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Abstract

In this paper, solve several important equations such as korteweg-devries (kdv) problem, Boussinesq equation of
non-homogeneous problem and non-homogeneous system Hirota-Satsuma problem of partial differential
equation by Homotopy analysis method (HAM). Studied comparison exact solution with numerical results , this
method have shown that is very effective and convenient and gives numerical solutions in the form of convergent
series with easily computable components for solving non-linear various problem of partial differential equation .
Keywords: Homotopy analysis method , Approximate solution , non-linear problems of partial differential
equation , analytical solutions .

1. Introduction

Analytical methods have made a comeback in research methodology after taking a backseat to the numerical
techniques for the latter half of the preceding century. The advantage of analytical methods are manifolds, the
main being that they give a much better insight than the numbers crunched by a computer using a purely
numerical algorithm. Most new nonlinear equations do-not have a precise analytic solution; so numerical
methods have largely been used to handle these equation[8]. Nonlinear differential equations are usually arising
from mathematical modeling of many physical systems. Some of them are solved using numerical methods and
some are solved using the analytic methods such as perturbation [1, 4]. The numerical methods such as Rung-
Kutta method are based on discretization techniques, and they only permit us to calculate the approximate
solutions for some values of time and space variables, which cause us to overlook some important phenomena, in
addition to the intensive computer time required to solve the problem[3]. It is well known that nonlinear
dynamical systems arise in various fields. A wealth of methods have been developed to find these exact
physically significant solutions of a partial equation though it is rather difficult. Some of the most important
methods are Backlund transformation [5]. In 1992, Liao [6, 9] proposed a new analytical technique; namely the
HAM based on homotopy of topology. However, in Liao’s PhD dissertation [6], he did not introduce the
auxiliary parameter h , but simply followed the traditional concept of homotopy to construct the following one-
parameter family of equations. The HAM [6] , is a powerful method to solve non-linear problems. Based on
homotopy of topology, the validity of the HAM is independent of whether or not there exist small parameters
in the considered equation.

2.Basic idea of HAM
consider the following differential equation

Nut)]=0 ()
where N is a nonlinear operator, T denotes independent variable, u(t) is an unknown function, respectively. For
simplicity, we ignore all boundary or initial conditions, which can be treated in the similar way. By means of
generalizing the traditional homotopy method, Liao [6] construct the so-called zero-order deformation equation

@—-a)L[et;q) —u,@]=ghH (N [et;0)] @)
where L is an auxiliary linear operator, N is a nonlinear operator related to the original nonlinear problem
N [@(t;q)] and g is the embedding parameter. An improved two parameters family of equations was proposed
to avoid divergence of solution by introducing an auxiliary parameter h [11,10] and the auxiliary function H(t) ,
Liao [12] constructs, using q €[0,1] . where ¢(t;q) is the solution which depends on h, H(t), L, ue(t) and q

,when q=0 and g=1, it holds:

@(t;0) =u,(t) 3)
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Thus, as g increases from 0 to 1, the solution ¢(t;q) varies from the initial guess Yo (t to the solution U (t) .
Expanding ¢(t;q) by Taylor series with respect to g, we get

(p(t:q):uo(t)+mi:1um<t)qm

........... 4)
"ott:) 5
u )= L eta) ®)
ml oq™ |
If the auxiliary linear operator, the initial guess, the auxiliary parameter . and the auxiliary function are so
properly chosen, the series (5) converges at g = 1, then we have
........... (6)

u(r,t):uo(r,t)+ium(r,t)

which must be one of the solutions of the original nonlinear equation, as proven by Liao [2]. As h =—-1 and H(t)
=1, equation (3) become

A—a)L[e(;:a) —u,@)]+aN [p:q)1=0 )
The governing equation can be deduced from the zero-order deformation equation (3). Define the vector

a, ) ={u,t)u,t),....u. &} (8)
Differentiating equation (3) m-times with respect to the embedding parameter g, then setting g= 0 and finally
dividing them by m!, we obtain the mth-order deformation equation.

Lu @)—x.u .@)]=hHOR.@..) 9)
Where
PO (10)
R @, )—— 1t " NIptiq)
(m — D! oqmt 4o
oom<1l (11)
" lLm>1

it should be emphasized that un,(t) for m=1 is governed by the linear boundary conditions that come from
original problem, which can be easily solved by symbolic computation software such as Maple, Mathematica and
Matlab. If equation (2) admits unique solution, then this method will produce the unique solution. If equation (2)
does not posses a unique solution, the HAM will give a solution among many other possible solutions.

