\right)<\frac{d_{1} z_{4}}{x_{4}} \tag{19}
\end{equation*}
$$

Then E_{4} is globally asymptotically stable in the R_{+}^{4}.
Proof: Consider the following function:

$$
\begin{aligned}
V_{4} & =k_{1}\left(x-x_{4}-x_{4} \ln \frac{x}{x_{4}}\right)+k_{2} y+k_{3}\left(z-z_{4}-z_{4} \ln \frac{z}{z_{4}}\right) \\
& +k_{4}\left(w-w_{4}-w_{4} \ln \frac{w}{w_{4}}\right)
\end{aligned}
$$

Where $k_{i} ; i=1,2,3,4$ are positive constants to be determined. Clearly $V_{4}: R_{+}^{4} \rightarrow R$ is C^{1} positive definite function. Now, by calculating the derivative of V_{4} and choosing the positive constants as below:

$$
k_{1}=n_{1} b_{2} ; \quad k_{2}=\frac{n_{1} d_{1}+n_{2}}{a_{2}} ; \quad k_{3}=n_{1} ; \quad k_{4}=1
$$

We obtain that:

$$
\begin{aligned}
\stackrel{\bullet}{V}_{4} \leq & -n_{1} b_{2}\left(x-x_{4}\right)^{2}+\left(n_{1}\left(b_{2} x_{4}\left(1+a_{1}\right)-d_{1} z_{4}\right)-\frac{n_{1} d_{1}+n_{2}}{a_{2}} b_{1}\right) y \\
& +\left(a_{1} \frac{n_{1} d_{1}+n_{2}}{a_{2}}-n_{1} b_{2}\left(1+a_{1}\right)\right) x y
\end{aligned}
$$

According to condition (19) we get $\dot{V}_{4}<0$. Therefore E_{4} is globally asymptotically stable in the R_{+}^{4}. And hence the proof is complete.

Theorem (6): Assume that the equilibrium point E_{5} of system (2) is locally asymptotically stable in the R_{+}^{4}, and the following conditions are satisfied:

$$
\begin{align*}
& a_{1} d_{1}-a_{2} b_{2}\left(1+a_{1}\right)=0 \tag{20a}\\
& n_{1} z_{5}<d_{2}+l \tag{20b}
\end{align*}
$$

Then E_{5} is globally asymptotically stable in the R_{+}^{4}.
Proof: Consider the following function:

$$
\begin{aligned}
V_{5} & =m_{1}\left(x-x_{5}-x_{5} \ln \frac{x}{x_{5}}\right)+m_{2}\left(y-y_{5}-y_{5} \ln \frac{y}{y_{5}}\right) \\
& +m_{3}\left(z-z_{5}-z_{5} \ln \frac{z}{z_{5}}\right)+m_{4} w
\end{aligned}
$$

Where $m_{i} ; i=1,2,3,4$ are positive constants to be determined. Clearly $V_{5}: R_{+}^{4} \rightarrow R$ is C^{1} positive definite function. Now, by calculating the derivative of V_{5} and choosing the positive constants as below:

$$
m_{1}=\frac{a_{2} b_{2}}{d_{1}} ; \quad m_{2}=1 ; \quad m_{3}=\frac{a_{2}}{d_{1}} ; \quad m_{4}=\frac{a_{2}}{n_{1} d_{1}}
$$

We obtain that:

$$
\begin{aligned}
\stackrel{\bullet}{V}_{5} & =-\frac{a_{2} b_{2}}{d_{1}}\left(x-x_{5}\right)^{2}+\left(\frac{a_{1} d_{1}-a_{2} b_{2}\left(1+a_{1}\right)}{d_{1}}\right)\left(x-x_{5}\right)\left(y-y_{5}\right) \\
& +\frac{a_{2}}{d_{1}}\left(z_{5}-\frac{d_{2}+l}{n_{1}}\right) w
\end{aligned}
$$

According to conditions (20a)-(20b) we get $\stackrel{V}{5}_{5}<0$. Therefore E_{5} is globally asymptotically stable in the R_{+}^{4}. And hence the proof is complete.
Theorem (7): Assume that the equilibrium point E_{6} of system (2) is locally asymptotically stable in the R_{+}^{4}, and the following conditions are satisfied:

$$
\begin{align*}
& a_{1} d_{1}-a_{2} b_{2}\left(1+a_{1}\right)=0 \tag{21a}\\
& \left(x-x_{6}\right)^{2}>\frac{n_{2}}{n_{1} b_{2}}\left(y z+y_{6} z_{6}\right) \tag{21b}
\end{align*}
$$

Then E_{6} is globally asymptotically stable in the sub region of R_{+}^{4} that satisfy the above conditions.
Proof: Consider the following function:

$$
\begin{aligned}
V_{6} & =r_{1}\left(x-x_{6}-x_{6} \ln \frac{x}{x_{6}}\right)+r_{2}\left(y-y_{6}-y_{6} \ln \frac{y}{y_{6}}\right) \\
& +r_{3}\left(z-z_{6}-z_{6} \ln \frac{z}{z_{6}}\right)+r_{4}\left(w-w_{6}-w_{6} \ln \frac{w}{w_{6}}\right)
\end{aligned}
$$

Where $r_{i} ; i=1,2,3,4$ are positive constants to be determined. Clearly $V_{6}: R_{+}^{4} \rightarrow R$ is C^{1} positive definite function. Now, by calculating the derivative of V_{6} and choosing the positive constants as below:

$$
r_{1}=1 ; \quad r_{2}=\frac{d_{1}}{a_{2} b_{2}} ; \quad r_{3}=\frac{1}{b_{2}} ; \quad r_{4}=\frac{1}{n_{1} b_{2}}
$$

We obtain that:

$$
\begin{aligned}
\stackrel{V}{V}_{6} & \leq-\left(x-x_{6}\right)^{2}+\left(\frac{a_{1} d_{1}-a_{2} b_{2}\left(1+a_{1}\right)}{a_{2} b_{2}}\right)\left(x-x_{6}\right)\left(y-y_{6}\right) \\
& +\frac{n_{2}}{n_{1} b_{2}}\left(y z+y_{6} z_{6}\right)
\end{aligned}
$$

According to conditions (21a)-(21b) we get $\dot{V}_{6}<0$. Therefore E_{6} is globally asymptotically stable in the sub region of R_{+}^{4} that satisfy the above conditions. And hence the proof is complete.

6. The local bifurcation analysis of system (2):

In this section, the effect of varying the parameter values on the dynamical behavior of the system (2) around each equilibrium points is studied. Recall that the existence of nonhyperbolic equilibrium point of system (2) is the necessary but not sufficient condition for bifurcation to occur. Therefore, in the following theorems an application to the Sotomayor's theorem [16] for local bifurcation is adapted.

Now, according to Jacobian matrix of system (2) given in equation (8), it is clear to verify that for any nonzero vector $V=\left(v_{1}, v_{2}, v_{3}, v_{4}\right)^{T}$ we have:

$$
D^{2} F(V, V)=\left(\begin{array}{c}
-2 v_{1}\left(v_{1}+\left(1+a_{1}\right) v_{2}+v_{3}\right) \tag{22}\\
2 v_{2}\left(a_{1} v_{1}-a_{2} v_{3}\right) \\
2 v_{3}\left(b_{2} v_{1}+d_{1} v_{2}-v_{4}\right) \\
2 v_{3}\left(n_{2} v_{2}+n_{1} v_{4}\right)
\end{array}\right)
$$

$D^{3} F(V, V, V)=(0,0,0,0)^{T}$
So, according to Sotomayor's theorem the pitchfork bifurcation does not occur at each point $E_{i}, i=0,1,2,3,4,5,6$.

Note that, according to the Jacobian matrix J_{0} given by Eq.(9) the system (2) at the equilibrium point E_{0} has four non-zero eigenvalues. So, the Jacobian matrix J_{0} has no non hyperbolic equilibrium point. Thus, the system has not bifurcation at E_{0}.
Theorem (8): Suppose that the condition (10b) is satisfied. Then for the parameter value $b_{2}^{*}=d_{2}$ system (2) at the equilibrium point E_{1} has

1. No saddle-node bifurcation.
2. Transcritical bifurcation.

Proof: According to the Jacobian matrix J_{1} given by Eq.(10a) the system (2) at the equilibrium point E_{1} has zero eigenvalue (say $\lambda_{1 z}=0$) at $b_{2}=b_{2}^{*}$, and the Jacobian matrix J_{1} with $b_{2}=b_{2}^{*}$ becomes:

$$
J_{1}^{*}=J\left(\lambda_{1 z}=0\right)=\left(\begin{array}{cccc}
-1 & -\left(1+a_{1}\right) & -1 & 0 \\
0 & a_{1}-b_{1} & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & -\left(d_{2}+l\right)
\end{array}\right)
$$

Now, let $V^{[1]}=\left(v_{1}^{[1]}, v_{2}^{[1]}, v_{3}^{[1]}, v_{4}^{[1]}\right)^{T}$ be the eigenvector corresponding to the eigenvalue $\lambda_{1 z}=0$. Thus $\left(J_{1}^{*}-\lambda_{1 z} I\right) V^{[1]}=0$, which gives: $v_{1}^{[1]}=-v_{3}^{[1]}, v_{2}^{[1]}=0, v_{4}^{[1]}=0$ and $v_{3}^{[1]}$ any nonzero real number.

