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Abstract 

       In this paper, a mathematical model consisting of the prey- predator involving infectious disease in prey 

population, is proposed and analyzed. And this disease passed from a prey to predator through attacking of 

predator to prey. The model represented mathematically by the set of nonlinear differential equations. The 

existence, uniqueness and boundedness of the solution of this model are investigated. The local and global 

stability conditions of all possible equilibrium points are established. The occurrence of local bifurcation (such 

as saddle-node, transcritical and pitchfork) a long with Hopf bifurcation near each of the equilibrium points are 

discussed. Finally, numerical simulation is used to study the global dynamics of this model. 

Keywords: eco-epidemiological model, SI epidemics disease, prey-predator model, stability 

analysis, Hopf bifurcation. 

 

1. Introduction: 

       We consider the growth of two interdependent populations. Given two species, interdependence might arises 

due to the existence of the interaction between them. The most important models of this type are known prey-

predator models. Mathematical biologists have been working on merging two major areas of interest Ecology [1-

3] and Epidemiology [4] for a long time. Diseases that affect the prey in particular may affect the entire prey-

predator system [5-7]. The main objective of these models, which known as eco-epidemiological models, is to 

investigate the effect of the disease on the dynamical behavior of the prey-predator systems. Prey-predator-

pathogen models have been a topic of significant interest since the early1980s. Anderson and May [8] in 1982 

constructed the way of merging ecological prey-predator models, which were initiated by Lotka and Volterra, 

and the epidemiological models that introduced by Kermack and McKendrick. Prey-predator interactions have 

fascinated mathematical biologists for a long time. Eco-epidemiology is comparatively a new branch in 

mathematical biology which simultaneously considers the ecological and epidemiological processes [9]. Hadeler 

and Freedman [10] introduced an eco-epidemiological model regarding prey-predator interactions with both prey 

and predator subject to disease. Further, it is well known that in nature there is no species lived alone rather than 

that there are hundreds or thousands of species interact with each other in any given environment. On the other 

hand densely populated areas are a good incubator for the spread of infectious diseases. Therefore, there is an 

increasing opportunity for the spread of diseases among the communities interacting with each other. However, 

many diseases are transmitted in the species not only through contact, but also directly from environment, such 

as, influenza, bird flu and others see for example [11-15]. However during the last four decades the ideas 

oriented to study the dynamical behavior of eco-epidemiological models, which represented by mathematical 

models merging of the two phenomena, that is means the demographics of interacting species and an epidemic 

evolution in different environment. In this paper a consideration to prey-predator model where the prey 

population infected by some infectious disease and these disease passed from a prey to predator through 

attacking or predation process. While the disease transmitted within the same species by contact, between 

susceptible individuals and infected individuals. In this paper a prey-predator model involving SI infection 

disease in both the prey and predator species is proposed and analyzed. 

 

2. Mathematical model: 

 In this section an eco-epidemiological model is proposed for study. The model consists of a prey, whose 

total population density at time T  is denoted by  TN , interacting with predator whose total population density 

at time T  is denoted by  TP . The following assumptions are adopted in formulating the basic eco-

epidemiological model: 

1. There is an SI  epidemic disease in prey population divides the prey population into two classes namely 

 TS  that represents the density of susceptible prey species at time T  and  TI  which represents the 

density of infected prey species at time T . Therefore at any time T , we have      TITSTN  . 
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2. The disease is transmitted from a prey to predator during attacking of predator to prey, which divides 

the predator population into two classes namely  TP1  that represents the density of susceptible 

predator species at time T  and  TP2  which represents the density of infected predator species at time 

T . Therefore at any time T , we have      TPTPTP 21  . 

3. The susceptible prey is capable of reproducing in logistic fashion with carrying capacity 0k , 

intrinsic growth 0r . 

4. The disease transmitted within the same species by contact with an infected individual at infection rates 

01   and 02   for the prey and predator respectively. 

5. In the absence of the prey the susceptible and infected predator decay exponentially with death rate 

02  . 

6. The disease may causes mortality with a constant mortality rates 01   and 03   for prey and 

predator species respectively. 

7. The susceptible predator consumes the susceptible and infected prey according to Lotka-Volterra type 

of functional response at constant consumption rates 01 c  and 02 c  for susceptible and infected 

respectively, while the infected predator can't attack the prey directly due to the its weakness. 

       Considering the above basic assumptions the prey-predator model can be represented in the following set of 

differential equations. 
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with   00 S ;   00 I ;   001 P ;   002 P ; 10  ie ; 2,1i  represent the conversion rates constants 

and 10  m  represents the infection rate of susceptible predator that predation the infected prey. Cleary, 

system (1) included (12) parameters, which make the analysis difficult. So, in order to simplify the system the 

number of parameters is reduced by using the following dimensionless variables. 
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Thus we obtain: 
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Where: 
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represent the dimensionless parameters of the system (2). Moreover the initial condition of system (2) may be 

taken as any point in the region 
4
R . The interaction functions in the right hand side of system (2) are 

continuously differentiable function on 
4
R , hence they are Lipschitizian. Therefore the solution of system (2) 

exists and is unique. Further, all the solutions of system (2) with non-negative initial condition are uniformly 

bounded as shown in the following theorem. 

Theorem (1): All the trajectories of system (2), which initiate in 
4
R  are uniformly bounded. 

Proof: From the first equation of system (2) we obtain that 

  xx
dt

dx
 1  

Clearly by solving the above differential inequality we get 

   1suplim 


tx
t

 

Define the function          twtztytxtG   and then by taking its time derivative along the solution 

of system (2), gives 

     wzyxwldzdybx
dt

dG
 221  

where  21,min db , then we get 

     GGx
dt

dG
  11  

Now, by using Gronwall lemma, it obtains that: 
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Thus  





1
tG    as t  that is independent of the initial conditions and hence the proof is complete.                                                                                                                                                          

■   

                                                                                                                                                                                                                                                                                                                                                                                               

3. Existence of equilibrium points: 

      It is observed that, system (2) has at most seven biologically feasible equilibrium points, 

namely 6,5,4,3,2,1,0, iEi . The existence conditions for each of these equilibrium points are discussed in 

the following: 

 

The vanishing equilibrium point  0,0,0,00 E  always exists. 

The axial equilibrium point  0,0,0,11 E  always exists. 

The predator free equilibrium point  0,0,, 222 yxE  , where:                                              
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exists uniquely in the interior of the first quadrant of xy-plane under the following necessary and sufficient 

condition: 

 11 ba                   (3b) 

The disease free equilibrium point  0,,0, 333 zxE  , where: 
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exists uniquely in the interior of the first quadrant of xz-plane under the following necessary and sufficient 

condition: 

 22 db                   (4b) 

The infected prey free equilibrium point  4444 ,,0, wzxE  , where: 
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exists uniquely in the interior of the first octant of xzw-space under the following necessary and sufficient 

condition: 
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The infected predator free equilibrium point  0,,, 5555 zyxE  , where: 
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exists uniquely in the interior of the first octant of xyz-space under the following necessary and sufficient 

conditions: 
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or 
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The positive equilibrium point  66666 ,,, wzyxE  , where: 
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while 6x  represents a positive root of the following second order polynomial equation 

 032
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here 
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Consequently, straightforward computation shows that 6E  exists uniquely in the 
4. RInt  if and only if the 

following conditions are hold. 
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4. Local stability analysis of system (2): 

       In this section, the local stability analysis of system (2) around each of the above equilibrium points are 

discussed through computing the Jacobian matrix  wzyxJ ,,,  of system (2) at each of them which given by: 
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The Local stability analysis at 0E : 

The Jacobian matrix of system (2) at 0E  can be written as: 
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Clearly, 0J  has three negative eigenvalues 1by  , 2dz  ,  ldw  2  and one positive 

eigenvalue in the x-direction  1x , so the equilibrium point 0E  is unstable saddle point. 

