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Abstract

In this paper, a mathematical model consisting of the prey- predator involving infectious disease in prey
population, is proposed and analyzed. And this disease passed from a prey to predator through attacking of
predator to prey. The model represented mathematically by the set of nonlinear differential equations. The
existence, uniqueness and boundedness of the solution of this model are investigated. The local and global
stability conditions of all possible equilibrium points are established. The occurrence of local bifurcation (such
as saddle-node, transcritical and pitchfork) a long with Hopf bifurcation near each of the equilibrium points are
discussed. Finally, numerical simulation is used to study the global dynamics of this model.
Keywords: eco-epidemiological model, SI epidemics disease, prey-predator model, stability
analysis, Hopf bifurcation.

1. Introduction:

We consider the growth of two interdependent populations. Given two species, interdependence might arises
due to the existence of the interaction between them. The most important models of this type are known prey-
predator models. Mathematical biologists have been working on merging two major areas of interest Ecology [1-
3] and Epidemiology [4] for a long time. Diseases that affect the prey in particular may affect the entire prey-
predator system [5-7]. The main objective of these models, which known as eco-epidemiological models, is to
investigate the effect of the disease on the dynamical behavior of the prey-predator systems. Prey-predator-
pathogen models have been a topic of significant interest since the early1980s. Anderson and May [8] in 1982
constructed the way of merging ecological prey-predator models, which were initiated by Lotka and Volterra,
and the epidemiological models that introduced by Kermack and McKendrick. Prey-predator interactions have
fascinated mathematical biologists for a long time. Eco-epidemiology is comparatively a new branch in
mathematical biology which simultaneously considers the ecological and epidemiological processes [9]. Hadeler
and Freedman [10] introduced an eco-epidemiological model regarding prey-predator interactions with both prey
and predator subject to disease. Further, it is well known that in nature there is no species lived alone rather than
that there are hundreds or thousands of species interact with each other in any given environment. On the other
hand densely populated areas are a good incubator for the spread of infectious diseases. Therefore, there is an
increasing opportunity for the spread of diseases among the communities interacting with each other. However,
many diseases are transmitted in the species not only through contact, but also directly from environment, such
as, influenza, bird flu and others see for example [11-15]. However during the last four decades the ideas
oriented to study the dynamical behavior of eco-epidemiological models, which represented by mathematical
models merging of the two phenomena, that is means the demographics of interacting species and an epidemic
evolution in different environment. In this paper a consideration to prey-predator model where the prey
population infected by some infectious disease and these disease passed from a prey to predator through
attacking or predation process. While the disease transmitted within the same species by contact, between
susceptible individuals and infected individuals. In this paper a prey-predator model involving Sl infection
disease in both the prey and predator species is proposed and analyzed.

2. Mathematical model:
In this section an eco-epidemiological model is proposed for study. The model consists of a prey, whose

total population density at time T is denoted by N (T) interacting with predator whose total population density
at time T is denoted by P(T). The following assumptions are adopted in formulating the basic eco-

epidemiological model:
1. Thereisan S| epidemic disease in prey population divides the prey population into two classes namely

S(T) that represents the density of susceptible prey species at time T and I(T) which represents the
density of infected prey species at time T . Therefore at any time T , we have N (T)= S(T)+ | (T)
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2. The disease is transmitted from a prey to predator during attacking of predator to prey, which divides
the predator population into two classes namely Pl(T) that represents the density of susceptible

predator species at time T and P, (T) which represents the density of infected predator species at time
T . Therefore at any time T , we have P(T)= Pl(T)Jr PZ(T).

3. The susceptible prey is capable of reproducing in logistic fashion with carrying capacity k >0,
intrinsic growth r > 0.

4. The disease transmitted within the same species by contact with an infected individual at infection rates
A4 >0 and A, >0 for the prey and predator respectively.

5. In the absence of the prey the susceptible and infected predator decay exponentially with death rate
72 >0.

6. The disease may causes mortality with a constant mortality rates 7; >0 and y3 >0 for prey and
predator species respectively.

7. The susceptible predator consumes the susceptible and infected prey according to Lotka-Volterra type
of functional response at constant consumption rates ¢; >0 and C, >0 for susceptible and infected

respectively, while the infected predator can't attack the prey directly due to the its weakness.
Considering the above basic assumptions the prey-predator model can be represented in the following set of
differential equations.

ds S+1

dl

— =4Sl —GIR —pl = FZ(S,LPpPz)

g.lF; ()
dP.

d'I'2 = PP, +MeyCy IR — 7P, —73P, = F4(S, 1, R, Py)

with S(0)>0;1(0)>0;P(0)>0;P,(0)>0; 0<g <1;i=12 represent the conversion rates constants

and 0<m <1 represents the infection rate of susceptible predator that predation the infected prey. Cleary,
system (1) included (12) parameters, which make the analysis difficult. So, in order to simplify the system the
number of parameters is reduced by using the following dimensionless variables.

Syl , 4 2
t:rT1 X=—, :_,Z:—P, W= P
YTk rot ro?

Thus we obtain:

%: X1—x—(1+a)y-2)= f(x,y,2,w)
d
o = Yax-a,z-b)=f(xy.2.w)
2
% = 2(-w+byx+dyy —d,) = f5(x,y,z,w)

(3—\:/ = Mnzw+n,yz —(dy + 1w = f,4(x,y, 2, w)

Where:
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8 =Lk a,= %2 b =21 b, =%k g = (1-m)%2%2k
r C r r r
A e,Co A
dy=22 =22 n,=m=2222y =13
r G Gr r

represent the dimensionless parameters of the system (2). Moreover the initial condition of system (2) may be
taken as any point in the region Rf. The interaction functions in the right hand side of system (2) are

continuously differentiable function on Ri’, hence they are Lipschitizian. Therefore the solution of system (2)

exists and is unique. Further, all the solutions of system (2) with non-negative initial condition are uniformly
bounded as shown in the following theorem.

Theorem (1): All the trajectories of system (2), which initiate in R_‘:’ are uniformly bounded.
Proof: From the first equation of system (2) we obtain that

dx
2 <x(1-
o <x1=x)

Clearly by solving the above differential inequality we get
lim supx(t)<1
t—w

Define the function G(t)z X(t)+ y(t)+ Z(t)+ W(t) and then by taking its time derivative along the solution
of system (2), gives

?j—ct;s x—(byy +dyz +(dy + w)< x— gy + 2 +w)
where £2=min{b;,d,}, then we get

dG

= K= G < (L pr) = 4G

Now, by using Gronwall lemma, it obtains that:
0<G(t)<G(0e 1A (eu =)
U

1+
Thus G(t)s K as tow thatis independent of the initial conditions and hence the proof is complete.
u

3. Existence of equilibrium points:

It is observed that, system (2) has at most seven biologically feasible equilibrium points,
namely E;, 1=0,1,2,3,4,5,6. The existence conditions for each of these equilibrium points are discussed in
the following:

The vanishing equilibrium point Ey = (0,0,0,0) always exists.
The axial equilibrium point E; = (1,0,0,0) always exists.
The predator free equilibrium point E, = (XZ, y2,0,0), where:

a —
Xy = & and Yo :1—bl (3a)
a ay(1+a)
exists uniquely in the interior of the first quadrant of xy-plane under the following necessary and sufficient
condition:

a;>b (3b)

The disease free equilibrium point E; = (X3,O, 23,0), where:
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d b, —d
Xg=—2 and z3=-2—2 (42)
b, b,

exists uniquely in the interior of the first quadrant of xz-plane under the following necessary and sufficient
condition:

b2 > d2 (4b)
The infected prey free equilibrium point E4 = (X4,O, Z4,W4), where:
dy +1 dy, +1 b, (d, +1
X4 =1- 2 y Z4 = 2 and W4 = b2 - M"‘dz (Sa)
M M M

exists uniquely in the interior of the first octant of xzw-space under the following necessary and sufficient
condition:

n1>d2+l+néi (5b)

2
The infected predator free equilibrium point Eg = (X5, Y5, 25,0), where:
e = dy(ap +1;)—2,d,(1+2y)
5
dy(ay +ap)—aph,(1+a)
Vs = dy(ay +a,)—by(a, +by) (6a)
dy(ay +ay)—ash,(1+a)
dy(ay — by )+ (1+ 3y by, —ayd,)
dy(ay +ay)—ash,(1+a)

exists uniquely in the interior of the first octant of xyz-space under the following necessary and sufficient
conditions:

n2:0

d _ d _ b
a(l+a) a,+b  a+a,
ayd; > byd; +(1+ay)(a4d, —byy)

25:

(6b)

or
n2 :0
d; - d, - b,
a(l+a) ay,+b a +a,
ady +(1+ag)(byb, —aydy) <bydy
The positive equilibrium point Eg = (XG, Y6 26,W6), where:
__ MYe%s _ X —by
dy+1-mzg' ° a,
Vg = (dp +1—myzg Jbyxg —d,)
2g(ding + 1) —dy(dp +1)

while Xg represents a positive root of the following second order polynomial equation

AX? + Agx + Ay =0 (7b)

A =ag[apmy, (1+a)— (dyy +ny Nay +a, )]
A = (nldl +Ny )[aZ(al + b1)+ 231b1]+ dlaz(dz + I)(a2 + al)
—a (1+ al)[aZbZ (dz + |)+ nl(ale +bjb, )]

(6c)

We

(72)

here
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Ag = a,d,(1+ay Jap (dp +1)+ by
— (a2 + by for (ngdy +np )+ dsay(dp +1)]
Consequently, straightforward computation shows that Eg exists uniquely in the Int. Rf if and only if the
following conditions are hold.