Let $\Psi^{[1]}=\left(\psi_{1}^{[1]}, \psi_{2}^{[1]}, \psi_{3}^{[1]}, \psi_{4}^{[1]}\right)^{T}$ be the eigenvector associated with the eigenvalue $\lambda_{1 z}=0$ of the matrix $J_{1}^{* T}$. Then we have $\left(J_{1}^{* T}-\lambda_{1 z} I\right) \Psi^{[1]}=0$. By solving this equation for $\Psi^{[1]}$ we obtain $\Psi^{[1]}=\left(0,0, \psi{ }_{3}^{[1]}, 0\right)^{T}$, where $\psi_{3}^{[1]}$ any nonzero real number. Now, consider:

$$
\frac{\partial f}{\partial b_{2}}=f_{b_{2}}\left(X, b_{2}\right)=\left(\frac{\partial f_{1}}{\partial b_{2}}, \frac{\partial f_{2}}{\partial b_{2}}, \frac{\partial f_{3}}{\partial b_{2}}, \frac{\partial f_{4}}{\partial b_{2}}\right)^{T}=(0,0, x z, 0)^{T}
$$

So, $f_{b_{2}}\left(E_{1}, b_{2}^{*}\right)=(0,0,0,0)^{T}$ and hence $\left(\Psi^{[1]}\right)^{T} f_{b_{2}}\left(E_{1}, b_{2}^{*}\right)=0$
So, according to Sotomayor's theorem the saddle-nod bifurcation can not occur. While the first condition of transcritical bifurcation is satisfied. Now, since

$$
D f_{b_{2}}\left(X, b_{2}\right)=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
z & 0 & x & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

Where $D f_{b_{2}}\left(X, b_{2}\right)$ represents the derivative of $f_{b_{2}}\left(X, b_{2}\right)$ with respect to $X=(x, y, z, w)^{T}$. Further, it is observed

$$
\begin{aligned}
& D f_{b_{2}}\left(E_{1}, b_{2}^{*}\right) V^{[1]}=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)\left(\begin{array}{c}
-v_{3}^{[1]} \\
0 \\
v_{3}^{[1]} \\
0
\end{array}\right)=\left(\begin{array}{c}
0 \\
0 \\
v_{3}^{[1]} \\
0
\end{array}\right) \\
& \left(\Psi^{[1]}\right)^{T}\left[D f_{b_{2}}\left(E_{1}, b_{2}^{*}\right) V^{[1]}\right]=\left(0,0, \psi_{3}^{[1]}, 0\right)\left(0,0, v_{3}^{[1]}, 0\right)^{T}=\psi_{3}^{[1]} v_{3}^{[1]} \neq 0
\end{aligned}
$$

Now, by substituting $V^{[1]}$ in (22) we get

$$
D^{2} f\left(E_{1}, b_{2}^{*}\right)\left(V^{[1]}, V^{[1]}\right)=\left(0,0,-2 b_{2}^{*}\left(v_{3}^{[1]}\right)^{2}, 0\right)^{T}
$$

Hence, it is obtain that:

$$
\begin{aligned}
& \left(\Psi^{[1]}\right)^{T}\left[D^{2} f\left(E_{1}, b_{2}^{*}\right)\left(V^{[1]}, V^{[1]}\right)\right]= \\
& \left(0,0, \psi_{3}^{[1]}, 0\right)\left(0,0,-2 b_{2}^{*}\left(v_{3}^{[1]}\right)^{2}, 0\right)^{T}=-2 \psi_{3}^{[1]} b_{2}^{*}\left(v_{3}^{[1]}\right)^{2} \neq 0
\end{aligned}
$$

Thus, according to Sotomayor's theorem system (2) has transcritical bifurcation at E_{1} with the parameter $b_{2}=b_{2}^{*}$.

Theorem (9): Suppose that the condition

$$
\begin{equation*}
a_{2} b_{2}\left(1+a_{1}\right)\left(d_{2}^{*}+l\right) \neq d_{1}\left(a_{1}+a_{2}\right)\left(d_{2}^{*}+l\right)+n_{2} a_{1}\left(1-x_{2}\right) \tag{23}
\end{equation*}
$$

is satisfied. Then for the parameter value $d_{2}^{*}=b_{2} x_{2}+\frac{d_{1}\left(1-x_{2}\right)}{1+a_{1}}$ system (2) at the equilibrium point E_{2} has

1. No saddle-node bifurcation.
2. Transcritical bifurcation.

Proof: According to the Jacobian matrix J_{2} given by Eq.(11a) the system (2) at the equilibrium point E_{2} has zero eigenvalue (say $\lambda_{2 z}=0$) at $d_{2}=d_{2}^{*}$, and the Jacobian matrix J_{2} with $d_{2}=d_{2}^{*}$ becomes:

$$
J_{2}^{*}=J_{2}\left(\lambda_{2 z}=0\right)=\left(\begin{array}{cccc}
-x_{2} & -x_{2}\left(1+a_{1}\right) & -x_{2} & 0 \\
\frac{a_{1}\left(1-x_{2}\right)}{1+a_{1}} & 0 & \frac{-a_{2}\left(1-x_{2}\right)}{1+a_{1}} & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & \frac{n_{2}\left(1-x_{2}\right)}{1+a_{1}} & -\left(d_{2}^{*}+l\right)
\end{array}\right)
$$

Now, let $V^{[2]}=\left(v_{1}^{[2]}, v_{2}^{[2]}, v_{3}^{[2]}, v_{4}^{[2]}\right)^{T}$ be the eigenvector corresponding to the eigenvalue $\left(\lambda_{2 z}=0\right)$. $\operatorname{Thus}\left(J_{2}^{*}-\lambda_{2 z} I\right) V^{[2]}=0$, which gives:

$$
v_{1}^{[2]}=\frac{a_{2}}{a_{1}} v_{3}^{[2]}, v_{2}^{[2]}=\frac{-\left(a_{1}+a_{2}\right)}{a_{1}\left(1+a_{1}\right)} v_{3}^{[2]}, v_{4}^{[2]}=\frac{n_{2}\left(1-x_{2}\right)}{\left(d_{2}^{*}+l\right)\left(1+a_{1}\right)} v_{3}^{[2]} \text { and } v_{3}^{[2]} \text { any nonzero real }
$$ number.

Let $\Psi^{[2]}=\left(\psi_{1}^{[2]}, \psi_{2}^{[2]}, \psi_{3}^{[2]}, \psi_{4}^{[2]}\right)^{T}$ be the eigenvector associated with the eigenvalue $\lambda_{2 z}=0$ of the matrix $J_{2}^{* T}$. Then we have $\left(J_{2}^{* T}-\lambda_{2_{z}} I\right) \Psi^{[2]}=0$.
By solving this equation for $\Psi^{[2]}$ we obtain $\Psi^{[2]}=\left(0,0, \psi_{3}^{[2]}, 0\right)^{T}$, where $\psi_{3}^{[2]}$ any nonzero real number. Now, by using the same steps in the previous theorem we will get

$$
\left(\Psi^{[2]}\right)^{T} f_{d_{2}}\left(E_{2}, d_{2}^{*}\right)=0
$$

So, according to Sotomayor's theorem the saddle-nod bifurcation can not occur, while the first condition of transcritical bifurcation is satisfied. Further, it is observed

$$
\left(\Psi^{[2]}\right)^{T}\left[D f_{d_{2}}\left(E_{2}, d_{2}^{*}\right) V^{[2]}\right]=\left(0,0, \psi_{3}^{[2]}, 0\right)\left(0,0,-v_{3}^{[2]},-v_{4}^{[2]}\right)^{T}=-\psi_{3}^{[2]} v_{3}^{[2]} \neq 0
$$

Now, by substituting $V^{[2]}$ in (22) we get

$$
\begin{aligned}
& \left(\Psi^{[2]}\right)^{T}\left[D^{2} f\left(E_{2}, d_{2}^{*}\right)\left(V^{[2]}, V^{[2]}\right)\right]= \\
& 2 \psi_{3}^{[2]}\left(v_{3}^{[2]}\right)^{2}\left[\frac{\left(a_{2} b_{2}\left(1+a_{1}\right)-d_{1}\left(a_{1}+a_{2}\right)\right)\left(d_{2}^{*}+l\right)-n_{2} a_{1}\left(1-x_{2}\right)}{a_{1}\left(1+a_{1}\right)\left(d_{2}^{*}+l\right)}\right]
\end{aligned}
$$

According to condition (23) we obtain that:

$$
\left(\Psi^{[2]}\right)^{T}\left[D^{2} f\left(E_{2}, d_{2}^{*}\right)\left(V^{[2]}, V^{[2]}\right)\right] \neq 0
$$

Thus, according to Sotomayor's theorem system (2) has transcritical bifurcation at E_{2} with the parameter $d_{2}=d_{2}^{*}$.

Theorem (10): Suppose that the following conditions

$$
\begin{align*}
& x_{3}\left(a_{1}+a_{2}\right)>a_{2} \tag{24}\\
& n_{1}\left(1-x_{3}\right) \neq d_{2}+l \tag{25}\\
& d_{1}+\frac{n_{2}\left(1-x_{3}\right)}{n_{1}\left(1-x_{3}\right)-d_{2}-l}<b_{2}\left(1+a_{1}\right) \tag{26}
\end{align*}
$$

are satisfied. Then for the parameter value $b_{1}^{*}=x_{3}\left(a_{1}+a_{2}\right)-a_{2}$ system (2) at the equilibrium point E_{3} has

1. No saddle-node bifurcation.
2. Transcritical bifurcation.

Proof: According to the Jacobian matrix J_{3} given by Eq.(12a) the system (2) at the equilibrium point E_{3} has zero eigenvalue (say $\lambda_{3 y}=0$) at $b_{1}=b_{1}^{*}$, it is clearly that $b_{1}^{*}>0$ provided that condition (24) holds, and the Jacobian matrix J_{3} with $b_{1}=b_{1}^{*}$ becomes:
$J_{3}^{*}=J_{3}\left(\lambda_{3 y}=0\right)=\left(\begin{array}{cccc}-x_{3} & -x_{3}\left(1+a_{1}\right) & -x_{3} & 0 \\ 0 & 0 & 0 & 0 \\ b_{2}\left(1-x_{3}\right) & d_{1}\left(1-x_{3}\right) & b_{2} x_{3}-d_{2} & x_{3}-1 \\ 0 & n_{2}\left(1-x_{3}\right) & 0 & n_{1}\left(1-x_{3}\right)-\left(d_{2}+l\right)\end{array}\right)$
Now, let $V^{[3]}=\left(v_{1}^{[3]}, v_{2}^{[3]}, v_{3}^{[3]}, v_{4}^{[3]}\right)^{T}$ be the eigenvector corresponding to the eigenvalue $\left(\lambda_{3 y}=0\right)$. Thus $\left(J_{3}^{*}-\lambda_{3 y} I\right) V^{[3]}=0$, which gives:

$$
\begin{aligned}
& v_{1}^{[3]}=\left[\frac{\left(x_{3}-1\right)}{d_{2}-b_{2}}\left(d_{1}-b_{2}\left(1+a_{1}\right)+\frac{n_{2}\left(1-x_{3}\right)}{n_{1}\left(1-x_{3}\right)-d_{2}-l}\right)-\left(1+a_{1}\right)\right] v_{2}^{[3]} \\
& v_{3}^{[3]}=\frac{\left(1-x_{3}\right)}{d_{2}-b_{2}}\left(d_{1}-b_{2}\left(1+a_{1}\right)+\frac{n_{2}\left(1-x_{3}\right)}{n_{1}\left(1-x_{3}\right)-d_{2}-l}\right) v_{2}^{[3]} \\
& v_{4}^{[3]}=\frac{n_{2}\left(x_{3}-1\right)}{n_{1}\left(1-x_{3}\right)-d_{2}-l} v_{2}^{[3]}
\end{aligned}
$$