 

The Local stability analysis at 1E : 

The Jacobian matrix of system (2) at 1E  can be written as: 
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Clearly, 1J  has the following eigenvalues: 

  lddbba wzyx  212211111 ,,,1   
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Therefore all the eigenvalues have negative real parts and hence the equilibrium point 1E  is locally 

asymptotically stable in the 
4. RInt  provided that the following conditions are satisfied: 

 11 ab                                                                                                                                          (10b) 

22 bd                                                                                                                                       (10c)  

                                                                        

The Local stability analysis at 2E : 

The Jacobian matrix of system (2) at 2E  can be written as: 
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The characteristic equation of this Jacobian matrix is given by: 
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We obtain that: 
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Therefore all the eigenvalues have negative real parts and hence the equilibrium point 2E  is locally 

asymptotically stable in the 
4. RInt  provided that the following condition is satisfied: 

 
 

1

21
222

1

1

a

xd
xbd




                                                                                  (11c) 

 

The Local stability analysis at 3E : 

The Jacobian matrix of system (2) at 3E  can be written as: 
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The characteristic equation of this Jacobian matrix is given by: 
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We obtain that: 
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Therefore all the eigenvalues have negative real parts and hence the equilibrium point 3E  is locally 

asymptotically stable in the 
4. RInt  provided that the following conditions are satisfied: 
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The Local stability analysis at 4E : 

The Jacobian matrix of system (2) at 4E  can be written as 

            
444 

 ijaJ                                                                                                                                 (13a) 

 where: 

   0,0,01,0 144131412411  axaaxaxa  

    0,0,,0 2423214112221  aaaazbaaa  

 0,0,0,0 4343341324231  zaazdazba  

 0,0,0,0 444143424241  awnaznaa  

Then the characteristic equation of 4J  can be written as: 

    0342
2
41

3
4422  LLLa y                                                                            (13b) 

here  

   4334113433431132111 ,, aaaLaaaaLaL   

Further, it is easy to verify that 311311321 aaaLLL  . Clearly, the eigenvalue y4  in y-direction has 

negative real part if and only if the following condition holds.  

  21411 aazba                                                         (13c) 

However, ,0iL 3,1i  and 0 . So, according to Routh-Hawirtiz criterion the equilibrium point 4E  is 

locally asymptotically stable. 

 

The Local stability analysis at 5E : 

The Jacobian matrix of system (2) at 5E  can be written as  

              
445 

 ijbJ                                                                                                                                (14a) 

 where: 

   0,0,01,0 145131512511  bxbaxbxb  

 0,0,0,0 245223225121  byabbyab  

 0,0,0,0 5343351325231  zbbzdbzbb  

  ldznbbbb  25144434241 ,0,0,0  

Then the characteristic equation of  5J  can be written as: 

    0352
2
51

3
5544  DDDb w                                                                          (14b) 

here: 

 
 

1332213123123223113

3223311321122111 ,,

bbbbbbbbbD

bbbbbbDbD




 

Further, it is easy to verify that  
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   1332213123123113211211321 bbbbbbbbbbbDDD   

Not that, according to the element of 5J , it easy to verify that: 

     

      11122555251155

1222115553

51

11

1

0

daabazyzbyaaxx

abaaadzyxD

xD







 

Clearly, the eigenvalue w5  in w- direction has negative real part if and only if the following condition holds. 

 ldzn  251                                                                     (14c) 

However, according to existence condition (6b) 0iD , 3,1i  and 0  if and only if  

   11122 1 daaba  .                                                                    (14d) 

So, according to Routh-Hawirtiz criterion the equilibrium point 5E  is locally asymptotically stable. While, 

according to existence condition (6c) we have 03 D . So, according to Routh-Hawirtiz criterion the 

equilibrium point 5E  is unstable. 

 

The Local stability analysis at 6E : 

The Jacobian matrix of system (2) at 6E  can be written as  

       
446 

 ijjJ                                                                                                                                       (15a)                             

where:  

     0,0,01,121 146131612661611  jxjaxjzyaxj  

0,0,0,0 246223226121  jyajjyaj  

 0,0,0,0 6343361326231  zjjzdjzbj  

          0,0,0,0 26144626143624241  ldznjynwnjznjj  

Then the characteristic equation of  6J  can be written as: 

 0463
2
62

3
61

4
6  CCCC                                                                                      (15b) 

here: 

   44111 jjC   

  441143343223311321122 jjjjjjjjjjC   

  32214431133122231113 jjjjjjjjC   

   4122311211324  jjjjjC  

Consequently:     

 
  6423423444334211211544311311

3211





jjjjjjjjjjjjj

CCC
 

and 

  6543214
2
132132 BBBBBBCCCCCC   

here: 

   44211222364234232112113113111 jjjjjjjjjjjjjB           

  
 433411311344

64234234443345443113112

jjjjjj

jjjjjjjjjjB




  

 
 322113723

64234234443341121123113113

jjjj

jjjjjjjjjjjjB




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  44112112441183421112433423444 2 jjjjjjjjjjjjjB     

  6
2
444234

2
112344115  jjjjjjjB  

  4411123113
2
44

2
11134234216 jjjjjjjjjjjB                                                          

with: 

0322343341  jjjj  

      lddnndzzjjjj  2121166423444322   

   ldznazbay

jjjj





26116226

442131233
    

4431234334214 jjjjjj   

      ldznbaynwnazy  261226261166

    ldznzyaxjj  261661644115 121  

6   11122666231231322113 1 daabazyxjjjjjj 

      612661616311232117 1121 xabzyaxdzjjjj 

    62626116431242138 1 znynwnaxjjjj   

Now, according to existence conditions (7c) we have two cases: 

Case 1: if the second part of condition (7c) holds then we have 4,3,1,0  iCi  and 02   if and only if the 

following conditions hold: 

   6616 121 zyax                                                                                                          (15c) 

 
 

22

62611
612

1

622

ba

ynwna
znld

a

zba 
                                                                      (15d) 

 

1

62
6261

1 a

zn
ynwn


                                                                                                               (15e) 

 
 

 
 

1

122
1

6616

612 1

112

1

a

aba
d

zyax

xab 





                                                                    (15f) 

So, according to Routh-Hawirtiz criterion the equilibrium point 6E  is locally asymptotically stable. 

Case 2: if the first part of the condition (7c) holds then we have 4,3,1,0  iCi  and 02   if and only if in 

addition to the conditions (15c)-(15f) hold the following condition should be satisfy. 

  43212 ,,,min HHHH                                                                                               (15g) 

here 
 

23

3221443113312111
1

j

jjjjjjj
H




 , 

 23112113

412
2

jjjj

j
H




 ,                  

23

442112
3

j

jjj
H


 ,      

 

433423

834512442111
4

2

jjj

jjjjj
H


  

 So, according to Routh-Hawirtiz criterion the equilibrium point 6E  is locally asymptotically stable. 

 

5. Global stability analysis of system (2): 

       In this section the global stability for the equilibrium points of system (2) is investigated by using the 

Lyapunov method as shown in the following theorems. 

Theorem (2): Assume that the equilibrium point 1E  of system (2) is locally asymptotically stable in the 
4
R , 

and the following conditions are satisfied: 

 2
21

211
2 d

an

ndn
b 


                                                                                                                 (16a)         
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      11 1 ab                                                                                                                                   (16b) 

Then 1E  is globally asymptotically stable in the 
4
R . 

Proof: Consider the following function: 

   wczcycxxcV 43211 ln1   

Where 4,3,2,1; ici  are positive constants to be determined. Clearly RRV 
4

1 :  is 
1C  positive definite 

function. Now, by calculating the derivative of 1V  and choosing the positive constants as below: 

1;; 413
2

211
21 


 cnc

a

ndn
cc  

We obtain that: 

  
   

xz
a

banndn
z

a

danndn

yba
a

ndn
x

a

ndn
V

2

221211

2

221211

11
2

211

.