3. Numerical experiments

In this section we give some computational results of numerical experiments with methods for solving important
problems such as korteweg-devries (kdv) problem , Boussinesq equation of non-homogeneous problem and
non-homogeneous system Hirota-Satsuma of partial differential equation . By solving the above issues we get
accurate and good results as shown in the tables and figures below:

Example(1):

Conseder the korteweg-devries (kdv) problem of partial differential equation:

u +u, +6uu, +50—x)e' =0

t XXX
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With initial condition

U0 = () =(—xX) e (13)
To solve the equation (12) by means of homotopy analysis method, according to the initial conditions (13).
............ (14)
Llptx tiq) = 222D 10
where ¢, is the constant coefficients and ¢ is the real function, where L is linear operator.
Now define the nonlinear operator as:
N [o(x t:q)] = 6¢>(>ét,t;q) N 63cp(a>)<(,3t:q) +Bp(x .1:q) écp(g);t;q)
—(1—x)e'
............ (15)
Using above definition, with assumption we construct the zero order deformation equation.
@—a)L[e(r.t;q) —uy(r,t)]=ghH (r,t)N [eo(r, t;001 (16)
with assumption H(r , t)=1 .1t is important, that one has great freedom to choose auxiliary things in HAM.
Obviously, when p=0and p = 1, it holds
@, (x,t;0) =u, (x,t)
e OCED=UCC) (17
Thus, we obtain the m™-order deformation equation.
Lu, —xu, ,]=hH(r )R @ ,t) (18)
where
_ {0, m <1
............ (19) = Lotherwise
and
............ (20)
R U, x,t)= 8?3’;*1 + 5;UXm31 +6u,_ 8?;"*1 —(@A—x)e'
Applying L™ both sides of (18) and uesd (HAM) to Eq. (12) and (13), as follows:
Uy =X, 0D FhH (COUR, @01 @

Now,apply HAM of equation (12),(13) and since m>1, X == 1 h=-1H(r, =1

In equation (21) then give:
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um(x 7t):um—1(x70)_L71(Rm(um—1’x’t)) ........... (22)
And
t
L= _[(.)dt
(0]
u(x,t) =uy(x,t) +>u, (x,t
SR SR mZ:I o (23)
then by using iteration formula of HAM give:
u,(x,t)y=>AQ—-x)
u,(x,t) =@ —x)@+t)
2
U, (X, t) = @—x)[L+t + %]
u,(x,t)=QA0—x)[1+t +E+E]
S 21 31
................................ (24)

Table 1. approximate values and exact solutions for equation (24)

t X U approximate solution U exact solution Error
0 1 1 0
0.1 0.9090000 0.9090451 0.0000451
0.2 0.8080400 0.8080401 0.0000001
0.3 0.7070331 0.7070351 0.0000002
0.4 0.6060300 0.6060303 0.0000003
0.01 0.5 0.5050250 0.5050261 0.0000011
0.6 0.4040200 0.4040221 0.0000021
0.7 0.3030151 0.3030171 0.0000002
0.8 0.2020100 0.2020130 0.000003
0.9 0.1010051 0.1010091 0.000004
1 1.0100502 1.0100502 0

Now, compare the numerical results with exact solution obtained by the HAM gives much better numerical

results shows that by above table and below figures(1),(2).

116


http://www.iiste.org/

Mathematical Theory and Modeling www.iiste.org
ISSN 2224-5804 (Paper) ISSN 2225-0522 (Online) L%i.l
Vol.4, No.14, 2014 NS'E

Approximate solution of example (1) Exact solution of example (1)
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Figure 1. Exact solution of (kdv) Figure 2. Approximate solution of (kdv)

The approximate solution of (1) is give:
ux,t)=u,(x,t) +u,(x,t) +u, (x,t) +...... +
and so on

ux,t)=A—x)e!

which is an exact solution and is same as obtained by HAM , and shown the comparison numerical results exact
solution in figure (1) and(2).

Example(2):

Consider the tow-dimensional weave equation:

u, — U, +u, )=0, (25)

together with the initial conditions

u(x,0) =sin(xzx)cos(ry),
u, (x,0) =zsin(zx)cos(zy), e (26)

to solve the problem by using the HAM , substitute (25), (26) into following equation

u,(x,y.t)=u,,(x,y,0)—L7[Ru,.,.x,y,t)]

2 2 ,
R, Xy 1) = That = 2 (Tlhas g oy
ot 2" ox oy -
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L = [[(.)dtdt

and 0o

Now, obtain the following recurrence relation:

u,(x,y,t) =sin(zx)cos(zy )A+ xt)

u,(x,y,t) =sin(zx)cos(ry )(% + %)

u,(x,y,t) =sin(xx)cos(zy )((ﬂt) + (ﬂ5t|) )

u,(x,y,t)=sin(zx)cos(zy )((ﬂ‘t )6 + (ﬂ;lﬁ)

................................................... (29)

Table 2. approximate values and exact solutions for equation (29)

t y X U approximate U exact solution Error
solution

0 0 0 0 0
0.1 ] 01 0.0054662 0.0056579 0.0001917
02 | 0.2 0.0112042 0.0113153 0.0001111
03] 0.3 0.0167933 0.0169712 0.0001779
04 | 04 0.0202253 0.0203638 0.0001385
001] 05| 05 0.0251246 0.0254511 0.0003265
0.6 | 0.6 0.0301350 0.0305359 0.0004009
0.7 | 0.7 0.0346811 0.0356177 0.0009366
0.8 | 0.8 0.0394513 0.0406960 0.0012447
09 | 09 0.0446793 0.0457704 0.0010911

1 1 0.0508403 0.0508403 0

In above table (2) computed absolute error for example (2) obtained by the HAM and It also illustrates the

figure below that the error rate obtained accurate and excellent shown below:
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Approximate solution of example(2) exact solution of example(2)
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Figure 4. Approximate solution of wave
equation

Figure 3. Exact solution of wave equation

Hence

() | () | ()| ()

u(x,y,t) =sin(xzx)cos(xzy )A+ 7t + >1 31 20 =

The result shows that the method provides an excellent approximation.