and $v_{2}^{[3]}$ any nonzero real number. Here we have $v_{1}^{[3]}, v_{3}^{[3]}$ and $v_{4}^{[3]}$ are defined under the existence condition (4b) and (25). While $v_{1}^{[3]}$ and $\nu_{3}^{[3]}$ not equal zero under the condition (26).
Let $\Psi^{[3]}=\left(\psi_{1}^{[3]}, \psi_{2}^{[3]}, \psi_{3}^{[3]}, \psi_{4}^{[3]}\right)^{T}$ be the eigenvector associated with the eigenvalue $\lambda_{3 y}=0$, of the matrix $J_{3}^{* T}$. Then we have $\left(J_{3}^{* T}-\lambda_{3 y} I\right) \Psi^{[3]}=0$. By solving this equation for $\Psi^{[3]}$ we obtain $\Psi^{[3]}=\left(0, \psi_{2}^{[3]}, 0,0\right)^{T}$, where $\psi_{2}^{[3]}$ any nonzero real number. Now, by using the same steps in the previous theorems we will get $\left(\Psi^{[3]}\right)^{T} f_{b_{1}}\left(E_{3}, b_{1}^{*}\right)=0$. So, according to Sotomayor's theorem the saddle-nod bifurcation can not occur. While the first condition of transcritical bifurcation is satisfied. Further, it is observed

$$
\left(\Psi^{[3]}\right)^{T}\left[D f_{b_{1}}\left(E_{3}, b_{1}^{*}\right) N^{[3]}\right]=\left(0, \psi_{2}^{[3]}, 0,0\right)\left(0,-v_{2}^{[3]}, 0,0\right)^{T}=-\psi_{2}^{[3]} \nu_{2}^{[3]} \neq 0
$$

Now, by substituting $V^{[3]}$ in (22) we get

$$
\left(\Psi^{[3]}\right)^{T}\left[D^{2} f\left(E_{3}, b_{1}^{*}\right)\left(V^{[3]}, V^{[3]}\right)\right]=-2 \psi_{2}^{[3]}\left(v_{2}^{[3]}\right)^{2} R
$$

where:

$$
\begin{aligned}
R= & a_{1}\left(1+a_{1}\right) \\
& +\left(a_{1}+a_{2}\right) \frac{1-x_{3}}{d_{2}-b_{2}}\left(d_{1}-b_{2}\left(1+a_{1}\right)+\frac{n_{2}\left(1-x_{3}\right)}{n_{1}\left(1-x_{3}\right)-d_{2}-l}\right)
\end{aligned}
$$

According to condition (26) with existence condition (4b) we obtain that:

$$
\left(\Psi^{[3]}\right)^{T}\left[D^{2} f\left(E_{3}, b_{1}^{*}\right)\left(V^{[3]}, V^{[3]}\right)\right] \neq 0
$$

Thus, according to Sotomayor's theorem system (2) has transcritical bifurcation at E_{3} with the parameter $b_{1}=b_{1}^{*}$.

Theorem (11): Suppose that the following conditions

$$
\begin{align*}
& a_{1}>z_{4}\left(a_{1}+a_{2}\right) \tag{27}\\
& d_{1}>b_{2}\left(1+a_{1}\right) \tag{28}\\
& n_{2} z_{4} \neq n_{1} w_{4} \tag{29}\\
& n_{2} z_{4}\left(a_{1}+a_{2}\right) \neq n_{1} w_{4}\left(1+a_{1}\right) \tag{30}
\end{align*}
$$

are satisfied. Then for the parameter value $\hat{b}_{1}=a_{1}-z_{4}\left(a_{1}+a_{2}\right)$ system (2) at the equilibrium point E_{4} has 1. No saddle-node bifurcation.
2. Transcritical bifurcation.

Proof: According to the Jacobian matrix J_{4} given by Eq.(13a) the system (2) at the equilibrium point E_{4} has zero eigenvalue (say $\lambda_{4 y}=0$) at $b_{1}=\hat{b}_{1}$, it is clearly that $\hat{b}_{1}>0$ provided that condition (27) holds, and the Jacobian matrix J_{4} with $b_{1}=\hat{b}_{1}$ becomes:

$$
J_{4}^{*}=J_{4}\left(\lambda_{4 y}=0\right)=\left(\begin{array}{cccc}
-x_{4} & -x_{4}\left(1+a_{1}\right) & -x_{4} & 0 \\
0 & 0 & 0 & 0 \\
b_{2} z_{4} & d_{1} z_{4} & 0 & -z_{4} \\
0 & n_{2} z_{4} & n_{1} w_{4} & 0
\end{array}\right)
$$

Now, let $V^{[4]}=\left(v_{1}^{[4]}, v_{2}^{[4]}, v_{3}^{[4]}, v_{4}^{[4]}\right)^{T}$ be the eigenvector corresponding to the eigenvalue $\left(\lambda_{4 y}=0\right)$. Thus $\left(J_{4}^{*}-\lambda_{4 y} I\right)^{[4]}=0$, which gives:

$$
v_{1}^{[4]}=\frac{n_{2} z_{4}-n_{1} w_{4}}{n_{1} w_{4}} v_{2}^{[4]}, \quad v_{3}^{[4]}=\frac{-n_{2} z_{4}}{n_{1} w_{4}} v_{2}^{[4]}, v_{4}^{[4]}=\frac{n_{1} w_{4}\left(d_{1}-b_{2}\left(1+a_{1}\right)\right)+b_{2} n_{2} z_{4}}{n_{1} w_{4}} v_{2}^{[4]}
$$

and $v_{2}^{[4]}$ any nonzero real number. Here we have $v_{1}^{[4]}$ and $v_{4}^{[4]}$ not equal zero under the condition (28) and (29). Let $\Psi^{[4]}=\left(\psi_{1}^{[4]}, \psi_{2}^{[4]}, \psi_{3}^{[4]}, \psi_{4}^{[4]}\right)$ be the eigenvector associated with the eigenvalue $\lambda_{4 y}=0$ of the matrix $J_{4}^{* T}$. Then we have $\left(J_{4}^{* T}-\lambda_{4 y} I\right) \Psi^{[4]}=0$. By solving this equation for $\Psi^{[4]}$ we obtain $\Psi^{[4]}=\left(0, \psi_{2}^{[4]}, 0,0\right)^{T}$, where $\psi_{2}^{[4]}$ any nonzero real number. Now, by using the same steps in the previous theorems we will get $(\Psi[4])^{T} f_{b_{1}}\left(E_{4}, \hat{b}_{1}\right)=0$. So, according to Sotomayor's theorem the saddle-nod bifurcation cannot occur. While the first condition of transcritical bifurcation is satisfied. Further, it is observed

$$
\left(\Psi^{[4]}\right)^{T}\left[D f_{b_{1}}\left(E_{4}, \hat{b}_{1}\right) V^{[4]}\right]=\left(0, \psi_{2}^{[4]}, 0,0\right)\left(0,-v_{2}^{[4]}, 0,0\right)=-\psi_{2}^{[4]} v_{2}^{[4]} \neq 0
$$

Now, by substituting $V^{[4]}$ in (22) we get

$$
\left(\Psi^{[4]}\right)^{T}\left[D^{2} f\left(E_{4}, \hat{b}_{1}\right)\left(V^{[4]}, V^{[4]}\right)\right]=2 \psi_{2}^{[4]}\left(v_{2}^{[4]}\right)^{2}\left[\frac{n_{2} z_{4}\left(a_{1}+a_{2}\right)-n_{1} w_{4}\left(1+a_{1}\right)}{n_{1} w_{4}}\right]
$$

According to condition (30) we obtain that:

$$
\left(\Psi^{[4]}\right)^{T}\left[D^{2} f\left(E_{4}, \hat{b}_{1}\right)\left(V^{[4]}, V^{[4]}\right)\right] \neq 0
$$

Thus, according to Sotomayor's theorem system (2) has transcritical bifurcation at E_{4} with the parameter $b_{1}=\hat{b}_{1}$.
Theorem (12): For the parameter value $n_{1}^{*}=\frac{d_{2}+l}{z_{5}}$ system (2) at the equilibrium point E_{5} has

1. No saddle-node bifurcation.

2. Transcritical bifurcation.

Proof: According to the Jacobian matrix J_{5} given by Eq.(14a) the system (2) at the equilibrium point E_{5} has zero eigenvalue (say $\lambda_{5 w}=0$) at $n_{1}=n_{1}^{*}$, and the Jacobian matrix J_{5} with $n_{1}=n_{1}^{*}$ becomes:

$$
J_{5}^{*}=J_{5}\left(\lambda_{5 w}=0\right)=\left(\begin{array}{cccc}
-x_{4} & -x_{4}\left(1+a_{1}\right) & -x_{4} & 0 \\
a_{1} y_{5} & 0 & -a_{2} y_{5} & 0 \\
b_{2} z_{5} & d_{1} z_{5} & 0 & -z_{5} \\
0 & 0 & 0 & 0
\end{array}\right)
$$

Let $V^{[5]}=\left(v_{1}^{[5]}, v_{2}^{[5]}, v_{3}^{[5]}, v_{4}^{[5]}\right)^{T}$ be the eigenvector corresponding to the eigenvalue $\left(\lambda_{5 w}=0\right)$. Thus $\left(J_{5}^{*}-\lambda_{5 w} I\right) V^{[5]}=0$, which gives:

$$
v_{1}^{[5]}=\frac{a_{2}}{a_{1}} v_{3}^{[5]}, v_{2}^{[5]}=\frac{-\left(a_{1}+a_{2}\right)}{a_{1}\left(1+a_{1}\right)} v_{3}^{[5]}, v_{4}^{[5]}=\frac{b_{2} a_{2}\left(1+a_{1}\right)-d_{1}\left(a_{1}+a_{2}\right)}{a_{1}\left(1+a_{1}\right)} v_{3}^{[5]}
$$

and $v_{3}^{[5]}$ any nonzero real number. It is clear that v_{4}^{5} not equals zero under the existence condition (6b) or (6c). Let $\Psi^{[5]}=\left(\psi_{1}^{[5]}, \psi_{2}^{[5]}, \psi_{3}^{[5]}, \psi_{4}^{[5]}\right)^{T}$ be the eigenvector associated with the eigenvalue $\lambda_{5 w}=0$ of the matrix $J_{5}^{* T}$. Then we have $\left(J_{5}^{* T}-\lambda_{5_{w}} I\right) \Psi^{[5]}=0$. By solving this equation for $\Psi^{[5]}$ we obtain $\Psi^{[5]}=\left(0,0,0, \psi_{4}^{[5]}\right)^{T}$, where $\psi_{4}^{[5]}$ any nonzero real number. Now, by using the same steps in the previous theorems we will get $\left(\Psi^{[5]}\right)^{T} f_{n_{1}}\left(E_{5}, n_{1}^{*}\right)=0$. So, according to Sotomayor's theorem the saddle-nod bifurcation cannot occur. While the first condition of transcritical bifurcation is satisfied. Further, it is observed

$$
(\Psi[5])^{T}\left[D f_{n_{1}}\left(E_{5}, n_{1}^{*} V^{[5]}\right]=\left(0,0,0, \psi_{4}^{[5]}\right)\left(0,0,0, z_{5} v_{4}^{[5]}\right)^{T}=z_{5} \psi_{4}^{[5]} v_{4}^{[5]} \neq 0\right.
$$