2

2

211
1 11
















 

According to conditions (16a)-(16b) we get  01 


V . Therefore 1E  is globally asymptotically stable in the 
4
R . 

And hence the proof is complete.                                                                                                            ■ 

 

 Theorem (3): Assume that the equilibrium point 2E  of system (2) is locally asymptotically stable in the 
4
R , 

and the following conditions are satisfied: 

1

21
22

211

221

1 a

xa
ya

ndn

adn





                                                                                                     (17a) 

121 bn                                                                                                                                       (17b) 

Then 2E  is globally asymptotically stable in the 
4
R . 

Proof: Consider the following function: 

weze
y

y
yyye

x

x
xxxeV 43

2
222

2
2212 lnln 

















  

Where 4,3,2,1; iei  are positive constants to be determined. Clearly RRV 
4

2 :  is 
1C  positive definite 

function. Now, by calculating the derivative of 2V  and choosing the positive constants as below: 

 
 

1;;;
1

413
2

211
2

12

2111
1 







 ene

a

ndn
e

aa

ndna
e  

We obtain that: 

 
 

 

 xzbn

zdnya
a

xa

a

ndn
xx

aa

ndna
V

1

11

21

2122
1

21

2

2112
2

12

2111
2







































 

According to conditions (17a)-(17b) we get 02 


V . Therefore 2E  is globally asymptotically stable in the 
4
R . 

And hence the proof is complete.                                                                                                            ■ 

                                                                                                                                            

Theorem (4): Assume that the equilibrium point 3E  of system (2) is locally asymptotically stable in the 
4
R , 

and the following conditions are satisfied:    

ldzn  231                                                                                                                             (18a) 
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 
 

3

31
12

21

2111 1
x

zd
ab

an

ndna



                                                                                       (18b) 

Then 3E  is globally asymptotically stable in the 
4
R . 

Proof: Consider the following function: 

wh
z

z
zzzhyh

x

x
xxxhV 4

3
3332

3
3313 lnln 

















  

Where 4,3,2,1; ihi  are positive constants to be determined. Clearly RRV 
4

3 :  is 
1C  positive definite 

function. Now, by calculating the derivative of 3V  and choosing the positive constants as below: 

1;;; 413
2

211
2211 


 hnh

a

ndn
hbnh  

We obtain that: 

 

    

     xyabn
a

ndn
awldzn

yb
a

ndn
zdaxbnxxbnV





















 




121
2

211
1231

1
2

211
311321

2
3213

1

1

 

According to conditions (18a)-(18b) we get 03 


V . Therefore 3E  is globally asymptotically stable in the 
4
R . 

And hence the proof is complete.                                                                                                            ■  



Theorem (5): Assume that the equilibrium point 4E  of system (2) is locally asymptotically stable in the 
4

R , 

and the following condition is satisfied: 

 
 

4

41
12

21

2111 1
x

zd
ab

an

ndna



                                                                                         (19) 

Then 4E  is globally asymptotically stable in the 
4
R . 

Proof: Consider the following function: 






























4
444

4
4432

4
4414

ln

lnln

w

w
wwwk

z

z
zzzkyk

x

x
xxxkV

 

Where 4,3,2,1; iki  are positive constants to be determined. Clearly RRV 
4

4 :  is 
1C  positive definite 

function. Now, by calculating the derivative of 4V  and choosing the positive constants as below: 

1;;; 413
2

211
2211 


 knk

a

ndn
kbnk  

We obtain that: 

  

    

  xyabn
a

ndn
a

yb
a

ndn
zdaxbnxxbnV





















 




121
2

211
1

1
2

211
411421

2
4214

1

1

 

According to condition (19) we get 04 


V . Therefore 4E  is globally asymptotically stable in the 
4
R . And 

hence the proof is complete.                                                                                                                     ■  
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Theorem (6): Assume that the equilibrium point 5E  of system (2) is locally asymptotically stable in the 
4
R , 

and the following conditions are satisfied: 

  01 12211  abada                                                                                                            (20a) 

ldzn  251                                                                                                                             (20b) 

Then 5E  is globally asymptotically stable in the 
4
R . 

Proof: Consider the following function: 

wm
z

z
zzzm

y

y
yyym

x

x
xxxmV

4
5

553

5
552

5
5515

ln

lnln




































 

Where 4,3,2,1; imi  are positive constants to be determined. Clearly RRV 
4

5 :  is 
1C  positive definite 

function. Now, by calculating the derivative of 5V  and choosing the positive constants as below: 

11

2
4

1

2
32

1

22
1 ;;1;

dn

a
m

d

a
mm

d

ba
m   

We obtain that: 

 
 

  

w
n

ld
z

d

a

yyxx
d

abada
xx

d

ba
V








 









 




1

2
5

1

2

55
1

122112
5

1

22
5

1

 

 According to conditions (20a)-(20b) we get 05 


V . Therefore 5E  is globally asymptotically stable in the 
4
R . 

And hence the proof is complete.                                                             ■                                                                                                                                         

Theorem (7): Assume that the equilibrium point 6E  of system (2) is locally asymptotically stable in the 
4
R , 

and the following conditions are satisfied: 

  01 12211  abada                                                                                                            (21a) 

   66
21

22
6 zyyz

bn

n
xx                                                                                                  (21b) 

Then 6E  is globally asymptotically stable in the sub region of 
4
R  that satisfy the above conditions. 

Proof: Consider the following function: 







































6
664

6
663

6
662

6
6616

lnln

lnln

w

w
wwwr

z

z
zzzr

y

y
yyyr

x

x
xxxrV

 

Where 4,3,2,1; iri  are positive constants to be determined. Clearly RRV 
4

6 :  is 
1C  positive definite 

function. Now , by calculating the derivative of 6V  and choosing the positive constants as below: 

21
4

2
3

22

1
21

1
;

1
;;1

bn
r

b
r

ba

d
rr   

We obtain that: 
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 
 

  

 66
21

2

66
22

122112
66

1

zyyz
bn

n

yyxx
ba

abada
xxV










 




 

 According to conditions (21a)-(21b) we get 06 


V . Therefore 6E  is globally asymptotically stable in the sub 

region of 
4
R  that satisfy the above conditions. And hence the proof is complete.                                 ■ 

 

6. The local bifurcation analysis of system (2):   

       In this section, the effect of varying the parameter values on the dynamical behavior of the system (2) 

around each equilibrium points is studied. Recall that the existence of nonhyperbolic equilibrium point of system 

(2) is the necessary but not sufficient condition for bifurcation to occur. Therefore, in the following theorems an 

application to the Sotomayor's theorem [16] for local bifurcation is adapted. 

      Now, according to Jacobian matrix of system (2) given in equation (8), it is clear to verify that for any non-

zero vector  TvvvvV 4321 ,,,  we have: 

 

  
 

 
  






























41223

421123

32112

32111

2

2

2

2

12

,

vnvnv

vvdvbv

vavav

vvavv

VVFD                                                                         (22)  and    

 TVVVFD 0,0,0,0),,(3   

So, according to Sotomayor's theorem the pitchfork bifurcation does not occur at each point 

6,5,4,3,2,1,0, iEi . 

 Note that, according to the Jacobian matrix 0J  given by Eq.(9) the system (2) at the equilibrium point 

0E  has four non-zero eigenvalues. So, the Jacobian matrix 0J  has no non hyperbolic equilibrium point. Thus, 

the system has not bifurcation at 0E . 