X > by

dy, +1>nz4

byXg > dy With nyzg > dy(dy +1-ny2zg)
OR

boxg < dy, wWith nyzg <dg(d, +1—-nyzg)
A >0 with A; <0

OR

A <0 with A;>0

(7)

4. Local stability analysis of system (2):

In this section, the local stability analysis of system (2) around each of the above equilibrium points are
discussed through computing the Jacobian matrix J (X, v, Z, W) of system (2) at each of them which given by:

1-2x—(l+a)y-z —x(1+a) —X 0
a _a,7- - 0
J= 1Y aX—az—h ay ®
b,z d,z byx+d;y—w—d, -z
0 N,z W+ N,y nz—(d, +1)

The Local stability analysis at Eg:
The Jacobian matrix of system (2) at E can be written as:
1 0 0 0
5|0 B0 0 o
0 0 -d, 0
0 0 0 —(dy+1)
Clearly, Jq has three negative eigenvalues Ay =—b;, 1, =—d,, Ay =—(d, +1) and one positive

eigenvalue in the x-direction (ZX = 1), so the equilibrium point Eg is unstable saddle point.

The Local stability analysis at E;:

The Jacobian matrix of system (2) at E; can be written as:

-1 —(1+ga) -1 0
0 - 0 0
1=l alobl b, —d 0 (102)
2 — Y2
0 0 0 —(dy +1)

Clearly, Jq has the following eigenvalues:

ﬂ’lx =_1’ ﬂiy =al_bl’ ﬁ’lz =b2_d2’ ﬂiwz _(dZ +I)
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Therefore all the eigenvalues have negative real parts and hence the equilibrium point E; is locally

asymptotically stable in the Int.Rf provided that the following conditions are satisfied:

b >a (10b)
d2 > b2 (10C)

The Local stability analysis at E,:
The Jacobian matrix of system (2) at E, can be written as:

X,  —Xy(l+a) — X, 0
2y(1-%,) 0 2y(x, 1) 0
1+a 1+
Jo = 0 0 b- X +M_d 0 (11a)
272 1+ 2
0 0 M —(dy, +1)
1+
The characteristic equation of this Jacobian matrix is given by:
[/13 +XoAp + X3 (al - b1)J
{[bzx2 L aul aXZ)—dz —J,ZZJ( d |—/12W)} 0
1
We obtain that
P _—xzi\/x2—4(a1—b1)x2
2X,y 2 '
(11b)

d,(1-x
/12z=b2X2+11(+—a12) dy, Aoy = (d2+|)

Therefore all the eigenvalues have negative real parts and hence the equilibrium point E, is locally

asymptotically stable in the Int.Rf' provided that the following condition is satisfied:

dy(1—x,) (110)

d, >b,x, +
2~ rene 1+g

The Local stability analysis at E3:

The Jacobian matrix of system (2) at E3 can be written as:

—X —Xg(l+a) — Xg 0
Jym 0 (a+a,)x3—(a, +b) 0 0 12
by (1-x5) dy (L-x3) 0 X3 —1
0 n,(1-x3) 0 n(-x3)-(dy+1)

The characteristic equation of this Jacobian matrix is given by:
(ay +ay )x3 — (g +1y ) Agy Iny (1= x3) - (dj +1)— 23]

[13 + X3ﬂ3 + X3 bz — )] 0
We obtain that:
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—xgi\/x:f —4(by —dj )x3

Azx,z = > ) (12b)
Aay =X3(ay +ay)—(ay +by ), Agy =ny(L—xg)—(dy +1)

Therefore all the eigenvalues have negative real parts and hence the equilibrium point Ej is locally

asymptotically stable in the Int.Rj_1 provided that the following conditions are satisfied:
(g +1y) (da +1)

" (ayray) (-

and Ny < (12¢c)

The Local stability analysis at E,:
The Jacobian matrix of system (2) at E4 can be written as
34 =(a5),., (134)

where:

gy =—%4 <0, 8, =—X,(1+a)<0, a3=-x%, <0, 8, =0

821 =0, agp =2 — (b, +24(8) +a,)), @3 =0, a4 =0

agy =0z, >0, agy =024, >0, a33=0, ag, =-2, <0

ay1=0,a40 =Nz, >0, a3 =MW, >0, a4, =0
Then the characteristic equation of J4 can be written as:

(B2 — Aay )23 + 23 + Lpdy + Lo =0 (13b)
here

Ly =—ay1, Lp = (243831 +34843), Lg = 811834843
Further, it is easy to verify that A= L4l — L3 =a;183831. Clearly, the eigenvalue A4 in y-direction has
negative real part if and only if the following condition holds.

a <by +24(a+ay) (13¢)
However, Lj >0, Vi=13 and A>0. So, according to Routh-Hawirtiz criterion the equilibrium point E, is
locally asymptotically stable.

The Local stability analysis at Es:
The Jacobian matrix of system (2) at Eg can be written as
Jg = (bij )4X4 (14a)
where:
by = %5 <0, bp =—X5(1+a)<0, bz =—%5 <0, by =0
by; =83ys5 >0, by =0, by3 =—a,y5 <0, byy =0
b3y =by25 >0, by =dy75 >0, by3 =0, byy =25 <0
by =0, by, =0, by =0, byy = nyz5 —(dp +1)
Then the characteristic equation of Jg can be written as:
(bga — Ay 2 + D122 + Dy + D3 |=0 (14b)

here:

Dy =-byq, Dy = —(b12b21 +byghsy + b23b32)’

D3 = b].1b23b32 - b12b23b31 - b21b32bl3
Further, it is easy to verify that
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A= DyD; — Dj = by (by5bpg +bygag )+ byobydbsy + 21035015
Not that, according to the element of Jg, it easy to verify that:
Di=%x5>0
D3 = XsYi525(0y (g + ;) — azb,(1+ay))
A = %5[%5 (8 (L+ g )Y +bp25)+ Ys25(ab, (L+a; ) —2yd; )]
Clearly, the eigenvalue Asg,, in w- direction has negative real part if and only if the following condition holds.

n125 < d2 +1 (14C)
However, according to existence condition (6b) D; >0, Vi =13 and A > 0 if and only if
ah,(1+a,)> ayd; . (14d)

So, according to Routh-Hawirtiz criterion the equilibrium point Eg is locally asymptotically stable. While,
according to existence condition (6c) we have D5 < 0. So, according to Routh-Hawirtiz criterion the

equilibrium point Eg is unstable.