Now, by substituting $V^{[5]}$ in (22) we get

$$
\left(\Psi^{[5]}\right)^{T}\left[D^{2} f\left(E_{5}, n_{1}^{*}\right)\left(V^{[5]}, V^{[5]}\right)\right]=2 n_{1}^{*} \psi_{4}^{[5]}\left(v_{3}^{[5]}\right)^{2}\left[\frac{b_{2} a_{2}\left(1+a_{1}\right)-\left(a_{1}+a_{2}\right) d_{1}}{a_{1}\left(1+a_{1}\right)}\right]
$$

According to existence condition (6b) or (6c) we obtain that:

$$
\left(\Psi^{[5]}\right)^{T}\left[D^{2} f\left(E_{5}, n_{1}^{*}\right)\left(V^{[5]}, V^{[5]}\right)\right] \neq 0
$$

Thus, according to Sotomayor's theorem system (2) has transcritical bifurcation at E_{5} with the parameter $n_{1}=n_{1}^{*}$.

Theorem (13): Suppose that the condition (15c) with the following conditions are satisfied

$$
\begin{align*}
& \varsigma_{42} S_{1} \neq \varsigma_{12} \varsigma_{21} \varsigma_{43} \tag{31}\\
& \frac{v_{1}^{[6]} \Gamma_{2}\left(S_{2}-S_{1}\left(1+a_{1}\right)\right)}{\varsigma_{12}} \neq \frac{v_{3}^{[6]} \varsigma_{34}\left(n_{1}\left(\varsigma_{42} S_{1}-\varsigma_{12} \varsigma_{21} \varsigma_{43}\right)-n_{2} \varsigma_{44} S_{1}\right)}{\varsigma_{44}} \tag{32}\\
& \frac{\Gamma_{2} S_{1}}{j_{12} y_{6} z_{6}}<a_{1} j_{43} \tag{33}
\end{align*}
$$

Or the conditions (15c) and (31)-(32) with the following conditions are satisfied

$$
\begin{equation*}
\varsigma_{11} \Gamma_{2} \neq \varsigma_{12} \varsigma_{31} \varsigma_{44} \tag{34}
\end{equation*}
$$

then for the parameter value $\hat{b}_{2}=\frac{1}{a_{2} j_{44}}\left[\frac{\Gamma_{2} S_{1}}{j_{12} y_{6} z_{6}}-a_{1} j_{43}\right]$ system (2) at the equilibrium point E_{6} has

1. No saddle-node bifurcation.
2. Transcritical bifurcation.
with, $S_{1}=j_{13} j_{21}-j_{11} j_{23}, S_{2}=\varsigma_{12} \varsigma_{21}-\varsigma_{23} \varsigma_{12}$
Proof: The characteristic equation given by Eq.(15b) having zero eigenvalue (say $\lambda_{6}=0$) if and only if $C_{4}=0$ and then E_{6} becomes a nonhyperbolic equilibrium point. Clearly the Jacobian matrix of system (2) at the equilibrium point E_{6} with parameter $b_{2}=\hat{b}_{2}$ becomes

$$
J_{6}^{*}=J_{6}\left(\lambda_{6}=0\right)=\left[\varsigma_{i j}\right]_{4 \times 4}
$$

where $\varsigma_{i j}=j_{i j}$ for all $i, j=1,2,3,4$ except ς_{31} which is given by: $\varsigma_{31}=\hat{b}_{2} z_{6}$. Not that, if the second part of existence condition (7c) holds then we have $\hat{b}_{2}>0$ if the condition (15c) holds. While, if the first part of the condition (7c) holds then we have $\hat{b}_{2}>0$ if and only if in addition to the condition (15c) holds and the condition (33) should be satisfy. Let $V^{[6]}=\left(v_{1}^{[6]}, v_{2}^{[6]}, v_{3}^{[6]}, v_{4}^{[6]}\right)^{T}$ be the eigenvector corresponding to the eigenvalue $\lambda_{6}=0$. Thus $\left(J_{6}^{*}-\lambda_{6} I\right)^{[6]}=0$, which gives:

$$
v_{1}^{[6]}=-\frac{\varsigma_{23}}{\varsigma_{21}} v_{3}^{[6]}, v_{2}^{[6]}=\frac{-S_{1}}{\varsigma_{12} \varsigma_{21}} v_{3}^{[6]}, v_{4}^{[6]}=\frac{\varsigma_{42} S_{1}-\varsigma_{12} \varsigma_{21} \varsigma_{43}}{\varsigma_{12} \varsigma_{21} \varsigma_{44}} v_{3}^{[6]}
$$

and $v_{3}^{[6]}$ any nonzero real number. Clearly, according to conditions (15c) and (31), we have $v_{2}^{[6]}$ and $v_{4}^{[6]}$ not equal zero. Let $\Psi^{[6]}=\left(\psi_{1}^{[6]}, \psi_{2}^{[6]}, \psi_{3}^{[6]}, \psi_{4}^{[6]}\right)^{T}$ be the eigenvector associated with the eigenvalue $\lambda_{6}=0$ of the matrix $J_{6}^{* T}$. Then we have $\left(J_{6}^{* T}-\lambda_{6} I\right) \Psi^{[6]}=0$. Which gives :

$$
\psi_{1}^{[6]}=\frac{-\Gamma_{2}}{\varsigma_{12} \varsigma_{44}} \psi_{3}^{[6]}, \psi_{2}^{[6]}=\frac{\varsigma_{11} \Gamma_{2}-\varsigma_{12} \varsigma_{31} \varsigma_{44}}{\varsigma_{12} \varsigma_{21} \varsigma_{44}} \psi_{3}^{[6]}, \psi_{4}^{[6]}=-\frac{\varsigma_{34}}{\varsigma_{44}} \psi_{3}^{[6]}
$$

and $\psi_{3}^{[6]}$ any nonzero real number. Not that, if the first part of existence condition (7c) holds then we have $\psi_{2}^{[6]} \neq 0$ if the condition (15c) holds. While, if the second part of the condition (7c) holds then we have $\psi_{2}^{[6]} \neq 0$ if and only if in addition to the condition (15c) holds and the condition (34) should be satisfy. Now, by using the same steps in the previous theorems we will get

$$
\left(\Psi \Psi^{[6]}\right)^{T} f_{b_{2}}\left(E_{6}, \hat{b}_{2}\right)=x_{6} z_{6} \psi_{3}^{[6]} \neq 0
$$

So, according to Sotomayor's theorem the saddle-nod bifurcation cannot occur. While the first condition of transcritical bifurcation is satisfied. Now, by substituting $V^{[6]}$ in (22) we get

$$
\begin{gathered}
\left(\Psi\left[{ }^{[6]}\right)^{T}\left[D^{2} f\left(E_{6}, \hat{b}_{2}\right)\left(V^{[6]}, V^{[6]}\right)\right]=\right. \\
\frac{2 v_{3}^{[6]} \psi_{3}^{[6]}}{\varsigma_{21} \varsigma_{12} \varsigma_{44}}\left(\frac{v_{1}^{[6]} \Gamma_{2}\left(S_{2}-S_{1}\left(1+a_{1}\right)\right)}{\varsigma_{12}}-\frac{v_{3}^{[6]} \varsigma_{34}\left(n_{1}\left(\varsigma_{42} S_{1}-\varsigma_{12} \varsigma_{21} \varsigma_{43}\right)-n_{2} \varsigma_{44} S_{1}\right)}{\varsigma_{44}}\right)
\end{gathered}
$$

So, according to condition (32) we obtain that:

$$
(\Psi[6])^{T}\left[D^{2} f\left(E_{6}, \hat{b}_{2}\right)\left(V^{[6]}, V^{[6]}\right)\right] \neq 0
$$

Thus, according to Sotomayor's theorem system (2) has transcritical bifurcation at E_{6} with the parameter $b_{2}=\hat{b}_{2}$.

7. The Hopf bifurcation analysis of system (2):

In this section, the existence of periodic dynamic in system (2) due to changing the value of one parameter is studied.

The Hopf bifurcation analysis near E_{0} and E_{1} :

According to the Jacobian matrix of system (2) at E_{0} and E_{1}, it is clear that J_{0} given by (9) and J_{1} given by (10a) has always four real eigenvalues. So, the necessary and sufficient conditions for a Hopf bifurcation to occur are not satisfied.

The Hopf bifurcation analysis near E_{2} and E_{3} :

From the characteristic equations of J_{2} and J_{3}, it is observed that the eigenvalues are given respectively as in Eq.(11b) and (12b). Clearly $\operatorname{Re}\left(\lambda_{2 x, y}\right) \neq 0$ and $\operatorname{Re}\left(\lambda_{3 z, w}\right) \neq 0$. So, there is no possibility for Hopf bifurcation to occur.

The Hopf bifurcation analysis near E_{4} :
From the characteristic equations of J_{4}, which given by Eq.(13b) we get:

$$
\Delta=L_{1} L_{2}-L_{3}=a_{11} a_{13} a_{31}=b_{2} z_{4} x_{4}^{2}=0 \text { if and only if } b_{2}=0
$$

But in our assumptions $b_{2}>0$. So, there is no possibility for having complex eigenvalues, then the Hopf bifurcation can not occur.

The Hopf bifurcation analysis near E_{5} and E_{6} : The possibility of Hopf bifurcation to occur is discussed in the following theorems.