Theorem (8): Suppose that the condition (10b) is satisfied. Then for the parameter value 2
*
2 db   system (2)  at 

the equilibrium point 1E   has  

1. No saddle-node bifurcation.  

2. Transcritical bifurcation.  

Proof: According to the Jacobian matrix 1J  given by Eq.(10a) the system (2) at the equilibrium point 1E  has 

zero eigenvalue (say 01 z ) at 
*
22 bb  , and the Jacobian matrix 1J  with 

*
22 bb   becomes: 

            

 

 



























ld

ba

a

JJ z

2

11

1

1
*
1

000

0000

000

0111

0  

       Now, let 
          TvvvvV 1

4
1

3
1
2

1
1

1 ,,,  be the eigenvector corresponding to the eigenvalue  01 z . Thus 

    01
1

*
1  VIJ z , which gives: 

        0,0, 1
4

1
2

1
3

1
1  vvvv  and 

 1
3v  any nonzero real number. 
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Let 
          T1

4
1

3
1

2
1

1
1 ,,,   be the eigenvector associated with the eigenvalue 01 z  of the matrix 

TJ *
1 . Then we have     01

1
*
1  IJ z

T  . By solving this equation for 
 1  we obtain 

    T0,,0,0 1
3

1  , where 
 1
3  any nonzero real number. Now, consider: 

   T
T

b xz
b

f

b

f

b

f

b

f
bXf

b

f
0,,0,0,,,,

2

4

2

3

2

2

2

1
2

2
2






























  

So,    Tb bEf 0,0,0,0, *
212
  and hence 

     0, *
21

1

2
 bEfb

T
 

So, according to Sotomayor
,
s theorem the saddle-nod bifurcation can not occur. While the first condition of 

transcritical bifurcation is satisfied. Now, since 

 























0000

00

0000

0000

, 22 xz
bXDfb  

Where  2,
2

bXDfb  represents the derivative of  2,
2

bXfb  with respect to  TwzyxX ,,, . Further, it is 

observed 

   

 

   

































































0

0

0

0

0

0000

0100

0000

0000

, 1
3

1
3

1
3

1*
212 vv

v

VbEDfb

 
                  00,,0,00,,0,0, 1

3
1

3
1

3
1

3
1*

21
1

2
 vvVbEDf

T

b

T
  

Now, by substituting 
 1V  in (22) we get  

         
T

vbVVbEfD 







 0,2,0,0,,

21
3

*
2

11*
21

2
 

Hence, it is obtain that: 

          
           020,2,0,00,,0,0

,,

21
3

*
2

1
3

21
3

*
2

1
3

11*
21

21













vbvb

VVbEfD

T

T


 

Thus, according to Sotomayor
,
s theorem system (2) has transcritical bifurcation at 1E  with the parameter 

*
22 bb  .                                                                                                                                                          ■ 

 

Theorem (9): Suppose that the condition  

       212
*
2211

*
2122 11 xanldaadldaba                                                 (23) 

is satisfied. Then for the parameter value 
 

1

21
22

*
2

1

1

a

xd
xbd




  system (2) at the equilibrium point 2E  has  

1. No saddle-node bifurcation.  

2. Transcritical bifurcation.  

Proof: According to the Jacobian matrix 2J  given by Eq.(11a) the system (2) at the equilibrium point 2E  has 

zero eigenvalue (say 02 z ) at 
*
22 dd  , and the Jacobian matrix 2J  with 

*
22 dd   becomes: 
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      

 
   

   






































ld
a

xn

a

xa

a

xa

xaxx

JJ z

*
2

1

22

1

22

1

21

2122

22
*
2

1

1
00

0000

0
1

1
0

1

1

01

0  

      Now, let 
          TvvvvV 2

4
2

3
2

2
2

1
2 ,,,  be the eigenvector corresponding to the eigenvalue  02 z . 

Thus     02
2

*
2  VIJ z , which gives: 

          
       

 
     

  
 2
3

1
*
2

222
4

2
3

11

212
2

2
3

1

22
1

1

1
,

1
, v

ald

xn
vv

aa

aa
vv

a

a
v









  and 

 2
3v  any nonzero real 

number. 

Let 
          T2

4
2

3
2

2
2

1
2 ,,,   be the eigenvector associated with the eigenvalue 02 z  of the matrix 

TJ *
2 . Then we have      02

2
*
2  IJ

z

T  . 

By solving this equation for 
 2  we obtain 

    T0,,0,0 2
3

2  , where 
 2
3  any nonzero real number. 

Now, by using the same steps in the previous theorem we will get  

            
     0, *

22
2

2
 dEfd

T
 

So, according to Sotomayor
,
s theorem the saddle-nod bifurcation can not occur, while the first condition of 

transcritical bifurcation is satisfied. Further, it is observed 

 
                    0,,0,00,,0,0, 2

3
2

3
2

4
2

3
2

3
2*

22
2

2
 vvvVdEDf

T

d

T
  

Now, by substituting 
 2V  in (22) we get  

           22*
22

22 ,, VVdEfD
T

 

            

   















ldaa

xanldaadaba
v

*
211

212
*
2211122

22
3

2
3

1

11
2  

According to condition (23) we obtain that: 

            
           0,, 22*

22
22  VVdEfD

T
 

Thus, according to Sotomayor
,
s theorem system (2) has transcritical bifurcation at 2E  with the parameter 

*
22 dd  .                                                                                                                                                         ■ 

 

Theorem (10): Suppose that the following conditions  

  2213 aaax                                                                                                                          (24) 

  ldxn  231 1                                                                                                                     (25) 

 
 

 12
231

32
1 1

1

1
ab

ldxn

xn
d 




                                                                                     (26)  

are satisfied. Then for the parameter value   2213
*
1 aaaxb   system (2) at the equilibrium point 3E  has  

1. No saddle-node bifurcation.  

2. Transcritical bifurcation.  
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Proof: According to the Jacobian matrix 3J  given by Eq.(12a) the system (2) at the equilibrium point 3E  has 

zero eigenvalue (say 03 y ) at 
*
11 bb  , it is clearly that 0*

1 b  provided that condition (24) holds, and the 

Jacobian matrix 3J  with 
*
11 bb   becomes: 

 

 

   
     




























ldxnxn

xdxbxdxb

xaxx

JJ y

23132

32323132

3133

33
*
3

1010

111

0000

01

0  

       Now, let 
          TvvvvV 3

4
3

3
3

2
3

1
3 ,,,  be the eigenvector corresponding to the eigenvalue   03 y . 

Thus     03
3

*
3  VIJ y , which gives: 

   
 

 
 

   3
21

231

32
121

22

33
1 1

1

1
1

1
va

ldxn

xn
abd

bd

x
v 




























  

   
 

 
 

 3
2

231

32
121

22

33
3

1

1
1

1
v

ldxn

xn
abd

bd

x
v 



















  

   
 

 3
2

231

323
4

1

1
v

ldxn

xn
v




  

and 
 3
2v  any nonzero real number. Here we have 

]3[
3

]3[
1 ,vv  and 

]3[
4v  are defined under the existence 

condition (4b) and (25). While 
]3[

1v  and 
]3[

3v  not equal zero under the condition (26). 