The Local stability analysis at Eg:
The Jacobian matrix of system (2) at E6 can be written as
36 =iijl, ., (152)
where:
j11=1- (2% + (L+21)ys +25), Jo =Xl +a)<0, ji3=—% <0, ji4=0
J21=31Y6 >0, J22=0, jo3=—85Y6 <0, j24 =0
J3a1=b226>0, j3p =d176 >0, j33=0, jgg =—2¢ <0

ja1=0, jap =26 >0, ja3 =MWe +NyYg >0, jag =Nz —(d, +1)<0

Then the characteristic equation of Jg can be written as:

A8 +C A +CyA5+Cal+C, =0 (15b)

here:
C :—(111+ j44)
Cp =—(J120o1+ J13ia1+ Jozisz + Jaaiaz— J11Jas)
Cs = jualt + J2al2 — J1ol3 + J13(ia1iasa — J21J32)

Cy =To(lrzio1— J11d2a)+ j1ola
Consequently:

Al = C]_CZ - C3

= j1(j1adsr— Jaals)+ hidizdor+ Jsadasias+ Jozdsadas + T
and

A, =C4(C,C, —C3)—C?C, =B, + B, + B3 + B, + B + By
here:
By =[i11d13das + Juahzdor + J2sdaadaz + T lizal2 + f12J21aa]
B, = [111(113131 — JaaTs )+ Jaadazias+ J23Jaadaz +r6]
x[Jaa13ia1+ hr1izaias]
Bs = [111113131 + Ji2do1diat Jaadaziaa+ Jozlzaian +F6]
x[J2al7 = hal21is2]
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By = Jaalizaisaiaals +2J11J21Jaals — hi1daadizior(ins + jaa)]
Bs = —(j11 + j44)(j23ji21j34j42 + jfﬂs)
B = 121(j34j42113(1121+ j§4)+ halaih? 111j44)
with:
I = jaalaz + J23i32 <0
Ty = Jspdas — Jaadaz = 26(26(dymy +1y)-dy(d; +1))
I3 = jo3lz1— Jo1laa
= —Yglaohy 76 +ay (M5 —(d; +1))]
Ty = Jo1dsadaz + J2ziz1)aa
= —YeZs[a1 (N We + Ny Yg )+ a0y (7 zg —(d +1))]
Ts = ji1+ Jag =1-2xg —(L+24 )ys — 26 + Mz —(dy +1)
T = Jizdotdas + Js1hi2Jos = X6 YeZs (2, (1+a; )30 )
T7 = ji1dso — j12Ja1 = 26(di(L—2xg —(1+ay )y — 26)+ b1+ )xg)
Tg = J13iaz — J12Jas = X6 ((1+ 2 NnqWe +1nyY)—Ny25)
Now, according to existence conditions (7¢) we have two cases:
Case 1: if the second part of condition (7c) holds then we have C; >0,i =134 and A, >0 if and only if the

following conditions hold:

1< 2X6 + (1+ al)y6 + 26 (15¢c)
L dy+1—nzg < 3y (W + Ny s ) (15d)
2 ab,
n1W6 + n2 y6 < n226 (159)
1+
by (1+ a4 )X <d < aghy(1+ay) (157
2xg +(1+ay )yg + 2 —1 a

So, according to Routh-Hawirtiz criterion the equilibrium point E6 is locally asymptotically stable.

Case 2: if the first part of the condition (7c) holds then we have C; >0,i=1,3,4 and A, >0 ifand only if in
addition to the conditions (15¢)-(15f) hold the following condition should be satisfy.

I, <min{H;,H,,Hs,H,} (150)
here H, = Jual1 — Jols + j1_3(]31]44 - J'21J'32), M= jlzl.“4 .
~ e (Jsda1— h1dzs)

Hy == J12J21)44 H, = J11i21(Ja4J12Ts — 2 j3aTs)
J23 J23)34)43
So, according to Routh-Hawirtiz criterion the equilibrium point Eg is locally asymptotically stable.

5. Global stability analysis of system (2):
In this section the global stability for the equilibrium points of system (2) is investigated by using the
Lyapunov method as shown in the following theorems.

Theorem (2): Assume that the equilibrium point E; of system (2) is locally asymptotically stable in the Rf,
and the following conditions are satisfied:

n,d, +n
b2 < A1 T2 < d2 (168)
ma,
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by >1+4a (16b)

Then E; is globally asymptotically stable in the Rf_’ .
Proof: Consider the following function:

V; = (x=1—InX)+Cyy +C3Z +C,W
Where C;; 1=1,2,3,4 are positive constants to be determined. Clearly V; : Rf S Ris C? positive definite
function. Now, by calculating the derivative of V; and choosing the positive constants as below:

md; +n
G=Cp=—t1—2 Cg=Ny; Cy=1
2

We obtain that:

° nd; +n nd; +n
Vp -T2 (1P LT 2 (14 9 by )y
a, a,
N nd; +n, —mayd, , nd; +n, —mayb, «
a ay

z

According to conditions (16a)-(16b) we get V4 < 0. Therefore E; is globally asymptotically stable in the Rf .
And hence the proof is complete. [

Theorem (3): Assume that the equilibrium point E, of system (2) is locally asymptotically stable in the R4,
and the following conditions are satisfied:
md,a ayX
14292 >a,Y, + 172
md; +n, 1+a

nb, <1 (17b)

(17a)

Then E, is globally asymptotically stable in the Rf.
Proof: Consider the following function:

X y
Vo =g X=Xy —XoIN— |+ Y= Yo — Yo In—=— |+e32+e4W
X2 Y2
Where €;; 1=1,2,3,4 are positive constants to be determined. Clearly V, : Rf SRisC! positive definite
function. Now, by calculating the derivative of V2 and choosing the positive constants as below:
_ 2y(nydy +np). e = nycy +1n;

; ; =n; =1
1 a,(+a) 2 a, =M &

We obtain that:

*  a(md;+ny) > [ mdy+n, ( ayx
v, < i +ny) W01 +Np [ &% _nd
2 a2(1+a1) (X Xz) J{ a, (1+a1+32)/2j M 2]2

+ (b, —1)xz

According to conditions (17a)-(17b) we get V5, < 0. Therefore E, is globally asymptotically stable in the Rf .
And hence the proof is complete. L]

Theorem (4): Assume that the equilibrium point E3 of system (2) is locally asymptotically stable in the R4,

and the following conditions are satisfied:
n123 < d2 + I (188)
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a;(md; +n dyz
1( 10y 2)<b2(1+a1)< 143 (18b)
Mmay X3

Then Ej is globally asymptotically stable in the Rf.
Proof: Consider the following function:

V3:hl(X—X3—X3 IniJ+h2y+h3[Z_Z3_23 IniJ+h4W
X z

3 3
Where h;; 1=1,2,3,4 are positive constants to be determined. Clearly V5 : Rfr" SRisC! positive definite
function. Now, by calculating the derivative of V3 and choosing the positive constants as below:
nd; +n
hy=mby; hy=—t—2; hy=n; h,=1
2

We obtain that:

/ md; +n
V3 =iy (x— %3 +(n1(b2x3(1+ 8)—dyz3)- L2 ;2 2 bl]y

mndy +n,

+(nza—(d, +|))W+(a1 —n1b2(1+al)jxy

ay

According to conditions (18a)-(18b) we get V3 < 0. Therefore Ej is globally asymptotically stable in the Rf .
And hence the proof is complete. (]

Theorem (5): Assume that the equilibrium point E4 of system (2) is locally asymptotically stable in the Rf,
and the following condition is satisfied:

a(md; +n d,z

alndyem) o di
na, Xq

Then E, is globally asymptotically stable in the Rf.

Proof: Consider the following function:

V, = kl{x—x4 — Xy InLJ+k2y+k3(z—z4 — 1y Inij
X4 Zy

w
+ kgl W—w,; =Wy In—
W

4
Where K;; 1 =1,2,3,4 are positive constants to be determined. Clearly V, : Rf_' SRisC! positive definite
function. Now, by calculating the derivative of V, and choosing the positive constants as below:
: ndy+n, :
k1=n1b2, k2 =a—, k3:n1, k4 =1
2

We obtain that:

md; +n
Vg <=1y (x—x, +(n1(b2x4(l+ 8y)—thzy)————= ; 2 ley
2

nd; +n
+(al%— ”1b2(1+ al)ny
2

According to condition (19) we get V, < 0. Therefore E, is globally asymptotically stable in the Rf. And
hence the proof is complete. [
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Theorem (6): Assume that the equilibrium point Eg of system (2) is locally asymptotically stable in the Rf,
and the following conditions are satisfied:

ayd; —a,b,(1+2,)=0 (20a)

M zg <d, +1 (20b)
Then Ejg is globally asymptotically stable in the Rf.
Proof: Consider the following function:

Vg = ml(x—xg, —Xs IniJ+ mz[y—yg, —Ys Inlj
X5 Ys

z
+m3(z— Z5— 15 In—j+ myw
z

5
Where my; 1=1,2,3,4 are positive constants to be determined. Clearly Vg : Rf SR is C? positive definite
function. Now, by calculating the derivative of V5 and choosing the positive constants as below:
a)b a a
m=-22; my=1 Mg=—2; my=—=2
d d nydy