Theorem (14): Suppose that the condition (14c) with the following conditions are satisfied:

$$
\begin{align*}
& a_{1} d_{1} y_{5} z_{5}>x_{5}\left(a_{1}\left(1+a_{1}\right) y_{5}+b_{2} z_{5}\right) \tag{35}\\
& b_{2}\left(2+a_{1}\right) \neq d_{1} \tag{36}
\end{align*}
$$

Then for the parameter value $a_{2}^{*}=\frac{a_{1} d_{1} y_{5} z_{5}-x_{5}\left(a_{1}\left(1+a_{1}\right) y_{5}+b_{2} z_{5}\right)}{y_{5} z_{5} b_{2}\left(1+a_{1}\right)}$ the system (2) has a Hopf bifurcation near the point E_{5}.
Proof: Consider the characteristic equation of the system (2) at E_{5} which is given by Eq.(14b). Now, to verify the necessary and sufficient conditions for a Hopf bifurcation to occur we need to find a parameter satisfy $\Delta=0$.Therefore it is observed that $\Delta=0$ gives:

$$
a_{2}^{*}=\frac{a_{1} d_{1} y_{5} z_{5}-x_{5}\left(a_{1}\left(1+a_{1}\right) y_{5}+b_{2} z_{5}\right)}{y_{5} z_{5} b_{2}\left(1+a_{1}\right)}
$$

Clearly, $a_{2}^{*}>0$ provided that the condition (35) holds. The coefficients of the characteristic equation given by Eq.(14b) can be rewritten as

$$
\begin{aligned}
& D_{1}\left(a_{2}^{*}\right)=x_{5}>0 \\
& D_{2}\left(a_{2}^{*}\right)=-\left(-a_{2}^{*} y_{5} b_{32}+b_{12} b_{21}+b_{13} b_{31}\right)>0 \\
& D_{3}\left(a_{2}^{*}\right)=-a_{2}^{*} y_{5}\left(b_{11} b_{32}-b_{12} b_{31}\right)-b_{21} b_{32} b_{1}
\end{aligned}
$$

Hence, for $a_{2}=a_{2}^{*}$ the characteristic equation given by Eq.(14b) becomes:

$$
\left(b_{44}-\lambda_{5 w}\right)\left(\lambda_{5}+D_{1}\right)\left(\lambda_{5}^{2}+D_{2}\right)=0
$$

which has four roots $\lambda_{5 w}=b_{44}, \quad \lambda_{51}=-D_{1}, \quad \lambda_{52}=i \sqrt{D_{2}}$ and $\lambda_{53}=-i \sqrt{D_{2}}$

Clearly, at $a_{2}=a_{2}^{*}$ there are two pure imaginary eigenvalues (λ_{52} and λ_{53}) and two real and negative eigenvalues provided that the condition (14c) holds. Now for all values of a_{2} in the neighborhood of a_{2}^{*}, the roots in general of the following form:

$$
\lambda_{5 w}\left(a_{2}\right)=b_{44}, \lambda_{51}\left(a_{2}\right)=-D_{1}\left(a_{2}\right), \lambda_{52}=\omega_{1}\left(a_{2}\right)+i \omega_{2}\left(a_{2}\right), \lambda_{53}\left(a_{2}\right)=\omega_{1}\left(a_{2}\right)-i \omega_{2}\left(a_{2}\right)
$$

Clearly, $\operatorname{Re}\left(\left.\lambda_{5 j}\left(a_{2}\right)\right|_{a_{2}=a_{2}^{*}}=\omega_{1}\left(a_{2}^{*}\right)=0, j=2,3\right.$ that means the first condition of the necessary and sufficient conditions for Hopf bifurcation is satisfied at $a_{2}=a_{2}^{*}$. Now by substituting $\lambda_{52}=\omega_{1}\left(a_{2}\right)+i \omega_{2}\left(a_{2}\right)$ and $\lambda_{53}\left(a_{2}\right)=\omega_{1}\left(a_{2}\right)-i \omega_{2}\left(a_{2}\right)$ in the equation $\left(\lambda_{5}+D_{1}\right)\left(\lambda_{5}^{2}+D_{2}\right)=0$ and calculating these derivative with respect to the parameter a_{2}, and then comparing the two sides of this equation by equating their real and imaginary parts, it is obtain that:

$$
\begin{align*}
& \Psi\left(a_{2}\right) \omega_{1}^{\prime}\left(a_{2}\right)-\Phi\left(a_{2}\right) \omega_{2}^{\prime}\left(a_{2}\right)+\Theta\left(a_{2}\right)=0 \\
& \Phi\left(a_{2}\right) \omega_{1}^{\prime}\left(a_{2}\right)+\Psi\left(a_{2}\right) \omega_{2}^{\prime}\left(a_{2}\right)+\Gamma\left(a_{2}\right)=0 \tag{37}
\end{align*}
$$

here

$$
\begin{align*}
& \Psi\left(a_{2}\right)=3\left(\omega_{1}\left(a_{2}\right)\right)^{2}+2 D_{1}\left(a_{2}\right) \omega_{1}\left(a_{2}\right)+D_{2}\left(a_{2}\right)-3\left(\omega_{2}\left(a_{2}\right)\right)^{2} \\
& \Phi\left(a_{2}\right)=6 \omega_{1}\left(a_{2}\right) \omega_{2}\left(a_{2}\right)+2 D_{1}\left(a_{2}\right) \omega_{2}\left(a_{2}\right) \\
& \Theta\left(a_{2}\right)=\left(\omega_{1}\left(a_{2}\right)\right)^{2} D_{1}^{\prime}\left(a_{2}\right)+D_{2}^{\prime}\left(a_{2}\right) \omega_{1}\left(a_{2}\right)+D_{3}^{\prime}\left(a_{2}\right)-D_{1}^{\prime}\left(a_{2}\right)\left(\omega_{2}\left(a_{2}\right)\right)^{2} \tag{38}\\
& \Gamma\left(a_{2}\right)=2 \omega_{1}\left(a_{2}\right) \omega_{2}\left(a_{2}\right) D_{1}^{\prime}\left(a_{2}\right)+D_{2}^{\prime}\left(a_{2}\right) \omega_{2}\left(a_{2}\right)
\end{align*}
$$

Solving the linear system (37) by using Cramer's rule for the unknowns $\omega_{1}^{\prime}\left(a_{2}\right)$ and $\omega_{2}^{\prime}\left(a_{2}\right)$, gives that

$$
\omega_{1}^{\prime}\left(a_{2}\right)=-\frac{\Theta\left(a_{2}\right) \Psi\left(a_{2}\right)+\Gamma\left(a_{2}\right) \Phi\left(a_{2}\right)}{\left(\Psi\left(a_{2}\right)\right)^{2}+\left(\Phi\left(a_{2}\right)\right)^{2}} ; \omega_{2}^{\prime}\left(a_{2}\right)=\frac{-\Gamma\left(a_{2}\right) \Psi\left(a_{2}\right)+\Theta\left(a_{2}\right) \Phi\left(a_{2}\right)}{\left(\Psi\left(a_{2}\right)\right)^{2}+\left(\Phi\left(a_{2}\right)\right)^{2}}
$$

Therefore the second necessary and sufficient condition of Hopf bifurcation

$$
\left.\frac{d}{d a_{2}}\left(\operatorname{Re}\left(\lambda_{5 j}\right)\right)\right|_{a_{2}=a_{2}^{*}}=\left.\omega_{1}^{\prime}\left(a_{2}\right)\right|_{a_{2}=a_{2}^{*}} \neq 0, \quad j=2,3
$$

will be satisfied if and only if

$$
\begin{equation*}
\Theta\left(a_{2}^{*}\right) \Psi\left(a_{2}^{*}\right)+\Gamma\left(a_{2}^{*}\right) \Phi\left(a_{2}^{*}\right) \neq 0 \tag{39}
\end{equation*}
$$

Note that for $a_{2}=a_{2}^{*}$ we have $\omega_{1}=0$ and $\omega_{2}=\sqrt{D_{2}\left(a_{2}^{*}\right)}$, substitution into (38) gives the following simplifications:

$$
\begin{aligned}
& \Psi\left(a_{2}^{*}\right)=-2 D_{2}\left(a_{2}^{*}\right), \Phi\left(a_{2}^{*}\right)=2 D_{1}\left(a_{2}^{*}\right) \sqrt{D_{2}\left(a_{2}^{*}\right)} \\
& \Theta\left(a_{2}^{*}\right)=D_{3}^{\prime}\left(a_{2}^{*}\right)-D_{1}^{\prime}\left(a_{2}^{*}\right) D_{2}\left(a_{2}^{*}\right), \Gamma\left(a_{2}^{*}\right)=D_{2}^{\prime}\left(a_{2}^{*}\right) \sqrt{D_{2}\left(a_{2}^{*}\right)}
\end{aligned}
$$

where:

$$
D_{1}^{\prime}=\left.\frac{d D_{1}}{d a_{2}}\right|_{a_{2}=a_{2}^{*}}=0, D_{2}^{\prime}=\left.\frac{d D_{2}}{d a_{2}}\right|_{a_{2}=a_{2}^{*}}=b_{2} y_{5} z_{5}, D_{3}^{\prime}=\left.\frac{d D_{3}}{d a_{2}}\right|_{a_{2}=a_{2}^{*}}=x_{5} y_{5} z_{5}\left(d_{1}-b_{2}\left(1+a_{1}\right)\right)
$$

Consequently,

$$
\Theta\left(a_{2}^{*}\right) \Psi\left(a_{2}^{*}\right)+\Gamma\left(a_{2}^{*}\right) \Phi\left(a_{2}^{*}\right)=2 D_{2}\left(a_{2}^{*}\right) x_{5} y_{5} z_{5}\left(b_{2}\left(2+a_{1}\right)-d_{1}\right)
$$

So, according to condition (36) we have:

$$
\Theta\left(a_{2}^{*}\right) \Psi\left(a_{2}^{*}\right)+\Gamma\left(a_{2}^{*}\right) \Phi\left(a_{2}^{*}\right) \neq 0
$$

Yields, the Hopf bifurcation occurs around the equilibrium point E_{5} at the parameter $a_{2}=a_{2}^{*}$ and the proof is complete.