Let 
          T3

4
3

3
3

2
3

1
3 ,,,   be the eigenvector associated with the eigenvalue 03 y , of the matrix 

TJ *
3 . Then we have     03

3
*
3  IJ y
T  . By solving this equation for 

 3  we obtain 

    T0,0,,0 3
2

3  , where 
 3
2  any nonzero real number. Now, by using the same steps in the previous 

theorems we will get  
     0, *

13
3

1
 bEfb

T
. So, according to Sotomayor

,
s theorem the saddle-nod 

bifurcation can not occur. While the first condition of transcritical bifurcation is satisfied. Further, it is observed 

                  00,0,,00,0,,0, 3
2

3
2

3
2

3
2

3*
13

3

1
 vvVbEDf

T

b

T
  

Now, by substituting 
 3V  in (22) we get  

          
           33*

13
23 ,, VVbEfD

T      Rv
23

2
3

22  

where: 

 

   
 

  






















ldxn

xn
abd

bd

x
aa

aaR

231

32
121

22

3
21

11

1

1
1

1

1

  

According to condition (26) with existence condition (4b) we obtain that: 

          
           0,, 33*

13
23  VVbEfD

T
 

Thus, according to Sotomayor
,
s theorem system (2) has transcritical bifurcation at 3E  with the parameter 

*
11 bb  .                                                                                                                                                           ■ 
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Theorem (11): Suppose that the following conditions  

 2141 aaza                                                                                                                         (27) 

 121 1 abd                                                                                                                             (28) 

4142 wnzn                                                                                                                                 (29)  

   1412142 1 awnaazn                                                                                                   (30) 

are satisfied. Then for the parameter value  21411
ˆ aazab    system (2) at the equilibrium point 4E  has  

1. No saddle-node bifurcation.  

2. Transcritical bifurcation.  

Proof: According to the Jacobian matrix 4J  given by Eq.(13a) the system (2) at the equilibrium point 4E  has 

zero eigenvalue (say 04 y ) at 11 b̂b  , it is clearly that 0ˆ
1 b  provided that condition (27) holds, and the 

Jacobian matrix 4J  with 11 b̂b   becomes: 

 

 



























00

0

0000

01

0

4142

44142

4144

44
*
4

wnzn

zzdzb

xaxx

JJ y  

       Now, let 
          TvvvvV 4

4
4

3
4

2
4

1
4 ,,,  be the eigenvector corresponding to the eigenvalue   04 y . 

Thus     04
4

*
4  VIJ y , which gives: 

 

                4
2

41

422121414
4

4
2

41

424
3

4
2

41

41424
1

1
,, v

wn

znbabdwn
vv

wn

zn
vv

wn

wnzn
v








  

 and 
 4
2v  any nonzero real number. Here we have 

]4[
1v  and 

]4[
4v  not equal zero under the condition (28) and 

(29). Let 
          4

4
4

3
4

2
4

1
4 ,,,   be the eigenvector associated with the eigenvalue 04 y  of the 

matrix 
TJ *

4 . Then we have     04
4

*
4  IJ y
T  . By solving this equation for 

 4  we obtain 

    T0,0,,0 4
2

4  , where 
 4
2  any nonzero real number. Now, by using the same steps in the previous 

theorems we will get 
     0ˆ, 14
4

1
 bEfb

T
. So, according to Sotomayor

,
s theorem  the saddle-nod 

bifurcation cannot occur. While the first condition of transcritical bifurcation is satisfied. Further, it is observed 

                  00,0,,00,0,,0ˆ, 4
2

4
2

4
2

4
2

4
14

4

1
 vvVbEDfb

T
  

Now, by substituting 
 4V  in (22) we get  

           44
14

24 ,ˆ, VVbEfD
T         








 

41

1412142
24

2
4

2

1
2

wn

awnaazn
v                           

According to condition (30) we obtain that: 

           0,ˆ, 44
14

24  VVbEfD
T

 

Thus, according to Sotomayor
,
s theorem system (2) has transcritical bifurcation at 4E  with the parameter 

11 b̂b  .                                                                                                                                                          ■ 

Theorem (12): For the parameter value 

5

2*
1

z

ld
n


   system (2) at the equilibrium point 5E  has  

1. No saddle-node bifurcation.  
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2. Transcritical bifurcation.  

Proof: According to the Jacobian matrix 5J  given by Eq.(14a) the system (2) at the equilibrium point 5E  has 

zero eigenvalue (say 05 w ) at 
*
11 nn  , and the Jacobian matrix 5J  with 

*
11 nn   becomes: 

 

 





























0000

0

00

01

0
55152

5251

4144

55
*
5

zzdzb

yaya

xaxx

JJ w  

Let 
          TvvvvV

5
4

5
3

5
2

5
1

5 ,,,  be the eigenvector corresponding to the eigenvalue   05 w . Thus 

    05
5

*
5  VIJ w , which gives: 

  
       

 
       

 
 5
3

11

2111225
4

5
3

11

215
2

5
3

1

25
1

1

1
,

1
, v

aa

aadaab
vv

aa

aa
vv

a

a
v









   

and 
 5
3v  any nonzero real number. It is clear that 

5
4v  not equals zero under the existence condition (6b) or (6c). 

Let 
          T5

4
5

3
5

2
5

1
5 ,,,   be the eigenvector associated with the eigenvalue 05 w  of the matrix 

TJ *
5 . Then we have     05

5
*
5  IJ

w

T  . By solving this equation for 
 5  we obtain 

    T5
4

5 ,0,0,0  , where 
 5
4  any nonzero real number. Now, by using the same steps in the previous 

theorems we will get 
     0, *

15
5

1
 nEfn

T
. So, according to Sotomayor

,
s theorem  the saddle-nod 

bifurcation cannot occur. While the first condition of transcritical bifurcation is satisfied. Further, it is observed 

 
                  0,0,0,0,0,0,0, 5

4
5

45
5

45
5

4
5*

15
5

1
 vzvzVnEDf

T

n

T
  

Now, by substituting 
 5V  in (22) we get  

           55*
15

25 ,, VVnEfD
T         

  












11

121122
25

3
5

4
*

1

1
2

1 aa

daaaab
vn   

According to existence condition (6b) or (6c)  we obtain that: 

                    
           0,, 55*

15
25  VVnEfD

T
 

Thus, according to Sotomayor
,
s theorem system (2) has transcritical bifurcation at 5E  with the parameter 

*
11 nn  .                                                                                                                                                           ■ 

 

Theorem (13): Suppose that the condition (15c) with the following conditions are satisfied 

432112142  S                                                                                                                      (31) 

   

         

44

1442432112142134
6

3

12

1122
6

1 1







SnSnvaSSv 



                         (32) 

431
6612

12 ja
zyj

S



                                                                                                                       (33) 

Or the conditions (15c) and (31)-(32) with the following conditions are satisfied  

443112211                                                                                                                        (34) 

then for the parameter value 










 431

6612

12

442
2

1ˆ ja
zyj

S

ja
b  system (2) at the equilibrium point 6E  has  
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1. No saddle-node bifurcation.  

2. Transcritical bifurcation.  

with, 231121131 jjjjS  , 122321122  S  

Proof: The characteristic equation given by Eq.(15b) having zero eigenvalue (say 06  ) if and only if 

04 C  and then 6E  becomes a nonhyperbolic equilibrium point. Clearly the Jacobian matrix of system (2) at 

the equilibrium point 6E  with parameter 22 b̂b   becomes                                

    
4466

*
6 0


 ijJJ   

where ijij j  for all 4,3,2,1, ji  except 31  which is given by: 6231
ˆ zb . Not that, if the second part 

of existence condition (7c) holds then we have 0ˆ
2 b  if the condition (15c) holds. While, if the first part of the 

condition (7c) holds then we have 0ˆ
2 b  if and only if in addition to the condition (15c) holds and the 

condition (33) should be satisfy. Let 
          TvvvvV 6

4
6

3
6

2
6

1
6 ,,,  be the eigenvector corresponding to the 

eigenvalue  06  . Thus     06
6

*
6  VIJ  , which gives: 

           6
3

442112

4321121426
4

6
3

2112

16
2

6
3

21

236
1 ,, v

S
vv

S
vvv







 



  

and 
 6
3v  any nonzero real number. Clearly, according to conditions (15c) and (31), we have 

]6[
2v  and 

]6[
4v  not 

equal zero. Let 
          T6

4
6

3
6

2
6

1
6 ,,,   be the eigenvector associated with the eigenvalue 06   of 

the matrix 
TJ *

6 . Then we have     06
6

*
6  IJ T  . Which gives : 

           6
3

44

346
4

6
3

442112

4431122116
2

6
3

4412

26
1 ,, 












 





  

and 
 6
3  any nonzero real number. Not that, if the first part of existence condition (7c) holds then we have 

0
]6[

2   if  the condition (15c) holds. While, if the second part of the condition (7c) holds then we have 

0
]6[

2   if and only if in addition to the condition (15c) holds and the condition (34) should be satisfy. Now, 

by using the same steps in the previous theorems we will get 

       0ˆ, 6
36626

6

2
 zxbEfb

T
 

So, according to Sotomayor
,
s theorem the saddle-nod bifurcation cannot occur. While the first condition of 

transcritical bifurcation is satisfied. Now, by substituting 
 6V  in (22) we get  

              
           66

26
26 ,ˆ, VVbEfD

T
 

   
             













 




44

1442432112142134
6

3

12

1122
6

1

441221

6
3

6
3 12







 SnSnvaSSvv
 

So, according to condition (32) we obtain that: 

              
           0,ˆ, 66

26
26  VVbEfD

T
 

Thus, according to Sotomayor
,
s theorem system (2) has transcritical bifurcation at 6E  with the parameter 

22 b̂b  .                                                                                                                                                          ■ 

 

7. The Hopf bifurcation analysis of system (2): 
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       In this section, the existence of periodic dynamic in system (2) due to changing the value of one parameter is 

studied. 