We obtain that:

g ab ad; —asby(1+a
Vo2 o o bl all oy oy,
1 1

&(Zs _M)W
d; m

According to conditions (20a)-(20b) we get V5 < 0. Therefore Eg is globally asymptotically stable in the R_‘:’ .
And hence the proof is complete. [

Theorem (7): Assume that the equilibrium point Eg of system (2) is locally asymptotically stable in the Rf,
and the following conditions are satisfied:

aldl - a2b2 (1+ al) =0 (21&)
(X% )? > 2 (yz + Y25) (21)
b,

Then Eg is globally asymptotically stable in the sub region of Rf_‘ that satisfy the above conditions.
Proof: Consider the following function:

Vg = rl(x—x(3 —Xg Ini]+ rz(y—yﬁ - Vs Inij
Xg Y6

In-Z In-Y
+15 2— 25— 25 In— [+ 1,| W—Wg —wWgIn—
Zg We

Where I;; 1=1,2,3,4 are positive constants to be determined. Clearly Vg : Rf SRis Ct positive definite

function. Now , by calculating the derivative of Vg and choosing the positive constants as below:

d . _1. _1
I L
b,

b,

- ash,
We obtain that:
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M a,d, —a,b,(1+a
R el (AU
a0,

n
+F;2(y2 + Y626)

According to conditions (21a)-(21b) we get Vg < 0. Therefore Eg is globally asymptotically stable in the sub

region of Rf that satisfy the above conditions. And hence the proof is complete. [

6. The local bifurcation analysis of system (2):

In this section, the effect of varying the parameter values on the dynamical behavior of the system (2)
around each equilibrium points is studied. Recall that the existence of nonhyperbolic equilibrium point of system
(2) is the necessary but not sufficient condition for bifurcation to occur. Therefore, in the following theorems an
application to the Sotomayor's theorem [16] for local bifurcation is adapted.

Now, according to Jacobian matrix of system (2) given in equation (8), it is clear to verify that for any non-

zero vector V = (Vl,V2 ,V3,Vy )T we have:

—2vy(vy +(L+ag vy +Vv3)
2v, (Vg —a,v3)
2v3(byvy +dyvy — V)
2v3(navy +Myvy)

D3F(V,V,V)=(0,0,0,0)

So, according to Sotomayor's theorem the pitchfork bifurcation does not occur at each point
E;,i=0123456.

Note that, according to the Jacobian matrix JO given by EQ.(9) the system (2) at the equilibrium point

D2F(V,V)= (22) and

EO has four non-zero eigenvalues. So, the Jacobian matrix JO has no non hyperbolic equilibrium point. Thus,

the system has not bifurcation at E.

Theorem (8): Suppose that the condition (10b) is satisfied. Then for the parameter value b; = d2 system (2) at

the equilibrium point E; has
1. No saddle-node bifurcation.
2. Transcritical bifurcation.

Proof: According to the Jacobian matrix J; given by Eq.(10a) the system (2) at the equilibrium point E; has
zero eigenvalue (say Ay, = 0) at b, =b,, and the Jacobian matrix J; with b, = b, becomes:

-1 —(l+a) -1 0

0 a-b 0 0

0 0 0 0

0 0 0 —(dy+I)

1:

T
Now, let V [ (vl[l],vgl],vgl],v‘[ll]) be the eigenvector corresponding to the eigenvalue Ay, =0. Thus

(‘]1* — 51 )\/ M_o , which gives:

Vl[l] = —v:[%l], vgl] =0, Vgl] =0 and Vgl] any nonzero real number.
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T
Let ‘I’[l] = (wl[l],wgl],wc[,,l],l//‘[ll]) be the eigenvector associated with the eigenvalue A;, =0 of the matrix
JfT. Then we have (JIT —ﬂiZI)P[l] =0. By solving this equation for ' we obtain

T
‘P[l] = (0,0,1//:[,,1],0) , Where l//gl] any nonzero real number. Now, consider:

T
i:fb (x,bz): 5f1’8f2’8f3’5f4 :(O,O,XZ,O)T
b, b ob, ' ob, ' 3b, ' ob,

so, fp, (El,b;): (0,0,0, 0)T and hence (‘P[l] )T fh, (El, b;): 0

So, according to Sotomayor's theorem the saddle-nod bifurcation can not occur. While the first condition of
transcritical bifurcation is satisfied. Now, since

0 00O
0 00O
z 0 x
0 00O

Where be2 (X,bz) represents the derivative of sz (X,bz) with respectto X = (X, Y, Z,W)T . Further, it is
observed

o O O

be2 (X ,bz):

00 0 0y-vl) (o
. 0000 0
bez(ElabZ)‘/[l]: 00 1 0 V(:[jl] = Vgl]
0000 o) (o0

(w2 o, (E,.65 )= (0,04 0f0,0.v, 0] =y Bulll 20

Now, by substituting V [ in (22) we get

D2t (g, b v v )= (o,o,— 2b, (vgl])z,ojT

Hence, it is obtain that:

() o2 1 ey oz o v )
o, z//gl],oIo, 0,205V}, 0)T — 2y (I 20

Thus, according to Sotomayor’s theorem system (2) has transcritical bifurcation at E; with the parameter

b, =b,. .
Theorem (9): Suppose that the condition
ab, (1+ al)(d; + I);t dl(al +a2)(d; + I)+ nzal(l— x2) (23)
. e * dl(l— Xo I .
is satisfied. Then for the parameter value d2 = b2X2 +1— system (2) at the equilibrium point E, has
+ al

1. No saddle-node bifurcation.
2. Transcritical bifurcation.

Proof: According to the Jacobian matrix J, given by Eq.(11a) the system (2) at the equilibrium point E, has

zero eigenvalue (say Ay, =0) at d, = ds, and the Jacobian matrix J, with d, =d becomes:
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X, =X (l+a) — X, 0

ay(1-xp) 0 —ap(l-xp) 0
* 1+a l+a
Jy, =J54,, =0)= 1 1
2=J5(4, =0) 0 0 0 0
0 0 M _( 5+ |)
1+

.
Now, let V[z] =(v1[2],V£2],V£2],V£2]) be the eigenvector corresponding to the eigenvalue (/122 =O).
Thus (J; — Ao, | )/[2] =0, which gives:

2] _2 2] 2 _—(@tay) o] 2] Mpl-xp)
! a IR a1(1+a1) Tt d;-l—l 1+a1)

V:[,)Z] and v:[f] any nonzero real
number.

Let ‘P[Z] = (l//:{z],l/jgz],l//gz],l/lgz])-r be the eigenvector associated with the eigenvalue A,, =0 of the matrix
J;T.Then we have (J;T -4 I)\I—’[Z] =0.

By solving this equation for ‘P[Z] we obtain ‘I’[Z] = (O,O,l//gz],O)T , Where 1//%2] any nonzero real number.
Now, by using the same steps in the previous theorem we will get

(T 1 050

So, according to Sotomayor's theorem the saddle-nod bifurcation can not occur, while the first condition of
transcritical bifurcation is satisfied. Further, it is observed

(w2 [y, (€505 W 2]= (00,4712 0)0,0,-vi2, v = J20J2) 20
Now, by substituting V [2] in (22) we get

(el2)] |02 (£, a5 v 2w )|

ZWgz](vgz])zFazbz (i ay) ey +a, )0 +1)-mpan0—x, )}

a(1+ al)(d; + I)
According to condition (23) we obtain that:

(¢2) [p2 (g, 05 v v B2 0

Thus, according to Sotomayor's theorem system (2) has transcritical bifurcation at E, with the parameter

d, =d,. .
Theorem (10): Suppose that the following conditions
x3(ay +a,)>a, (24)
n(L—x3)=d, +1 (25)
n,(1—x3)
d; + 2 3 <b,(l+a 26
1 nl(l—X3)—d2—| 2( 1) (26)

are satisfied. Then for the parameter value bf = x3(a1 + az)— a, system (2) at the equilibrium point E3 has

1. No saddle-node bifurcation.
2. Transcritical bifurcation.
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Proof: According to the Jacobian matrix J3 given by Eq.(12a) the system (2) at the equilibrium point E5 has
zero eigenvalue (say ﬂgy =0)atb = bf it is clearly that bf > 0 provided that condition (24) holds, and the

Jacobian matrix J4 with by = bf becomes:

—x3  —Xl+ay) —xg 0
R AL DR
Y by(1-%3) di(l-x3) byxg—d, X3 —1
0 Ny(Ll—X3) 0 n(L—x3)—(d, +1)

T
Now, let V[3] = (VP],V?],V?],VL?’]) be the eigenvector corresponding to the eigenvalue (/13 =O).