Now the conditions of Hopf bifurcation for $n=4$ are constructed according to the Haque and Venturino methods [17]. Consider the characteristic equation given by:

$$
P_{4}(\tau)=\tau^{4}+C_{1} \tau^{3}+C_{2} \gamma^{2}+C_{3} \gamma+C_{4}=0
$$

here $C_{1}=-\operatorname{tr}\left(J\left(x^{*}\right)\right), C_{2}=M_{1}\left(J\left(x^{*}\right)\right), C_{3}=-M_{2}\left(J\left(x^{*}\right)\right)$ and $C_{4}=\operatorname{det}\left(J\left(x^{*}\right)\right)$ with $M_{1}\left(J\left(x^{*}\right)\right)$ and $M_{2}\left(J\left(x^{*}\right)\right)$ represent the sum of the principal minors of order two and three of $J\left(x^{*}\right)$ respectively. Clearly, the first condition of Hopf bifurcation holds if and only if
$C_{i}>0 ; i=1,3 ; \Delta_{1}=C_{1} C_{2}-C_{3}>0 ; C_{1}^{3}-4 \Delta_{1}>0$ and $\Delta_{2}=C_{3}\left(C_{1} C_{2}-C_{3}\right)-C_{1}^{2} C_{4}=0$
consequently, $C_{4}=\frac{C_{3}\left(C_{1} C_{2}-C_{3}\right)}{C_{1}^{2}}$. So, the characteristic equation becomes:

$$
\begin{equation*}
P_{4}(\tau)=\left(\tau^{2}+\frac{C_{3}}{C_{1}}\right)\left(\tau^{2}+C_{1} \tau+\frac{\Delta_{1}}{C_{1}}\right)=0 \tag{40}
\end{equation*}
$$

Clearly the roots of Eq.(40) are $\tau_{1,2}=\frac{1}{2}\left(-C_{1} \pm \sqrt{C_{1}^{2}-4 \frac{\Delta_{1}}{C_{1}}}\right), \tau_{3,4}= \pm i \sqrt{\frac{C_{3}}{C_{1}}}$
Now, to verify the transversality condition of Hopf bifurcation, we substitute $\tau(q)=\alpha_{1}(q) \mp i \alpha_{2}(q)$ into Eq.(40), and then calculating its derivative with respect to the bifurcation parameter $q, P_{4}^{\prime}(\tau(q))=0$, comparing the two sides of this equation and then equating their real and imaginary parts, we have

$$
\begin{align*}
& \bar{\Psi}(q) \alpha_{1}^{\prime}(q)-\bar{\Phi}(q) \alpha_{2}^{\prime}(q)+\bar{\Theta}(q)=0 \\
& \bar{\Phi}(q) \alpha_{1}^{\prime}(q)+\bar{\Psi}(q) \alpha_{2}^{\prime}(q)+\bar{\Gamma}(q)=0 \tag{41}
\end{align*}
$$

Where

$$
\begin{align*}
\bar{\Psi}(q) & =4\left(\alpha_{1}(q)\right)^{3}+3 C_{1}(q)\left(\alpha_{1}(q)\right)^{2}+C_{3}(q)+2 C_{2}(q) \alpha_{1}(q) \\
& -12 \alpha_{1}(q) \alpha_{2}^{2}(q)-3 C_{1}(q)\left(\alpha_{2}(q)\right)^{2} \\
\bar{\Phi}(q) & =12\left(\alpha_{1}(q)\right)^{2} \alpha_{2}(q)+6 C_{1}(q) \alpha_{1}(q) \alpha_{2}(q)+2 C_{2}(q) \alpha_{2}(q) \\
& -4\left(\alpha_{2}(q)\right)^{3} \\
\bar{\Theta}(q) & =\left(\alpha_{1}(q)\right)^{3} C_{1}^{\prime}(q)+C_{3}^{\prime}(q) \alpha_{1}(q)+C_{2}^{\prime}(q)\left(\alpha_{1}(q)\right)^{2}+C_{4}^{\prime}(q) \tag{42}\\
& -3 C_{1}^{\prime}(q) \alpha_{1}(q)\left(\alpha_{2}(q)\right)^{2}-C_{2}^{\prime}(q)\left(\alpha_{2}(q)\right)^{2} \\
\bar{\Gamma}(q) & =3\left(\alpha_{1}(q)\right)^{2} \alpha_{2}(q) C_{1}^{\prime}(q)+C_{3}^{\prime}(q) \alpha_{2}(q)+2 C_{2}^{\prime}(q) \alpha_{1}(q) \alpha_{2}(q) \\
& -C_{1}^{\prime}(q)\left(\alpha_{2}(q)\right)^{3}
\end{align*}
$$

Solving the linear system (41) by using Cramer's rule for the unknowns $\alpha_{1}^{\prime}(q)$ and $\alpha_{2}^{\prime}(q)$, gives that

$$
\alpha_{1}^{\prime}(q)=-\frac{\bar{\Theta}(q) \bar{\Psi}(q)+\bar{\Gamma}(q) \bar{\Phi}(q)}{(\bar{\Psi}(q))^{2}+(\bar{\Phi}(q))^{2}} ; \alpha_{2}^{\prime}(q)=\frac{-\bar{\Gamma}(q) \bar{\Psi}(q)+\bar{\Theta}(q) \overline{\bar{\Phi}}(q)}{(\bar{\Psi}(q))^{2}+(\bar{\Phi}(q))^{2}}
$$

Hence the transversality condition not being zero if and only if

$$
\begin{equation*}
\bar{\Theta}(q) \bar{\Psi}(q)+\bar{\Gamma}(q) \bar{\Phi}(q) \neq 0 \tag{43}
\end{equation*}
$$

Theorem (15): Suppose that the conditions (15c), (15e) with the following conditions are satisfied:

$$
\begin{equation*}
\frac{b_{2}\left(1+a_{1}\right) x_{6}}{2 x_{6}+\left(1+a_{1}\right) y_{6}+z_{6}-1}>d_{1} \tag{44}
\end{equation*}
$$

$$
\begin{align*}
& j_{13} j_{21} j_{32}>\max \left\{-j_{11} j_{13} j_{31}, \frac{B_{6}}{\Gamma_{5} j_{44}^{2}}\right\} \tag{45}\\
& \frac{\hat{a}_{2} b_{2} z_{6}}{a_{1}}<d_{2}+l-n_{1} z_{6} \tag{46}\\
& d_{1}<\frac{\hat{a}_{2} b_{2}\left(1+a_{1}\right)}{a_{1}} \tag{47}\\
& C_{1}^{3}-4 \Delta_{1}>0 \tag{48}\\
& \Delta_{1}>C_{3} \tag{49}\\
& \Gamma_{2}<\frac{j_{11} \Gamma_{1}-j_{12} \Gamma_{3}+j_{13}\left(j_{31} j_{44}-j_{21} j_{32}\right)}{-j_{23}} \tag{50}\\
& C_{1}^{2} j_{11}<C_{3}-\Delta_{1} \tag{51}
\end{align*}
$$

Or the conditions (15c),(15e) and (3.16)-(3.21) with the following conditions are satisfied

$$
\begin{align*}
& \Gamma_{7}>-\Gamma_{2} \tag{52}\\
& C_{1}^{2} j_{11}>C_{3}-\Delta_{1} \tag{53}
\end{align*}
$$

Then at the parameter value $\hat{a}_{2}=\frac{1}{2 N_{1} y_{6}}\left(-N_{2}-\sqrt{N_{2}^{2}-4 N_{1} N_{3}}\right)$, the system (2) has a Hopf bifurcation near the point E_{6}, where

$$
\begin{aligned}
& N_{1}=\left(j_{34} j_{42}+j_{31} j_{12}\right)\left(\Gamma_{2}+\Gamma_{7}\right) \\
& N_{2}=j_{13} j_{21} j_{32}\left(j_{34} j_{42}+j_{31} j_{12}\right)+\Gamma_{5}\left(j_{34} j_{42} j_{11}^{2}+j_{31} j_{12} j_{44}^{2}\right) \\
& \quad-\Gamma_{2} j_{34} j_{43} j_{44}-\Gamma_{7}\left[j_{11}\left(j_{12} j_{21}+j_{13} j_{31}\right)+j_{34} j_{43} j_{44}+j_{13} j_{21} j_{32}\right] \\
& \quad-\left(j_{34} j_{42}+j_{31} j_{12}\right)\left(j_{13} j_{31} j_{44}+j_{11} j_{34} j_{43}\right) \\
& \quad-\Gamma_{2}\left[j_{11}\left(j_{12} j_{21}+j_{13} j_{31}\right)+j_{13} j_{21} j_{32}\right]-j_{12} j_{21} j_{44}\left(j_{34} j_{42}+j_{31} j_{12}\right) \\
& N_{3}= \\
& {\left[j_{11}\left(j_{13} j_{31}-j_{44} \Gamma_{5}\right)+j_{34} j_{43} j_{44}+j_{13} j_{21} j_{32}\right]\left[j_{13} j_{31} j_{44}+j_{11} j_{34} j_{43}\right]} \\
& \\
& -j_{13} j_{21} j_{32}\left[j_{11}\left(j_{12} j_{21}+j_{13} j_{31}\right)+j_{34} j_{43} j_{44}+j_{13} j_{21} j_{32}\right] \\
& + \\
& +j_{11} j_{21} j_{44}\left(2 j_{34} \Gamma_{8}-j_{44} j_{12} \Gamma_{5}\right)-\Gamma_{5} j_{13} j_{21} j_{32} j_{44}^{2}+B_{6} \\
& + \\
& +j_{12} j_{21} j_{44}\left[j_{11}\left(j_{12} j_{21}+j_{13} j_{31}\right)+j_{13} j_{21} j_{32}\right]
\end{aligned}
$$

Proof: Consider the characteristic equation of the system (2) at E_{6} which is given by Eq.(15b). Now, to verify the necessary and sufficient conditions for a Hopf bifurcation to occur we need to find a parameter satisfy $\Delta_{2}=0$.Therefore it is observed that $\Delta_{2}=0$ gives:

$$
\begin{equation*}
a_{2}^{2} y_{6}^{2} N_{1}+a_{2} y_{6} N_{2}+N_{3}=0 \tag{54}
\end{equation*}
$$

Now, we have two cases:
Case1: if the first part of existence conditions (7c) hold, then by using Descartes Rule Eq.(54) has a unique positive root $\hat{a}_{2}=\frac{1}{2 N_{1} y_{6}}\left(-N_{2}-\sqrt{N_{2}^{2}-4 N_{1} N_{3}}\right)$ provided that the conditions (15c), (15e), (44) and (45) hold.
Case2: if the second part of existence conditions (7c) hold, then by using Descartes Rule Eq.(54) has a unique positive root $\hat{a}_{2}=\frac{1}{2 N_{1} y_{6}}\left(-N_{2}-\sqrt{N_{2}^{2}-4 N_{1} N_{3}}\right)$ provided that the conditions (15c), (15e), (44), (45) and (52) hold.

Now, at $a_{2}=\hat{a}_{2}$ the characteristic equation given by Eq.(15b) can be written as :

$$
\left(\lambda_{6}^{2}+\frac{C_{3}}{C_{1}}\right)\left(\lambda_{6}^{2}+C_{1} \lambda_{6}+\frac{\Delta_{1}}{C_{1}}\right)=0
$$

Which has four roots $\lambda_{61,2}= \pm i \sqrt{\frac{C_{3}}{C_{1}}}$ and $\lambda_{63,4}=\frac{1}{2}\left(-C_{1} \pm \sqrt{C_{1}^{2}-4 \frac{\Delta_{1}}{C_{1}}}\right)$. Clearly, at $a_{2}=\hat{a}_{2}$ there are two pure imaginary eigenvalues (λ_{61} and λ_{62}) and two eigenvalues which are real and negative provided the conditions (15c) and (46)-(48), and (50) hold when the first part of existence conditions (7c) hold or the conditions (15 c) and (46)-(48) hold when the second part of existence conditions (7 c) hold.