 

The Hopf bifurcation analysis near 0E  and 1E : 

       According to the Jacobian matrix of system (2) at 0E  and 1E , it is clear that 0J  given by (9) and 1J  given 

by (10a) has always four real eigenvalues. So, the necessary and sufficient conditions for a Hopf bifurcation to 

occur are not satisfied. 

 

The Hopf bifurcation analysis near 2E  and 3E : 

       From the characteristic equations of 2J  and 3J , it is observed that the eigenvalues are given respectively 

as in Eq.(11b) and (12b). Clearly   0Re ,2 yx  and   0Re ,3 wz . So, there is no possibility for Hopf 

bifurcation to occur. 

 

The Hopf bifurcation analysis near 4E  : 

       From the characteristic equations of 4J , which given by Eq.(13b) we get: 

            02
442311311321  xzbaaaLLL  if and only if 02 b . 

But in our assumptions 02 b . So, there is no possibility for having complex eigenvalues, then the Hopf 

bifurcation can not occur. 

 

The Hopf bifurcation analysis near 5E  and 6E  : The possibility of Hopf bifurcation to occur is discussed in 

the following theorems. 

 

Theorem (14): Suppose that the condition (14c) with the following conditions are satisfied: 

  5251155511 1 zbyaaxzyda                                                                                       (35) 

  112 2 dab                                                                                                                             (36) 

Then for the parameter value 
  
 1255

5251155511*
2

1

1

abzy

zbyaaxzyda
a




  the system (2) has a Hopf 

bifurcation near the point 5E . 

Proof: Consider the characteristic equation of the system (2) at 5E  which is given by Eq.(14b). Now, to verify 

the necessary and sufficient conditions for a Hopf bifurcation to occur we need to find a parameter satisfy 

0 .Therefore it is observed that 0  gives : 

  
 1255

5251155511*
2

1

1

abzy

zbyaaxzyda
a




  

Clearly, 0*
2 a  provided that the condition (35) holds. The coefficients of the characteristic equation given by 

Eq.(14b) can be rewritten as 

 
   
    13221311232115

*
2

*
23

31132112325
*
2

*
22

5
*
21

0

0

bbbbbbbyaaD

bbbbbyaaD

xaD







 

Hence, for 
*
22 aa   the characteristic equation given by Eq.(14b) becomes: 

    02
2
515544  DDb w                                                              

which has four roots 252151445 ,, DiDbw    and 253 Di  

http://www.iiste.org/


Mathematical Theory and Modeling                                                                                                                                                  www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.4, No.14, 2014 

 

 192 

Clearly, at 
*
22 aa   there are two pure imaginary eigenvalues ( 52 and 53 ) and two real and negative 

eigenvalues provided that the condition (14c) holds.  Now for all values of 2a  in the neighborhood of 
*
2a  , the 

roots in general of the following form: 

               2221253222152212514425 ,,, aiaaaiaaDabaw  

 Clearly,      3,2,0Re *
2125 *

22




jaa
aaj   that means the first condition of the necessary and 

sufficient conditions for Hopf bifurcation is satisfied at 
*
22 aa  . Now by substituting 

   222152 aia    and      2221253 aiaa    in the equation    2
2
515 DD  0 and 

calculating these derivative with respect to the parameter 2a , and then comparing the two sides of this equation 

by equating their real and imaginary parts, it is obtain that: 

 
         

          0

0

2222212

2222212





aaaaa

aaaaa




                                                                       (37) 

here  

       

             

         

                 

           22222122212

2
222123212221

2
212

222122212

2
22222121

2
212

2

26

323

aaDaDaaa

aaDaDaaDaDaa

aaDaaa

aaDaaDaa

















                      (38) 

Solving the linear system (37) by using Cramer's rule for the unknowns  21 a  and  22 a , gives that 

  
       

     22
2

2

2222
21

aa

aaaa
a




 ;  

       

     22
2

2

2222
22

aa

aaaa
a




  

Therefore the second necessary and sufficient condition of Hopf bifurcation 

     3,2,0Re *
22*

22

215
2






ja
da

d
aa

aa

j   

will be satisfied if and only if 

         0*
2

*
2

*
2

*
2  aaaa                                                                                               (39)  

Note that for 
*
22 aa   we have 01   and  *

222 aD , substitution into (38) gives the following 

simplifications: 

 
         
             *

22
*
22

*
2

*
22

*
21

*
23

*
2

*
22

*
21

*
2

*
22

*
2

,

2,2

aDaDaaDaDaDa

aDaDaaDa




 

where: 

        121555
2

3
3552

2

2
2

2

1
1 1,,0

*
22

*
22

*
22

abdzyx
da

dD
Dzyb

da

dD
D

da

dD
D

aaaaaa





 

Consequently,  

                    *
2

*
2

*
2

*
2 aaaa     112555

*
22 22 dabzyxaD   

So, according to condition (36) we have: 

                       0*
2

*
2

*
2

*
2  aaaa  

Yields, the Hopf bifurcation occurs around the equilibrium point 5E  at the parameter 
*
22 aa   and the proof is 

complete.                                                                                                                                             ■ 
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Now the conditions of Hopf bifurcation for 4n  are constructed according to the Haque and Venturino 

methods [17]. Consider the characteristic equation given by: 

                 043
2

2
3

1
4

4  CCCCP   

here         *
23

*
12

*
1 ,, xJMCxJMCxJtrC   and   *

4 det xJC   with   *
1 xJM  and 

  *
2 xJM  represent the sum of the principal minors of order two and three of  *xJ  respectively. Clearly, 

the first condition of  Hopf  bifurcation holds if and only if  

04;0;3,1;0 1
3
13211  CCCCiCi  and   04

2
132132  CCCCCC  

consequently, 
 

2
1

3213
4

C

CCCC
C


 .  So, the characteristic equation becomes: 

   0
1

1
1

2

1

32
4 







 











C
C

C

C
P                                                                               (40)                                                  

Clearly the roots of  Eq.(40) are 

1

3
4,3

1

12
112,1 ,4

2

1

C

C
i

C
CC 













 
   

Now, to verify the transversality condition of  Hopf  bifurcation, we substitute      qiqq 21    into 

Eq.(40), and then calculating its derivative with respect to the bifurcation parameter q ,    04  qP  , 

comparing the two sides of this equation and then equating their real and imaginary parts, we have 

             
         

          0

0

21

21





qqqqq

qqqqq




                                                                                      (41) 

Where  

      

               

        

                

  

                 

           

                  

    321

2122312
2

1

2
22

2
211

4
2

12131
3

1

3
2

222112
2

1

2
21

2
21

123
2

11
3

1

23

3

4

2612

312

234

qqC

qqqCqqCqCqqq

qqCqqqC

qCqqCqqCqCqq

q

qqCqqqCqqq

qqCqq

qqCqCqqCqq

































                                         (42) 