Thus (J; — Agy | )\/ Bl-o , Which gives:

¥o {%{al bra)s No(L= %) j_(1+a1)}vg3l

27D 1-%g)—dp -1
B _ Q%) np(L-xg) [3]
V3 0, b, (dl b,(1+a )+ o x)d, | )
Bl_ mls-1)

[3]

and V£3] any nonzero real number. Here we have Vp ,V£3] and V£3] are defined under the existence
condition (4b) and (25). While VP] and V£3] not equal zero under the condition (26).

Let ‘P[S] = (Wl[s],wgs],l//gﬂ, l//f’] )T be the eigenvector associated with the eigenvalue ﬂgy =0, of the matrix
J;T. Then we have (J;T — gyl )*’[3] =0. By solving this equation for \P[B] we obtain
‘P[S] = (O, t//gs],O,O)T , Where 1//£3] any nonzero real number. Now, by using the same steps in the previous

\T *
theorems we will get (‘P[S]) fb1 (Eg,bl):O. So, according to Sotomayor’s theorem the saddle-nod
bifurcation can not occur. While the first condition of transcritical bifurcation is satisfied. Further, it is observed

(wBI [ty (.65 I )= 0.0/ 2).00)0,~vIF0,0] = 2WE) 20

Now, by substituting V 3] in (22) we get

(] o 1 (e o I B BT = -2 f

where:
R=a(1+a)

1-x no(1— X
+(a +ay)—2-| dy —b,(L+ay)+ 2(1=%)

d, —b n(L—x3)—dy -1
According to condition (26) with existence condition (4b) we obtain that:

(‘P[S])T [02 f (Es,bev[S],v [3])]¢ 0

Thus, according to Sotomayor’s theorem system (2) has transcritical bifurcation at E3 with the parameter

by =Dy .
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Theorem (11): Suppose that the following conditions

8y > 24(ay +ay) (27)
d; >b,(1+a) (28)
NyZy # MW, (29)
Nyz4(ay +ay) = mw,(1+a,) (30)

are satisfied. Then for the parameter value 51 =1 — 14 (al + az) system (2) at the equilibrium point E, has

1. No saddle-node bifurcation.
2. Transcritical bifurcation.

Proof: According to the Jacobian matrix J, given by Eq.(13a) the system (2) at the equilibrium point E4 has
zero eigenvalue (say 24), =0)at b = 61 it is clearly that 61 > 0 provided that condition (27) holds, and the

Jacobian matrix J, with by = 61 becomes:

X, —X,0+a) -x, O

323 (/1 0)_ 0 0 0 0
ATTAEY T 0, dyzy 0 -z
0 NyZy mw, O

T
Now, let V [4] = (v1[4],v£4],v£4],v‘[14]) be the eigenvector corresponding to the eigenvalue (/14y = O).

Thus (JZ —Agyl )\/[4] =0, which gives:

4] _N2Zs =MWy  [4]  [4] _ =NoZa  [4] | [4] _ nyW (dy —b, (1+2)) +bon,2, V£4]

[
v , Vi = ,
! nw, 2 % nw, 2% LW,
[4]

and V2 any nonzero real number. Here we have VF'] and V£4] not equal zero under the condition (28) and

(29). Let ‘P[4] = (w1[4],1//£4],gu:[,,4],1//£4]) be the eigenvector associated with the eigenvalue Z4y =0 of the
. *T *T [4] _ . . : [4] .
matrix J4 . Then we have \J4 —/14yl =0. By solving this equation for W' we obtain
[4] — (0., 0.0f [4] i i i
Y= 0,1//2 ,0,0] , where W5’ any nonzero real number. Now, by using the same steps in the previous

\[ A
theorems we will get (‘P[A']) fbl (E4,bl):O. So, according to Sotomayor's theorem the saddle-nod
bifurcation cannot occur. While the first condition of transcritical bifurcation is satisfied. Further, it is observed

(W] ot (09 o o0l o0)- il o
Now, by substituting V [4] in (22) we get

(‘P[“])T :DZ f (E4 | leV [4] [4]) _ 21//£4]<V£4] )Z{f‘z 24(8y +ap)—myw, 1+ al)}

nW,

According to condition (30) we obtain that:
(¢f) D2 (g6, v 40
Thus, according to Sotomayor's theorem system (2) has transcritical bifurcation at E, with the parameter
b =by. .
d, +
Zs5

Theorem (12): For the parameter value nf = system (2) at the equilibrium point Eg has

1. No saddle-node bifurcation.
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2. Transcritical bifurcation.
Proof: According to the Jacobian matrix Jg given by Eq.(14a) the system (2) at the equilibrium point Eg has

* *
zero eigenvalue (say As,, =0)at Ny =Ny, and the Jacobian matrix Jg with N; =n; becomes:

X, —X,0+a) -x, 0

* a1Ys 0 -a3ys O
0 0 0 0

T
Let V[S] = (V1[5]1V£5],V£5]’V[[15]) be the eigenvector corresponding to the eigenvalue (ﬂSW =O). Thus

(J; —/15W|)\/[5] =0, which gives:
5] _82 [5] [5] _ —(a +32)V£5] ,VL[15] _ bya,(L+a;)—di(a +az)v[5]

[ 5]
‘1 ay 3 V2 a(1+a) a(1+a) 3

and V£5] any nonzero real number. It is clear that VZ not equals zero under the existence condition (6b) or (6c).
Let ‘P[S] = (y/l[S],wgs],l/fgs],y/Ls] )T be the eigenvector associated with the eigenvalue As,, =0 of the matrix
J;T . Then we have (J;T — 45| )*11[5] =0. By solving this equation for w8l we obtain
‘P[5] = (0,0,0, (//LS])T , Where wé[ls] any nonzero real number. Now, by using the same steps in the previous

\T *
theorems we will get (‘P[S]) fnl (E5,n1 ):O. So, according to Sotomayor's theorem the saddle-nod
bifurcation cannot occur. While the first condition of transcritical bifurcation is satisfied. Further, it is observed

(‘I’[S] )T [Dfnl (E5 , nf)‘/ [5]]: (0’0’0’ WLS]XO’ 0,0, ZSVLS])T _ 251//4[15]V4[15] 0
Now, by substituting V 5] in (22) we get

(B [2f (5. BV B anwgs](vgs])z{bzaz(1+al)—(al +a2)d1}

a1(1+ al)

According to existence condition (6b) or (6¢) we obtain that:

(¢ [02 ¢ (g0 v BV B 0
Thus, according to Sotomayor's theorem system (2) has transcritical bifurcation at E5 with the parameter
n=n. -

Theorem (13): Suppose that the condition (15c) with the following conditions are satisfied

$4251 # 612621543 31)
6 6
Vl[ ]Fz (S; -Sil+2)) » Vg ]§34(n1(§4251 — 612621543) ~ Mp54451) (32)
512 S44
I,S i
—2L_<ajg, (33)
J12YeZ6
Or the conditions (15c) and (31)-(32) with the following conditions are satisfied
G112 # 612631644 (34)
~ 1 Fzsl - T H
then for the parameter value b2 =— - — 84 J43 | system (2) at the equilibrium point Eg has
a2Ja4| N12YeZ6
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1. No saddle-node bifurcation.
2. Transcritical bifurcation.

with, S = Jizi21— i1d23. S2 = 612621~ 623612
Proof: The characteristic equation given by Eq.(15b) having zero eigenvalue (say Ag =0) if and only if

C4 =0 and then Eg becomes a nonhyperbolic equilibrium point. Clearly the Jacobian matrix of system (2) at

the equilibrium point Eg with parameter b, =b, becomes

Jg = Jo(%6 =0)=si ]
6 = Jolds =0)=|gj <4
where ¢j; = Jjj forall i, j =1,2,3,4 except g3q which is given by: ¢31 = 6226- Not that, if the second part
of existence condition (7¢) holds then we have 62 > 0 if the condition (15c) holds. While, if the first part of the
condition (7c) holds then we have 62 >0 if and only if in addition to the condition (15c) holds and the
\T

condition (33) should be satisfy. Let V[6] =(V1[6],V£6],V£6],V£6]) be the eigenvector corresponding to the
eigenvalue Ag =0. Thus (Jg —AGI)\/[G] =0, which gives:

Vl[e] _ 523 6] vge] _ =S Vge]’ Vge] _ $4251 612621643 6]

3 ]
S21 612621 612621544

and V£6] any nonzero real number. Clearly, according to conditions (15c¢) and (31), we have Vgs] and VEG] not

T
equal zero. Let ‘P[e] = (wl[G],wgﬁ],l//gﬁ], 1/14[16]) be the eigenvector associated with the eigenvalue Ag =0 of
the matrix J;T . Then we have (J Z;T — Al }P[G] = 0. Which gives :

6] _ —T2 e t//£6] _61l2 —612631644  [6] . [6] __S34

Vi V3 V3 Y
612644 612621544 S44

ylol

and y/£6] any nonzero real number. Not that, if the first part of existence condition (7c) holds then we have

1//%61 #0 if the condition (15c) holds. While, if the second part of the condition (7c) holds then we have

wge] # 0 if and only if in addition to the condition (15c¢) holds and the condition (34) should be satisfy. Now,
by using the same steps in the previous theorems we will get

(T[G])T fh, (E6,62)= x6261//£6] #0

So, according to Sotomayor's theorem the saddle-nod bifurcation cannot occur. While the first condition of

transcritical bifurcation is satisfied. Now, by substituting V [6] in (22) we get

(#eI)' [D2 1 (4., v ELv T )=

2V£6]l// £6] Vl[e]rz (S -S1lt+ay)) _ V£6]§ 34(M (64281 — 612621543)~ M2544S1)
§21612544 612 Sa4
So, according to condition (32) we obtain that:

T A
(w1 [D2 (g5, Jv 1 VT | 0
Thus, according to Sotomayor's theorem system (2) has transcritical bifurcation at Eg with the parameter

b2:62. |

7. The Hopf bifurcation analysis of system (2):
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In this section, the existence of periodic dynamic in system (2) due to changing the value of one parameter is
studied.

The Hopf bifurcation analysis near Eqy and E; :

According to the Jacobian matrix of system (2) at Ej and Eq, it is clear that J given by (9) and J; given

by (10a) has always four real eigenvalues. So, the necessary and sufficient conditions for a Hopf bifurcation to
occur are not satisfied.

The Hopf bifurcation analysis near E, and Ej:
From the characteristic equations of J, and Jg, it is observed that the eigenvalues are given respectively

as in Eq.(11b) and (12b). Clearly Re(/’LZle)#O and Re( Z,W);tO. So, there is no possibility for Hopf
bifurcation to occur.

The Hopf bifurcation analysis near E4 :
From the characteristic equations of J,, which given by Eq.(13b) we get:
A= L1L2 — L3 = a11a13a31 = b224X§ =0 ifand only if b2 =0.

But in our assumptions b2 > 0. So, there is no possibility for having complex eigenvalues, then the Hopf
bifurcation can not occur.

The Hopf bifurcation analysis near E5 and E6 : The possibility of Hopf bifurcation to occur is discussed in
the following theorems.

Theorem (14): Suppose that the condition (14c) with the following conditions are satisfied:
290y Y525 > X5 (83 (L+ 1 )Ys +b,25) (35)
b,(2+a,)=d, (36)
830 Y55 — X5 (8 (L+ 3 )ys +b,25)
Y5250, (1+ay)

Then for the parameter value a; = the system (2) has a Hopf

bifurcation near the point Eg.

Proof: Consider the characteristic equation of the system (2) at E5 which is given by Eq.(14b). Now, to verify

the necessary and sufficient conditions for a Hopf bifurcation to occur we need to find a parameter satisfy
A = 0.Therefore it is observed that A =0 gives :

o _ Bat1YsZs - X5 (@ (L+ 24 )ys +b,25)
? Ys2shy(L+ay)

Clearly, a; > 0 provided that the condition (35) holds. The coefficients of the characteristic equation given by
Eq.(14b) can be rewritten as

Dl(a;)Z X5 > 0
D, (a2)= —(— a;y5b32 +Dyobyg + b13b31)> 0
D3 (az)= —a Y5 (by D32 — D153 ) — bbby
Hence, for a, = a; the characteristic equation given by Eq.(14b) becomes:
2
(b44 —/15w)(15 + Dl)(/LS + Dz): 0
which has four roots Asy, =0g4, A51=-D;, Asp =14/Dy and A53=—1,/D,
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*
Clearly, at @, =a, there are two pure imaginary eigenvalues (Aspand Ag53) and two real and negative

eigenvalues provided that the condition (14c) holds. Now for all values of @, in the neighborhood of a; , the
roots in general of the following form:

Asw(82)=bas, 251(ap) =—Dy(ap), A5y = y(ay)+imy(ay), As3(ay) = @y (ay)—iwy(ay)

Clearly, Re(/lsj(az )la = a)l(a;): 0, j=2,3 that means the first condition of the necessary and
27942

sufficient conditions for Hopf bifurcation is satisfied at azzaz. Now by substituting

Asy = a)l(a2)+ Ton (az) and 153(a2): a)l(az)—ia)z(az) in the equation (2,5 + Dl)(lé + DZ)ZO and

calculating these derivative with respect to the parameter a, , and then comparing the two sides of this equation
by equating their real and imaginary parts, it is obtain that:

W(ag Joi(a, ) - D(a ) (ay )+ ©(a) =0

 Olaghki(eg)+ ¥lagoilag)+ riaz) =0 >
W(a,)=3(ex(az))* +2Dy(az o (a)+ Dy(ay)— 3w, (a, )
D(a, ) = 61 (a; )y (a2 )+ 2Dy (2, oo, (a7) 38)
O(a,) = (@1(a2))* Di(az)+ Dj(az Joy (a2 )+ D3 (a ) - Di(a, Neoa (a2 ))*

['(ay) = 2a1(a; o, (22 )D1 (@7 ) + D3 (@ o, (a5)
Solving the linear system (37) by using Cramer's rule for the unknowns a)l’(az) and a)'z (az ) gives that
o}(ay)=— ©(az)¥(a)+ (az J0(a,) - w)(ay)=— I(ap)¥(ay)+0(az )0(a,)
(¥(ar)) +(@(az))” (¥(a,))* +(@(az))*

Therefore the second necessary and sufficient condition of Hopf bifurcation

d , .

K(Re(/lm )1 ) = C!)l(a.zlazza; # 0, ] = 2,3
2 =a

will be satisfied if and only if

®(a; }P(az )+ F(az )rD(a; ) %0 (39)

Note that for a, = a; we have @; =0 and @, =/ DziaZ ) substitution into (38) gives the following
simplifications:

‘P(a;)z -2D, (a;) q)(a;)= 2D1(az L/ Dziaz ’
®(a§)= Dé(a;)— Dl’(a; )D2 (a;) F(aZ)z D, (az L/ Dzia; )

— dDZ

where:

_db,
da,
Consequently,

G)(a;){’(a; )+ F(a; )[D(a;)= 2D, (a; )Xs Ys25(0,(2+a;)—dy)

So, according to condition (36) we have:

@(ag )i’(az )+ F(ag )d)(az );t 0

*
Yields, the Hopf bifurcation occurs around the equilibrium point Eg at the parameter @, = a, and the proof is
complete. [

= X5Y525(d1 —b2(1+ al))

*
ary=ay

©dD
=b,y525, Dy =——>
ay=a, 2

D; =0, D}

ay=a, da
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Now the conditions of Hopf bifurcation for N =4 are constructed according to the Haque and Venturino
methods [17]. Consider the characteristic equation given by:

P4(T) = T4 + C]_TS + C27/2 + C3}/ + C4 = 0

nere C =—tr(3(x"), €, =M, (3(x"), €3 =M, (3(x")) and €, =det(a(x”)) with My(3(x")) and

M5 \J X represent the sum of the principal minors of order two and three of J X respectively. Clearly,
the first condition of Hopf bifurcation holds if and only if

C;>0;i=13; A, =C,C,—C3>0;C—4A; >0 and A, =C5(C,C, —C3)-CZC, =0
CS(C1C2 _CB)
cf

Py(7)= (72 + %)(12 +Cyr+ %) =0 (40)

1 1

A , /C
Clearly the roots of Eq.(40) are 77 » =%(— C t C12 —4C—1j y T34 =11 C—3
1 1