Now for all values of a_{2} in the neighborhood of \hat{a}_{2}, the roots in general of the following form:

$$
\lambda_{61}=\alpha_{1}+i \alpha_{2} ; \quad \lambda_{62}=\alpha_{1}-i \alpha_{2} ; \quad \lambda_{63,4}=\frac{1}{2}\left(-C_{1} \pm \sqrt{C_{1}^{2}-4 \frac{\Delta_{1}}{C_{1}}}\right)
$$

Clearly, $\left.\operatorname{Re}\left(\lambda_{6 k}\left(a_{2}\right)\right)\right|_{a_{2}=\hat{a}_{2}}=\alpha_{1}\left(\hat{a}_{2}\right)=0, k=1,2$ that means the first condition of the necessary and sufficient conditions for Hopf bifurcation is satisfied at $a_{2}=\hat{a}_{2}$. Now to verify the transversality condition we must prove that $\bar{\Theta}\left(\hat{a}_{2}\right) \bar{\Psi}\left(\hat{a}_{2}\right)+\bar{\Gamma}\left(\hat{a}_{2}\right) \bar{\Phi}\left(\hat{a}_{2}\right) \neq 0$, where the form of $\bar{\Theta}, \bar{\Psi}, \bar{\Gamma}$ and $\bar{\Phi}$ are given in Eq.(42). Note that for $a_{2}=\hat{a}_{2}$ we have $\alpha_{1}=0$ and $\alpha_{2}=\sqrt{\frac{C_{3}}{C_{1}}}$, substitution into (42) gives the following simplifications:

$$
\begin{aligned}
& \bar{\Psi}\left(\hat{a}_{2}\right)=-2 C_{3}\left(\hat{a}_{2}\right) ; \quad \bar{\Phi}\left(\hat{a}_{2}\right)=2 \frac{\alpha_{2}\left(\hat{a}_{2}\right)}{C_{1}}\left(C_{1} C_{2}-2 C_{3}\right) \\
& \bar{\Theta}\left(\hat{a}_{2}\right)=C_{4}^{\prime}\left(\hat{a}_{2}\right)-\frac{C_{3}}{C_{1}} C_{2}^{\prime}\left(\hat{a}_{2}\right) ; \bar{\Gamma}\left(\hat{a}_{2}\right)=\alpha_{2}\left(\hat{a}_{2}\right)\left(C_{3}^{\prime}\left(\hat{a}_{2}\right)-\frac{C_{3}}{C_{1}} C_{1}^{\prime}\left(\hat{a}_{2}\right)\right)
\end{aligned}
$$

Where:

$$
\begin{aligned}
& C_{1}^{\prime}=\left.\frac{d C_{1}}{d a_{2}}\right|_{a_{2}=\hat{a}_{2}}=0 ; \quad C_{2}^{\prime}=\left.\frac{d C_{2}}{d a_{2}}\right|_{a_{2}=\hat{a}_{2}}=y_{5} j_{32} \\
& C_{3}^{\prime}=\left.\frac{d C_{3}}{d a_{2}}\right|_{a_{2}=\hat{a}_{2}}=-y_{5}\left(\Gamma_{2}+j_{11} j_{32}+j_{12} j_{31}\right) ; \quad C_{4}^{\prime}=\left.\frac{d C_{4}}{d a_{2}}\right|_{a_{2}=\hat{a}_{2}}=j_{11} y_{5}\left(\Gamma_{2}-j_{12} j_{31} j_{44}\right)
\end{aligned}
$$

Then by using Eq.(43) we get that:

$$
\begin{aligned}
& \bar{\Theta}\left(\hat{a}_{2}\right) \bar{\Psi}\left(\hat{a}_{2}\right)+\bar{\Gamma}\left(\hat{a}_{2}\right) \bar{\Phi}\left(\hat{a}_{2}\right)= \\
& -2 C_{3} y_{6}\left[\Gamma_{2}\left(j_{11}+\frac{\Delta_{1}-C_{3}}{C_{1}^{2}}\right)+\left(\frac{\Delta_{1}-C_{3}}{C_{1}^{2}}\right)\left(j_{11} j_{32}+j_{12} j_{31}\right)-j_{12} j_{31} j_{44}-j_{32} \alpha_{2}^{2}\left(\hat{a}_{2}\right)\right]
\end{aligned}
$$

Now, we have two cases:
Case1: if the first part of existence conditions (7c) hold, then

$$
\bar{\Theta}\left(\hat{a}_{2}\right) \bar{\Psi}\left(\hat{a}_{2}\right)+\bar{\Gamma}\left(\hat{a}_{2}\right) \bar{\Phi}\left(\hat{a}_{2}\right) \neq 0
$$

provided that the conditions (15c), (49) and (51) hold.
Case2: if the second part of existence conditions (7c) hold, then

$$
\bar{\Theta}\left(\hat{a}_{2}\right) \bar{\Psi}\left(\hat{a}_{2}\right)+\bar{\Gamma}\left(\hat{a}_{2}\right) \bar{\Phi}\left(\hat{a}_{2}\right) \neq 0
$$

provided that the conditions (15c), (49) and (53) hold.

So, we obtain that the Hopf bifurcation occurs around the equilibrium point E_{6} at the parameter $a_{2}=\hat{a}_{2}$ and the proof is complete.

8. Numerical analysis of system (2)

In this section the dynamical behavior of system (2) is studied numerically for different sets of parameters and different sets of initial points. The objectives of this study are: first investigate the effect of varying the value of each parameter on the dynamical behavior of system (2) and second confirm our obtained analytical results. It is observed that, for the following set of hypothetical parameters:

$$
\begin{array}{lllll}
a_{1}=0.2 & , a_{2}=0.1 & , b_{1}=0.1 & , b_{2}=0.2 & , d_{1}=0.2 \\
d_{2}=0.1 & , n_{1}=0.2 & , n_{2}=0.4 & , l=0.1 & \tag{55}
\end{array}
$$

The trajectory of the system (2) is drawn in the figure (1) for different initial points.

Figure (1): Time series of the solution of system (2) (a) trajectories of x as a function of time, (b) trajectories of y as a function of time, (c) trajectories of z as a function of time, (d) trajectories of w as a function of time.

Clearly, figure (1) shows that the solution of system (2) approaches asymptotically to the positive equilibrium point $E_{6}=(0.5,0.2,0.1,0.06)$ starting from three different initial points and this is confirming our obtained analytical results regarding to global stability of the positive equilibrium point.

Now in order to discuss the effect of the varying the parameters values of system (2) on the dynamical behavior of the system, the system is solved numerically for the data given in Eq.(55) with varying one parameter each time. It is observed that for the data given in Eq.(55) with varying the parameter value of n_{1} there is no effect on the dynamical behavior of system (2) and the system still approaches to positive equilibrium point. It is observed that for the data as given in Eq.(55) with $a_{1}<0.18$, the solution of system (2) approaches asymptotically to $E_{3}=\left(x_{3}, 0, z_{3}, 0\right)$ in the interior of positive quadrant of $x z$-plane, however for $a_{1} \geq 0.18$ the system approaches to the positive equilibrium point, as shown in figure (2).

Figure (2): Time series of the solution of system (2) for the data given by Eq.(55) with (a) $a_{1}=0.1$, which approaches to ($0.5,0,0.5,0)$ in the interior of positive quadrant of $x z$-plane, (b) $a_{1}=0.18$, which approaches to $(0.64,0.17,0.15,0.06)$ in the interior of R_{+}^{4}.

Similarly varying the parameter a_{2} keeping the rest of parameter values as in Eq.(55), It is observed that for $a_{2} \geq 0.19$, the solution of system (2) approaches asymptotically to $E_{3}=\left(x_{3}, 0, z_{3}, 0\right)$ in the interior of the positive quadrant of $x z$ - plane, however for $a_{2}<0.19$ the system approaches to the positive equilibrium point.

Also varying the parameter b_{1} keeping the rest of parameter values as in Eq.(55), it is observed that for $b_{1} \geq 0.12$, the solution of system (2) approaches asymptotically to $E_{3}=\left(x_{3}, 0, z_{3}, 0\right)$ in the interior of positive quadrant of $x z$ - plane, while for $b_{1}<0.12$ the system approaches to the positive equilibrium point.

For the parameter values given in Eq.(55) with varying b_{2} in the range $b_{2} \geq 0.26$ system (2) approaches asymptotically to $E_{3}=\left(x_{3}, 0, z_{3}, 0\right)$ in the interior of positive quadrant of $x z$ - plane, however for $0.04<b_{2}<0.26$ the system approaches to the positive equilibrium point, while for $b_{2} \leq 0.04$ the solution of system (2) approaches asymptotically to $E_{2}=\left(x_{2}, y_{2}, 0,0\right)$ in the interior of positive quadrant of $x y$ - plane, as shown in figure (3).

Figure (3): Time series of the solution of system (2) for the data given by Eq.(55) with (a) $b_{2}=0.26$, which approaches to $(0.38,0,0.6,0)$ in the interior of positive quadrant of $x z$-plane, (b) $b_{2}=0.02$,
which approaches to $(0.5,0.4, \mathbf{0}, \mathbf{0})$ in the interior of positive quadrant of $x y$-plane, (c) $b_{2}=0.25$, which approaches to $(\mathbf{0 . 5 9}, \mathbf{0 . 1 6}, \mathbf{0 . 1 9}, 0.08)$ in the interior of R_{+}^{4}.

Again for the parameter values given in Eq.(55) with varying d_{1} in the range $d_{1} \geq 0.44$ system (2) approaches asymptotically to $E_{3}=\left(x_{3}, 0, z_{3}, 0\right)$ in the interior of positive quadrant of $x z$ - plane, however for $d_{1}<0.44$ the system approaches to the positive equilibrium point.

For the parameter values given in Eq.(55) with varying d_{2} in the range $d_{2} \geq 0.19$ system (2) approaches asymptotically to $E_{2}=\left(x_{2}, y_{2}, 0,0\right)$ in the interior of positive quadrant of $x y$-plane, however for $d_{2}<0.19$ the system approaches to the positive equilibrium point.

For the parameter values given in Eq.(55) with varying n_{2} in the range $n_{2}<0.25$ system (2) approaches asymptotically to $E_{3}=\left(x_{3}, 0, z_{3}, 0\right)$ in the interior of positive quadrant of $x z$ - plane, however for $n_{2} \geq 0.25$ the system approaches to the positive equilibrium point.