Solving the linear system (41) by using Cramer's rule for the unknowns  q1  and  q2 , gives that 

      
       

     221
qq

qqqq
q




 ;   

       

     222
qq

qqqq
q




  

Hence the transversality condition not being zero if and only if  

         0 qqqq                                                                                                      (43) 

 

Theorem (15): Suppose that the conditions (15c), (15e) with the following conditions are satisfied: 

 
  1

6616

612

112

1
d

zyax

xab





                                                                                               (44) 
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














2
445

6
311311322113 ,max

j

B
jjjjjj                                                                                (45)  

612
1

622ˆ
znld

a

zba
                                                                                                            (46) 

 

1

122
1

1ˆ

a

aba
d


                                                                                                                       (47) 

04 1
3
1 C                                             (48) 

31 C                                                                                                                                        (49) 

 

23

3221443113312111
2

j

jjjjjjj




                                                                         (50)  

1311
2
1  CjC                                                                                                                        (51)                                                                                  

Or the conditions (15c),(15e) and (3.16)-(3.21) with the following conditions are satisfied  

27                                                                                                                                       (52) 

1311
2
1  CjC                                                                                                                        (53) 

Then at the parameter value 





  31

2
22

61
2 4

2

1
ˆ NNNN

yN
a , the system (2) has a Hopf bifurcation 

near the point 6E , where 

            72123142341  jjjjN  

        

   
  

  

    1231423444211232211331132112112

43341144311312314234

322113444334311321121174443342

2
441231

2
1142345123142343221132

jjjjjjjjjjjjjjj

jjjjjjjjjj

jjjjjjjjjjjjjj

jjjjjjjjjjjjjN









     

   
  

 

  3221133113211211442112

6
2
44322113551244834442111

3221134443343113211211322113

4334114431133221134443345443113113

2

jjjjjjjjjjj

Bjjjjjjjjjj

jjjjjjjjjjjjjj

jjjjjjjjjjjjjjjjN









 

Proof: Consider the characteristic equation of the system (2) at 6E  which is given by Eq.(15b). Now, to verify 

the necessary and sufficient conditions for a Hopf bifurcation to occur we need to find a parameter satisfy 

02  .Therefore it is observed that 02   gives : 

032621
2
6

2
2  NNyaNya                                                                                                  (54) 

Now, we have two cases: 

Case1: if the first part of existence conditions (7c) hold, then  by using Descartes Rule Eq.(54) has a unique 

positive root 





  31

2
22

61
2 4

2

1
ˆ NNNN

yN
a  provided that the conditions (15c), (15e), (44) and (45) 

hold. 

Case2: if the second part of existence conditions (7c) hold, then  by using Descartes Rule Eq.(54) has a unique 

positive root 





  31

2
22

61
2 4

2

1
ˆ NNNN

yN
a  provided that the conditions (15c), (15e), (44), (45) 

and (52) hold. 
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      Now, at 22 âa   the characteristic equation given by Eq.(15b) can be written as : 

               0
1

1
61

2
6

1

32
6 







 











C
C

C

C
                                                                                                  

Which has four roots 

1

3
2,61

C

C
i  and 













 


1

12
114,63 4

2

1

C
CC . Clearly, at 22 âa   there 

are two pure imaginary eigenvalues ( 61 and 62 ) and two eigenvalues which are real and negative provided the 

conditions (15c) and (46)-(48), and (50) hold when the first part of existence conditions (7c) hold or the 

conditions (15c) and (46)-(48) hold when the second part of existence conditions (7c) hold. 

     Now for all values of 2a  in the neighborhood of 2â  , the roots in general of the following form: 

      












 


1

12
114,6321622161 4

2

1
;;

C
CCii   

Clearly,      2,1,0ˆRe 21ˆ26
22




kaa
aak   that means the first condition of the necessary and 

sufficient conditions for Hopf bifurcation is satisfied at 22 âa  . Now to verify the transversality condition we 

must prove that         0ˆˆˆˆ 2222  aaaa , where the form of   ,,  and   are given in 

Eq.(42). Note that for 22 âa   we have 01   and 

1

3
2

C

C
 , substitution into (42) gives the 

following simplifications: 

 

     
 

 

             











21
1

3
2322222

1

3
242

321
1
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2232

ˆˆˆˆ;ˆˆˆ

2
ˆ
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aC
C

C
aCaaaC

C

C
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C

a
aaCa





 

Where: 

   4431122511

ˆ2

4
43112321125

ˆ2

3
3

325

ˆ2

2
2

ˆ2

1
1

2222

2222

;

;0

jjjyj
da

dC
Cjjjjy

da

dC
C

jy
da

dC
C

da

dC
C

aaaa

aaaa









 

Then by using Eq.(43) we get that: 

       

   



























 














 




2
2
232443112311232112

1

31

2
1

31
11263

2222

ˆ2

ˆˆˆˆ

ajjjjjjjj
C

C

C

C
jyC

aaaa


 

Now, we have two cases: 

Case1: if the first part of existence conditions (7c) hold, then   

                       0ˆˆˆˆ 2222  aaaa  

 provided that the conditions (15c), (49) and (51) hold. 

Case2: if the second part of existence conditions (7c) hold, then 

                       0ˆˆˆˆ 2222  aaaa  

 provided that the conditions (15c), (49) and (53) hold. 
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So, we obtain that the Hopf bifurcation occurs around the equilibrium point 6E  at the parameter 22 âa   and 

the proof is complete.                                                                                                                                ■ 

  

8. Numerical analysis of system (2) 

      In this section the dynamical behavior of system (2) is studied numerically for different sets of parameters 

and different sets of initial points. The objectives of this study are: first investigate the effect of varying the value 

of each parameter on the dynamical behavior of system (2) and second confirm our obtained analytical results. It 

is observed that, for the following set of hypothetical parameters: 

1.0,4.0,2.0,1.0

2.0,2.0,1.0,1.0,2.0

212

12121





lnnd

dbbaa
                               (55) 

The trajectory of the system (2) is drawn in the figure (1) for different initial points. 
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Figure (1): Time series of the solution of system (2) (a) trajectories of x  as a function of time, (b) 

trajectories of y  as a function of time, (c) trajectories of z  as a function of time, (d) trajectories of w  as 

a function of time. 
     Clearly, figure (1) shows that the solution of system (2) approaches asymptotically to the positive equilibrium 

point )06.0,1.0,2.0,5.0(6 E  starting from three different initial points and this is confirming our obtained 

analytical results regarding to global stability of the positive equilibrium point. 

 

       Now in order to discuss the effect of the varying the parameters values of system (2) on the dynamical 

behavior of the system, the system is solved numerically for the data given in Eq.(55) with varying one 

parameter each time. It is observed that for the data given in Eq.(55) with varying the parameter value of 1n   

there  is no effect on the dynamical behavior of system (2) and the system still approaches to positive equilibrium 

point. It is observed that for the data as given in Eq.(55) with 18.01 a , the solution of system (2) approaches 

asymptotically to  0,,0, 333 zxE   in the interior of positive quadrant of xz plane, however for 

18.01 a the system approaches to the positive equilibrium point, as shown in figure (2). 
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Figure (2): Time series of the solution of system (2) for the data given by Eq.(55) with (a) 1.01 a , which 

approaches to (0.5, 0, 0.5, 0) in the interior of positive quadrant of xz plane, (b) 18.01 a , which 

approaches to (0.64, 0.17, 0.15, 0.06) in the interior of 
4
R . 

      Similarly varying the parameter 2a  keeping the rest of parameter values as in Eq.(55), It is observed that for 

19.02 a , the solution of system (2) approaches asymptotically to  0,,0, 333 zxE   in the interior of the 

positive quadrant of xz plane, however for 19.02 a the system approaches to the positive equilibrium 

point. 