Now, to verify the transversality condition of Hopf bifurcation, we substitute r(q) (q)+|a2(q) into

consequently, C4 = . So, the characteristic equation becomes:

Eq.(40), and then calculating its derivative with respect to the bifurcation parameter (, P4( ( ))
comparing the two sides of this equation and then equating their real and imaginary parts, we have

¥(q)ai(q)-@(a)az(9)+6(q)=0

(o) (0)+ Plaa (@)+ T(@)=0 “
Where
P (a)=4(a(a))* +3Cy (a)e (a))* +C3(a)+ 2C5(a)en (a)
~12¢(q)er (0)-3C, ( )ero (a))?
CD(Q)=12(0‘1(CI)) ( )+6C1(q al( ) ( )+2C2(Q) (CI)
_4(052( ))3 42)

()= (e (a))°C(a) + Ca(a)ers (a)+ Ch (@) e (@) +Ci(a)
—3C{(@)ery (a2 (a))* ~ C5 (aNero (@)

T(a)=3(er (@) 2 (@) (a) + C (a)er (a)+ 2C5 () ()2 (@)
—~Ci(afe(q)

Solving the linear system (41) by using Cramer's rule for the unknowns al'(q) and a'z (q) gives that

o(q)=-2W¥@ T - o ~T(@)¥(a)+6(a)d(a)

(P(@) +(@(a)f (P(a)) +(@(a)”
Hence the_transErsality_condEon not being zero if and only if
©(a)¥(a)+T()®(q)=0 (43)
Theorem (15): Suppose that the conditions (15c), (15e) with the following conditions are satisfied:
b, (1+ 2y )Xg
>d; (44)

2X6 +(1+ a.l)yG + Zg -1
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... .. Bg

hizl21)z2 > MaXy— hi1izlan = (45)

I's )4
a,b,2
8b2s d, +1—nyzg (46)
&
a,0,(1+
g, < Boo(lra) -
a

C2-4A,>0 (48)

A >Cy (49)

r, < hali — Jiols + 11_3(131144 — Jp1i32) (50)

— Jo3

Clinn<Cs—4 (51)
Or the conditions (15c),(15¢) and (3.16)-(3.21) with the following conditions are satisfied

I7 >-I, (52)

Clinn>Cs—4 (53)

Then at the parameter value 8, = (— N, — N22 —4N;N4 ) the system (2) has a Hopf bifurcation

2N1Yg
near the point Eg, where
Ny = (J3aJaz + Ja1dio N2 +T%)
Ny = j13J21J32(jaaaz + 131112)+F5(js4j421121+ J'31J'12J'4%4)
~TyJaaiazias —T7[ia(Jnador + Ji3dar)+ Jzaliaziaa + Jrai21izo]
—(j34j42 + j31112)(j13j31144 + 111134143)
—F2[111(112121+ j13j31)+ j13]21132]— j120o1iaa(zadan + 131112)
N3 =[111(]13131 — J4aTs)+ Jaaiazias + j13j21132][j13131144 + 111j34j43]
— jialordaolit(Jnzor + J1alsr) + Jaadazias + hisizniso)
+ J11J01J44(2 534l — Jaaf12ls)— Ts 3io1Ja2 ida + Be
+ hi2d21daalii(Jnodor + Jiadsr) + Jisiziso)
Proof: Consider the characteristic equation of the system (2) at Eg which is given by Eq.(15b). Now, to verify

the necessary and sufficient conditions for a Hopf bifurcation to occur we need to find a parameter satisfy
A, =0 .Therefore it is observed that A, =0 gives :

a§y§N1+a2y6N2+N3=0 (54)

Now, we have two cases:
Casel: if the first part of existence conditions (7¢) hold, then by using Descartes Rule Eqg.(54) has a unique

(— Ny, —+/f N22 - 4N1N3) provided that the conditions (15c), (15e), (44) and (45)
hold.

Case2: if the second part of existence conditions (7c) hold, then by using Descartes Rule Eq.(54) has a unique

(— Ny —+/f N22 —4N1N3j provided that the conditions (15c), (15e), (44), (45)

positive root 8, =
1Ye

positive root 8, =
1Ye
and (52) hold.
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Now, at a, = éz the characteristic equation given by Eq.(15b) can be written as :

2 G| 2 A
[16+Cj(26+clﬂﬁ+clj—0

1

. |C A A
Which has four roots Agq, = i C—3 and Agz4 =%[— C = C12 —4C—1]. Clearly, at 8y = dy there
1 1

are two pure imaginary eigenvalues ( Agq and Ag,) and two eigenvalues which are real and negative provided the

conditions (15¢) and (46)-(48), and (50) hold when the first part of existence conditions (7c) hold or the
conditions (15c) and (46)-(48) hold when the second part of existence conditions (7c) hold.

Now for all values of a, in the neighborhood of éz , the roots in general of the following form:

. . A
Adgr=0ag +lay; Agp =0y —lay; Agay :%(_Cli Cf - C_lJ
1

Clearly, Re(g(a, )Xaz _s, =(8,)=0, k=12 that means the first condition of the necessary and

sufficient conditions for Hopf bifurcation is satisfied at 8, =&, . Now to verify the transversality condition we

must prove that ©(&, )¥(4, )+ T (8, )P(4,)= 0, where the form of O, ¥V, T and D are given in

C
Eq.(42). Note that for dp = éz we have =0 and Oy = C—3 substitution into (42) gives the
1
following simplifications:

Tlar)=20,(a) Blar)=2%2)c,c, ~20,)

8(8,)=Ci(8;)- 223 (a,), f<a2>=a2<a2{cg<a2>—%q<az>j

Cy Cy
Where:
dC dC

Ci=—21 =0; ChH=—2 = Ve j

1 da, L 2 da,| . Y5132

2= a=d

. dc o . dc . o

Cs :d_3 =—ys(Ty + ji1daz + J1231) Cj :d_4 = j11Y5(T2 — h12i31J4a)
a2 =8, 2 la,=4,

Then by uiing E(ﬂ43) we git that:_
0(a, ¥ (4,)+T(a,)0(a,) =

. A —-C A —-Cq | . . - L . A
—2C3Ys Iﬂ2[111+ 1C2 3}{ 1C2 3](]11]32+112131)—112]31]44—1320522(32)
1 1

Now, we have two cases:
Casel: if the first part of existence conditions (7c) hold, then

0(8, )¥(8)+T(8; )d(a,) =0
provided that the conditions (15c), (49) and (51) hold.
Case2: if the second part of existence conditions (7c) hold, then

0(8,)¥(8,)+T (8, )(8,)=0
provided that the conditions (15c), (49) and (53) hold.
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So, we obtain that the Hopf bifurcation occurs around the equilibrium point Eg at the parameter a, =&, and
the proof is complete. [

8. Numerical analysis of system (2)

In this section the dynamical behavior of system (2) is studied numerically for different sets of parameters
and different sets of initial points. The objectives of this study are: first investigate the effect of varying the value
of each parameter on the dynamical behavior of system (2) and second confirm our obtained analytical results. It
is observed that, for the following set of hypothetical parameters:

=02 ,a,=01 ,bj=01 ,b,=02
d,=01 ,n,=02 ,n,=04 ,1=01

The trajectory of the system (2) is drawn in the figure (1) for different initial points.
@ ()
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Figure (1): Time series of the solution of system (2) (a) trajectories of X as a function of time, (b)
trajectories of Yy as a function of time, (c) trajectories of Z as a function of time, (d) trajectories of W as

a function of time.
Clearly, figure (1) shows that the solution of system (2) approaches asymptotically to the positive equilibrium

point Eg =(0.5,0.2,0.1,0.06) starting from three different initial points and this is confirming our obtained
analytical results regarding to global stability of the positive equilibrium point.

Now in order to discuss the effect of the varying the parameters values of system (2) on the dynamical
behavior of the system, the system is solved numerically for the data given in Eq.(55) with varying one

parameter each time. It is observed that for the data given in Eq.(55) with varying the parameter value of N
there is no effect on the dynamical behavior of system (2) and the system still approaches to positive equilibrium
point. It is observed that for the data as given in Eq.(55) with @& < 0.18 , the solution of system (2) approaches

asymptotically to E3:(X3,0, 23,0) in the interior of positive quadrant of Xz —plane, however for

&y > 0.18 the system approaches to the positive equilibrium point, as shown in figure (2).
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Figure (2): Time series of the solution of system (2) for the data given by Eq.(55) with (a) a; = 0.1, which

approaches to (0.5, 0, 0.5, 0) in the interior of positive quadrant of Xz —plane, (b) & =0.18, which

approaches to (0.64, 0.17, 0.15, 0.06) in the interior of Rf .