Varying the parameter l keeping the rest of parameter values as in Eq.(55), It is observed that for $l \geq 0.2$, the solution of system (2) approaches asymptotically to $E_{3}=\left(x_{3}, 0, z_{3}, 0\right)$ in the interior of positive quadrant of $x z$ - plane, while for $l<0.2$ the system approaches to the positive equilibrium point.

Moreover, for the parameter values given in Eq.(55) with $b_{1}=0.3$ and $d_{2}=0.3$ the solution of system (2) approaches asymptotically to $E_{1}=(1,0,0,0)$ as shown in figure (4).

Figure (4): Time series of the solution of system (2) for the data given by Eq.(55) with $b_{1}=0.3$ and $d_{2}=0.3$, which approaches to $(\mathbf{1}, \mathbf{0}, \mathbf{0}, \mathbf{0})$.

For the parameter values given in Eq.(55) with $b_{1}=0.09, d_{1}=0.12, d_{2}=0.01$ and $n_{2}=0.03$ the solution of system (2) approaches asymptotically to $E_{4}=\left(x_{4}, 0, z_{4}, w_{4}\right)$ as shown in figure (5).

Figure (5): Time series of the solution of system (2) for the data given by Eq.(55) with $b_{1}=0.09$, $d_{1}=0.12, d_{2}=0.01$ and $n_{2}=0.03$, which approaches to $(\mathbf{0 . 4 5}, \mathbf{0}, \mathbf{0 . 5 5}, \mathbf{0 . 0 8})$ in the interior of positive octant of $x z w$ - plane

However, for the parameter values given in Eq.(55) with $b_{1}=0.09, d_{1}=0.12, d_{2}=0.13$ and $n_{2}=0$ the solution of system (2) approaches asymptotically to $E_{5}=\left(x_{5}, y_{5}, z_{5}, 0\right)$ as shown in figure (6).

Figure (6): Time series of the solution of system (2) for the data given by Eq.(55) with $b_{1}=0.09$, $d_{1}=0.12, d_{2}=0.13$ and $n_{2}=0$, which approaches to $(\mathbf{0 . 5 9}, \mathbf{0 . 0 8}, \mathbf{0 . 2 9}, 0)$ in the interior of positive octant of $x y z$ - plane.

9. Conclusions and Discussion

In this paper, we proposed and analyzed an eco-epidemiological model that described the dynamical behavior of prey-predator model with Lotka-Volterra type of functional response and linear incidence rate for the disease in prey and predator respectively. It is assumed that the disease is transmitted from a prey to predator during the predation process, also the disease transmitted within the same species by contact with an infected individual. The model included four non-linear autonomous differential equations that describe the dynamics of four different population namely susceptible prey x, infected prey y, susceptible predator z and infected predator w. The boundedness of the system (2) has been discussed. The dynamical behavior of system (2) has been investigated locally as well as globally. Further, it is observed that the vanishing equilibrium point (E_{0}) always exist, and it is unstable saddle point. The axial equilibrium point (E_{1}) always exist, and it is locally asymptotically stable point if and only if the conditions (10b)-(10c) hold as well as it is globally if the conditions (16a)-(16b) hold. The predator free equilibrium point (E_{2}) exists provided that the condition (3b) holds, and it is locally asymptotically stable point if and only if the condition (11c) holds as well as it is globally if the conditions (17a)-(17b) hold. The disease free equilibrium point (E_{3}) exists provided that the condition (4b) holds, and it is locally asymptotically stable point if and only if the condition (12c) holds, while it is globally if the conditions (18a)-(18b) hold. The infected prey free equilibrium point $\left(E_{4}\right)$ exists provided that the condition (5b) holds, and it is locally asymptotically stable point if and only if the condition (13c) holds, while it is globally if the condition (19) holds. The infected predator free equilibrium point (E_{5}) exists provided that the condition (6b) or (6c) holds, and it is locally asymptotically stable point if and only if the conditions (14c)-(14d) hold, further it is globally if the conditions (20a)-(20b) hold. The positive equilibrium point of system (2) exists provided that the condition (7c) holds. It is locally asymptotically stable point if and only if conditions (15c)$(15 \mathrm{~g})$ or (15c)-(15f) hold, in addition it is globally if the conditions (22a)-(22b) hold. To understand the effect of varying each parameter on the global dynamics of system (2) and to confirm our above analytical results, system (2) has been solved numerically and the following results are obtained:

1. For the set of hypothetical parameters values given Eq.(55), system (2) approaches asymptotically to a globally asymptotically stable point $E_{6}=(0.5,0.2,0.1,0.06)$.
2. It is observed that the system (2) has no effect of the dynamical behavior for the data given in Eq.(55) with varying the parameter values n_{1} and the system still approaches to positive equilibrium point.
3. As the infection rate of prey a_{1} decreases keeping other parameters fixed as in Eq.(55) then the infected species of prey and predator will face extinction and the solution of system (2) approaches asymptotically to the equilibrium point $E_{3}=\left(x_{3}, 0, z_{3}, 0\right)$. Otherwise the system still have a globally
asymptotically stable positive point in the Int. R_{+}^{4}. Further, it is observed that n_{2} have the same effect as a_{1}.
4. As the attack rate a_{2} increases keeping other parameters as in Eq.(4.1) then the infected species of prey and predator will face extinction and the solution of system (2.2) approaches asymptotically to the equilibrium point $E_{3}=\left(x_{3}, 0, z_{3}, 0\right)$. Otherwise the system still have a globally asymptotically stable positive point in the $\operatorname{Int} . R_{+}^{4}$. Moreover it is observed that the parameter d_{1}, mortality rate of infected prey b_{1} and mortality rate of infected predator l have the same effect as a_{2}.
5. As the conversion rate b_{2} increases keeping other parameters as in Eq.(55) then the infected species of prey and predator will face extinction and the solution of system (2) approaches asymptotically to the equilibrium point $E_{3}=\left(x_{3}, 0, z_{3}, 0\right)$. However decreasing the parameter b_{2} causes extinction of susceptible and infected predator and the solution of system (2) approaches asymptotically to the equilibrium point $E_{2}=\left(x_{2}, y_{2}, 0,0\right)$.
6. As the natural death rate of susceptible and infected predator d_{2} increases keeping other parameters fixed as in Eq.(55) then the susceptible and infected predator face extinction and the solution of system (2) approaches asymptotically to the equilibrium point $E_{2}=\left(x_{2}, y_{2}, 0,0\right)$. Otherwise the system still have a globally asymptotically stable positive point in the Int. R_{+}^{4}.

References

1. Zhou, J., Shi, J.. The existence, bifurcation and stability of positive stationary solutions of a diffusive Leslie-Gower predator-prey model with Holling-type II functional responses, Jour of Math Anal and Appl, 405 (2), pp. 618-630 (2013).
2. Jiao, J.-J., Chen, L.-S., Nieto, J.J., Angela, T.,. Permanence and global attractivity of stage-structured predator-prey model with continuous harvesting on predator and impulsive stocking on prey, Appl Math and Mech (English Edition) 29 (5) , pp. 653-663 (2008).
3. Pan S,. Asymptotic spreading in a Lotka-Volterra predator-prey system, Jour. of Math Anal and Appl, 407 (2) , pp. 230236 (2013).
4. Hethcote. H. W.. The Mathematics of Infectious Diseases, SIAM Review, 42 (4), pp. 599-653 (2000).
5. Mukhopadhyay. B, Bhattacharyya. R, Effects of deterministic and random refuge in a prey-predator model with parasite infection, Math. Biosciences, 239, pp. 124-130 (2012).
6. Jana, S, Kar, T.K., Feb. Modeling and analysis of a prey-predator system with disease in the prey, Chaos, Solitons and Fractals, 47, p.42-53 (2013).
7. Gani. J, Swift. R.J.. Prey-Predator models with infected prey and predators, Discrete and Continuous dynamical system, 33 (11 \& 12), pp. 5059-5066 (2013) .
8. Anderson R M, May R,. The invasion persistence and spread of infectious diseases within animal and plant communities. Philos. Trans. R. Soc. Lond. B Biol. Sci, 314, pp. 533-570 (1982).
9. Bairagi, N., Roy, P. K., and Chattopadhyay, J.. Role of infection on the stability of a predator-prey system with several response functions \{A comparative study\}. Journal of Theoretical Biology, 248:10-25 (2007).
10. Hadeler, K. P. and Freedman, H. I.. Predator-prey populations with parasitic infection. Journal of Mathematical Biology, 27:609-631 (1989).
11. Andreasen V. and Sasaki A.,. Shaping the phylogenetic tree of influenza by cross-immunity, Theoretical population biology, 70, 164-173 (2006).
12. Earn D. J., Dushoff D. J. and Levin S. A.,. Ecology and evolution of the flu., Trends in Ecology and Evolution, 17, 334340 (2002).
13. Ferguson N.M., Galvani A.P. and Bush R.M.,. Ecological and immunological determinants of influenza evolution, Nature, 422, 428-433 (2003).
14. Omori R., Adams B. and Sasaki A.,. Coexistence conditions for strains of influenza with immune cross-reaction, Journal of theoretical biology, 262, 48-57 (2010).
15. Lin J., Andreasen V., Casagrandi R. and Levin S.,.Traveling waves in a model of influenza a drift, Journal of Theoretical Biology, 222, 437-445 (2003).
16. Perko L., Differential Equation and Dynamical Systems, third Edition, New York, Springer-Verlag Inc (2001).
17. Haque M. and Venturino E., Increase of the prey may decrease the healthy predator population in presence of disease in the predator, HERMIS, 7, 38-59, (2006).

The IISTE is a pioneer in the Open-Access hosting service and academic event management. The aim of the firm is Accelerating Global Knowledge Sharing.

More information about the firm can be found on the homepage: http://www.iiste.org

CALL FOR JOURNAL PAPERS

There are more than 30 peer-reviewed academic journals hosted under the hosting platform.
Prospective authors of journals can find the submission instruction on the following page: http://www.iiste.org/journals/ All the journals articles are available online to the readers all over the world without financial, legal, or technical barriers other than those inseparable from gaining access to the internet itself. Paper version of the journals is also available upon request of readers and authors.

MORE RESOURCES

Book publication information: http://www.iiste.org/book/
Academic conference: http://www.iiste.org/conference/upcoming-conferences-call-for-paper/

IISTE Knowledge Sharing Partners

EBSCO, Index Copernicus, Ulrich's Periodicals Directory, JournalTOCS, PKP Open Archives Harvester, Bielefeld Academic Search Engine, Elektronische Zeitschriftenbibliothek EZB, Open J-Gate, OCLC WorldCat, Universe Digtial Library , NewJour, Google Scholar