      Also varying the parameter 1b  keeping the rest of parameter values as in Eq.(55), it is observed that for 

12.01 b , the solution of system (2) approaches asymptotically to  0,,0, 333 zxE   in the interior of 

positive quadrant of xz plane, while for 12.01 b the system approaches to the positive equilibrium point. 

      For the parameter values given in Eq.(55) with varying 2b  in the range 26.02 b  system (2) approaches 

asymptotically to  0,,0, 333 zxE   in the interior of positive quadrant of xz plane, however for 

26.004.0 2  b  the system approaches to the positive equilibrium point, while for 04.02 b  the solution 

of system (2) approaches asymptotically to  0,0,, 222 yxE   in the interior of positive quadrant of 

xy plane, as shown in figure (3). 
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Figure (3): Time series of the solution of system (2) for the data given by Eq.(55) with (a) 26.02 b , 

which approaches to (0.38, 0, 0.6, 0) in the interior of positive quadrant of xz plane, (b) 02.02 b , 
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which approaches to (0.5, 0.4, 0, 0) in the interior of positive quadrant of xy plane, (c) 25.02 b , 

which approaches to (0.59, 0.16, 0.19, 0.08) in the interior of 
4
R . 

      Again for the parameter values given in Eq.(55) with varying 1d  in the range 44.01 d  system (2) 

approaches asymptotically to  0,,0, 333 zxE   in the interior of positive quadrant of xz plane, however for 

44.01 d  the system approaches to the positive equilibrium point. 

 

      For the parameter values given in Eq.(55) with varying 2d  in the range 19.02 d  system (2) approaches 

asymptotically to  0,0,, 222 yxE   in the interior of positive quadrant of xy plane, however for 

19.02 d  the system approaches to the positive equilibrium point. 

 

      For the parameter values given in Eq.(55) with varying 2n  in the range 25.02 n  system (2) approaches 

asymptotically to  0,,0, 333 zxE   in the interior of positive quadrant of xz plane, however for 25.02 n  

the system approaches to the positive equilibrium point. 

 

      Varying the parameter l  keeping the rest of parameter values as in Eq.(55), It is observed that for 2.0l , 

the solution of system (2) approaches asymptotically to  0,,0, 333 zxE   in the interior of positive quadrant of 

xz plane, while for 2.0l the system approaches to the positive equilibrium point. 

 

      Moreover, for the parameter values given in Eq.(55) with 3.01 b  and 3.02 d  the solution of system (2) 

approaches asymptotically to  0,0,0,11 E  as shown in figure (4). 
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Figure (4): Time series of the solution of system (2) for the data given by Eq.(55) with 3.01 b  and 

3.02 d , which approaches to (1, 0, 0, 0). 

       For the parameter values given in Eq.(55) with 09.01 b , 12.01 d , 01.02 d  and 03.02 n  the 

solution of system (2) approaches asymptotically to  4444 ,,0, wzxE   as shown in figure (5). 
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Figure (5): Time series of the solution of system (2) for the data given by Eq.(55) with 09.01 b , 

12.01 d , 01.02 d  and 03.02 n , which approaches to (0.45, 0, 0.55, 0.08) in the interior of positive 

octant of xzw plane 
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      However, for the parameter values given in Eq.(55) with 09.01 b , 12.01 d , 13.02 d  and 02 n  

the solution of system (2) approaches asymptotically to  0,,, 5555 zyxE   as shown in figure (6). 
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Figure (6): Time series of the solution of system (2) for the data given by Eq.(55) with 09.01 b , 

12.01 d , 13.02 d  and 02 n , which approaches to (0.59, 0.08, 0.29, 0) in the interior of positive 

octant of xyz plane. 

 

9. Conclusions and Discussion       

    In this paper, we proposed and analyzed an eco-epidemiological model that described the dynamical behavior 

of prey-predator model with Lotka-Volterra type of functional response and linear incidence rate for the disease 

in prey and predator respectively. It is assumed that the disease is transmitted from a prey to predator during the 

predation process, also the disease transmitted within the same species by contact with an infected individual. 

The model included four non-linear autonomous differential equations that describe the dynamics of four 

different population namely susceptible prey x , infected prey y , susceptible predator z  and infected predator 

w . The boundedness of the system (2) has been discussed. The dynamical behavior of system (2) has been 

investigated locally as well as globally. Further, it is observed that the vanishing equilibrium point ( 0E ) always 

exist, and it is unstable saddle point. The axial equilibrium point ( 1E ) always exist, and it is locally 

asymptotically stable point if and only if the conditions (10b)-(10c) hold as well as it is globally if the conditions 

(16a)-(16b) hold. The predator free equilibrium point ( 2E ) exists provided that the condition (3b) holds, and it is 

locally asymptotically stable point if and only if the condition (11c) holds as well as it is globally if the 

conditions (17a)-(17b) hold. The disease free equilibrium point ( 3E ) exists provided that the condition (4b) 

holds, and it is locally asymptotically stable point if and only if the condition (12c) holds, while it is globally if 

the conditions (18a)-(18b) hold. The infected prey free equilibrium point ( 4E ) exists provided that the condition 

(5b) holds, and it is locally asymptotically stable point if and only if the condition (13c) holds, while it is 

globally if the condition (19) holds. The infected predator free equilibrium point ( 5E ) exists provided that the 

condition (6b) or (6c) holds, and it is locally asymptotically stable point if and only if the conditions (14c)-(14d) 

hold, further it is globally if the conditions (20a)-(20b) hold. The positive equilibrium point of system (2) exists 

provided that the condition (7c) holds. It is locally asymptotically stable point if and only if conditions (15c)-

(15g) or (15c)-(15f) hold, in addition it is globally if the conditions (22a)-(22b) hold. To understand the effect of 

varying each parameter on the global dynamics of system (2) and to confirm our above analytical results, system 

(2) has been solved numerically and the following results are obtained: 

1. For the set of hypothetical parameters values given Eq.(55), system (2) approaches asymptotically to a 

globally asymptotically stable point )06.0,1.0,2.0,5.0(6 E . 

2. It is observed that the system (2) has no effect of the dynamical behavior for the data given in Eq.(55) 

with varying the parameter values 1n   and the system still approaches to positive equilibrium point. 

3. As the infection rate of prey 1a  decreases keeping other parameters fixed as in Eq.(55) then the 

infected species of prey and predator will face extinction and the solution of system (2) approaches 

asymptotically to the equilibrium point  0,,0, 333 zxE  . Otherwise the system still have a globally 
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asymptotically stable positive point in the 
4. RInt . Further, it is observed that 2n  have the same effect 

as 1a . 

4. As the attack rate 2a  increases keeping other parameters as in Eq.(4.1) then the infected species of 

prey and predator will face extinction and the solution of system (2.2) approaches asymptotically to the 

equilibrium point  0,,0, 333 zxE  . Otherwise the system still have a globally asymptotically 

stable positive point in the 
4. RInt . Moreover it is observed that the parameter 1d , mortality rate of 

infected prey 1̀b  and mortality rate of infected predator l  have the same effect as 2a . 

5. As the conversion rate 2b  increases keeping other parameters as in Eq.(55) then the infected species of 

prey and predator will face extinction and the solution of system (2) approaches asymptotically to the 

equilibrium point  0,,0, 333 zxE  . However decreasing the parameter 2b  causes extinction of 

susceptible and infected predator and the solution of system (2) approaches asymptotically to the 

equilibrium point  0,0,, 222 yxE   . 

6. As the natural death rate of susceptible and infected predator 2d  increases keeping other parameters 

fixed as in Eq.(55) then the susceptible and infected predator face extinction and the solution of system 

(2) approaches asymptotically to the equilibrium point  0,0,, 222 yxE  . Otherwise the system still 

have a globally asymptotically stable positive point in the 
4. RInt .  
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