Similarly varying the parameter a, keeping the rest of parameter values as in Eq.(55), It is observed that for
a, >0.19, the solution of system (2) approaches asymptotically to Ez = (X3,O, 23,0) in the interior of the
positive quadrant of XZ — plane, however for a, <0.19 the system approaches to the positive equilibrium
point.

Also varying the parameter bl keeping the rest of parameter values as in Eq.(55), it is observed that for
by >0.12, the solution of system (2) approaches asymptotically to Ej :(X3,O, 23,0) in the interior of
positive quadrant of Xz — plane, while for by <0.12 the system approaches to the positive equilibrium point.

For the parameter values given in Eq.(55) with varying b2 in the range b2 > 0.26 system (2) approaches
asymptotically to Eg = (X3,O, 23,0) in the interior of positive quadrant of Xz — plane, however for
0.04 <b, <0.26 the system approaches to the positive equilibrium point, while for b, <0.04 the solution

of system (2) approaches asymptotically to E2 =(x2,y2,0,0) in the interior of positive quadrant of
Xy —plane, as shown in figure (3).
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Figure (3): Time series of the solution of system (2) for the data given by Eq.(55) with (a) bz =0.26,
which approaches to (0.38, 0, 0.6, 0) in the interior of positive quadrant of XZ —plane, (b) b, =0.02,
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which approaches to (0.5, 0.4, 0, 0) in the interior of positive quadrant of Xy —plane, (c) b, =0.25,

which approaches to (0.59, 0.16, 0.19, 0.08) in the interior of Rf .

Again for the parameter values given in Eq.(55) with varying d; in the range d; >0.44 system (2)
approaches asymptotically to Eg = (X3,O, 23,0) in the interior of positive quadrant of Xz — plane, however for
d; < 0.44 the system approaches to the positive equilibrium point.

For the parameter values given in Eq.(55) with varying dz in the range d2 > 0.19 system (2) approaches
asymptotically to E, = (X2, y2,0,0) in the interior of positive quadrant of Xy —plane, however for
d, <0.19 the system approaches to the positive equilibrium point.

For the parameter values given in Eq.(55) with varying N, in the range N, < 0.25 system (2) approaches

asymptotically to Ez = (X3,O, 23,0) in the interior of positive quadrant of Xz — plane, however for n, > 0.25
the system approaches to the positive equilibrium point.

Varying the parameter | keeping the rest of parameter values as in Eq.(55), It is observed that for | > 0.2,
the solution of system (2) approaches asymptotically to E5 = (X3,O, 23,0) in the interior of positive quadrant of

Xz — plane, while for | < 0.2 the system approaches to the positive equilibrium point.

Moreover, for the parameter values given in Eq.(55) with by = 0.3 and d, = 0.3 the solution of system (2)
approaches asymptotically to E; = (1,0,0,0) as shown in figure (4).
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Figure (4): Time series of the solution of system (2) for the data given by Eq.(55) with bl =0.3 and
d, = 0.3, which approaches to (1, 0, 0, 0).
For the parameter values given in Eq.(55) with by =0.09, d; =0.12, d, =0.01 and n, =0.03 the
solution of system (2) approaches asymptotically to E4 = (X4,0, Zy, W4) as shown in figure (5).
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Figure (5): Time series of the solution of system (2) for the data given by Eq.(55) with by =0.09,

d; =0.12, d, =0.01 and n, =0.03, which approaches to (0.45, 0, 0.55, 0.08) in the interior of positive
octant of XZwW — plane

Populations

Q
N

198


http://www.iiste.org/

Mathematical Theory and Modeling www.iiste.org
ISSN 2224-5804 (Paper) ISSN 2225-0522 (Online) l'H.i.l
Vol.4, No.14, 2014 NS'E

However, for the parameter values given in Eq.(55) with b, =0.09, d; =0.12, d, =0.13 and n, =0
the solution of system (2) approaches asymptotically to Eg = (X5, Y5, 25,0) as shown in figure (6).
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Figure (6): Time series of the solution of system (2) for the data given by Eq.(55) with by =0.09,

d; =0.12, d, =0.13 and n, =0, which approaches to (0.59, 0.08, 0.29, 0) in the interior of positive
octant of Xyz —plane.

9. Conclusions and Discussion

In this paper, we proposed and analyzed an eco-epidemiological model that described the dynamical behavior
of prey-predator model with Lotka-Volterra type of functional response and linear incidence rate for the disease
in prey and predator respectively. It is assumed that the disease is transmitted from a prey to predator during the
predation process, also the disease transmitted within the same species by contact with an infected individual.
The model included four non-linear autonomous differential equations that describe the dynamics of four
different population namely susceptible prey X, infected prey Y, susceptible predator z and infected predator

W. The boundedness of the system (2) has been discussed. The dynamical behavior of system (2) has been
investigated locally as well as globally. Further, it is observed that the vanishing equilibrium point ( Eg) always

exist, and it is unstable saddle point. The axial equilibrium point (E;) always exist, and it is locally
asymptotically stable point if and only if the conditions (10b)-(10c) hold as well as it is globally if the conditions
(16a)-(16b) hold. The predator free equilibrium point ( Ez) exists provided that the condition (3b) holds, and it is
locally asymptotically stable point if and only if the condition (11c) holds as well as it is globally if the
conditions (17a)-(17b) hold. The disease free equilibrium point (E3) exists provided that the condition (4b)
holds, and it is locally asymptotically stable point if and only if the condition (12c) holds, while it is globally if
the conditions (18a)-(18b) hold. The infected prey free equilibrium point ( E4) exists provided that the condition
(5b) holds, and it is locally asymptotically stable point if and only if the condition (13c) holds, while it is
globally if the condition (19) holds. The infected predator free equilibrium point ( Eg) exists provided that the

condition (6b) or (6¢) holds, and it is locally asymptotically stable point if and only if the conditions (14c)-(14d)
hold, further it is globally if the conditions (20a)-(20b) hold. The positive equilibrium point of system (2) exists
provided that the condition (7c) holds. It is locally asymptotically stable point if and only if conditions (15c)-
(15g) or (15c)-(15f) hold, in addition it is globally if the conditions (22a)-(22b) hold. To understand the effect of
varying each parameter on the global dynamics of system (2) and to confirm our above analytical results, system
(2) has been solved numerically and the following results are obtained:

1. For the set of hypothetical parameters values given Eq.(55), system (2) approaches asymptotically to a

globally asymptotically stable point Eg = (0.5,0.2,0.1,0.06).

2. It is observed that the system (2) has no effect of the dynamical behavior for the data given in Eq.(55)
with varying the parameter values N; and the system still approaches to positive equilibrium point.

3. As the infection rate of prey a; decreases keeping other parameters fixed as in Eq.(55) then the

infected species of prey and predator will face extinction and the solution of system (2) approaches
asymptotically to the equilibrium point E5 = (X3,O, 23,0). Otherwise the system still have a globally
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asymptotically stable positive point in the Int.Rf. Further, it is observed that N, have the same effect
as al .

4. As the attack rate Ao increases keeping other parameters as in Eq.(4.1) then the infected species of
prey and predator will face extinction and the solution of system (2.2) approaches asymptotically to the
equilibrium point E3 = (X3,O, 23,0). Otherwise the system still have a globally asymptotically

stable positive point in the Int.Rf. Moreover it is observed that the parameter dl, mortality rate of

infected prey b‘l and mortality rate of infected predator | have the same effect as ds.

5. As the conversion rate b2 increases keeping other parameters as in Eq.(55) then the infected species of
prey and predator will face extinction and the solution of system (2) approaches asymptotically to the
equilibrium point Eg =(X3,0, 23,0). However decreasing the parameter D, causes extinction of
susceptible and infected predator and the solution of system (2) approaches asymptotically to the
equilibrium point E, = (X5, Y,,0,0) .

6. As the natural death rate of susceptible and infected predator d2 increases keeping other parameters
fixed as in Eq.(55) then the susceptible and infected predator face extinction and the solution of system
(2) approaches asymptotically to the equilibrium point E, = (X2, y2,0,0). Otherwise the system still

have a globally asymptotically stable positive point in the Int.Ri’.
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