Example(3):

Consider the Boussinesq equation of non-homogeneous problem:

—3W?),, =—x*cos(zx)cos(zt)+ 67 cos’(zt)[cos®(zx )
—sin?(zx)]

utt _uXX _uXXXX

together with the initial conditions

u(x,0) =cos(xzx),
u,(x,0)=0,

Now, to solve problem (31), (32) by HAM writing equation (33) in form yields:

u, (x,t)y=u_,(x,0)—L*(R, U, X,t))

Where
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Ru, ,,x,t)= m-1 m-1 m-1 m-1 4 7z* cos(zzx ) cos(st
WX ) =T gt =St - e 35 (7rx ) cos(t)
—67z° cos?® (st )[cos® (izx ) —sin?® (zx )]
and

L = [ [()dtdt

this equation (31)can be easily solved by using this method to find the approximate solution beginning with
u(x,0)=cos(zx),
can obtain:

u,(x,t) =cos(zx)

u,(x,t) =cos(zx )(—(7212!) + (7214!))

u,(x,t) =cos(zx )(—@ + (ﬂ;)a)

6!

Table 3. approximate values and exact solutions for equation (34)

t X u approximate solution U exact solution Error
0 0.9999991 0.9999991 0
0.1 0.9995687 0.9999877 0.0004304
0.2 0.9997531 0.9999511 0.0001980
0.3 0.9995332 0.9998902 0.0003570
0.4 0.9993532 0.9998051 0.0004519
0.01 0.5 0.9992243 0.9996955 0.0004712
0.6 0.9991258 0.9995616 0.0004358
0.7 0.9990188 0.9994033 0.0003845
0.8 0.9990243 0.9992207 0.0001964
0.9 0.9990021 0.9990138 0.0000117
1 0.9987251 0.9987251 0

Also in table (3), compare the numerical results with exact solution obtained by the HAM gives accurate

numerical results shows that by above table and below.
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Exact solution of example (3) Approximate solution of example (3)
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Figure 5.Exact solution of example (3) Figure 6.Approximate solution of example(3)

Which implies that:

() () () ()" ()"

u(x,t)=cos(zx)1—
.t Gzx)( 21 a1 6! Y 10!

which converges to the exact solution

Example(4):

Consider the non-homogeneous system Hirota-Satsuma of partial differential equation:

u, —%um —3uu, +6ww =%e‘sinh(x)+3e2t sinh(x )cosh(x)

.................... (35)
w, —w __ +3uw  =e'cosh(x)+e'sinh(x)+3e* sinh?(x)
together with initial condition:. (36)
u(x,0) =sinh(x),
w (x ,0) = cosh(x),

.................... (37)
Now, application of homotopy analysis method:

.................... (38)

L, [, (x ,t;q)=w,m¢z(x '“‘“)ZW'

with the property L [c,],L,, [c,] where C and C, are constant

coefficients, ¢ and @ are real functions. Furthermore , define the nonlinear
operators
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N[ O t5a), 0, (1) = = = 35 =5 =3,k + 6, 2
op, ©O’p o
N x,t:q), ¢, (x,t;q)="22+=%243 2
Wl (X,150), 0, (X, 1;q) 2 ox: P o
.................... (40)

q [0.1], @ (x.t;q)and @, (X ,t;0) gre real functions of x , tand q . Let h, h,, denote the non-zero
auxiliary parameters. Using the above definition, with assumption, H(x, t), Hw(X, t) construct the zero-order
deformation equations as follows:

@A—)L, [ (x . t:q) —Uy(x )] =ah,H, ®N [&(x .t:0), 2, (% ;)]

@—a)L, [, (x,t;q) —w,(x,t)]=gh, H, (ON, [ (X.t;9),2,(X,t;q)]

whengq=0andgq=1, itisclear that:

¢1(X ,t,0) :UO(X ,t)7€02(x ,t,0) :Wo(x ,t),¢1(X 6,1 =u(x ’t)1¢2(x 4,1 =w (X,1)

.................... (43)

Both of h, and h,, are properly chosen so that the terms
U, (x,t) = %WL‘:" and w,(x,t)= %WL@

..................... (44)
exist for n = 1 and the power series of g in the following forms
2,06 130) =U, (¢ 1) + 2, (<107, 9,0, 1:a) =w . (x 1) + >, (x,1)q"

................... (45)
are convergent at q = 1 . So using (44), we obtain
P,0,1:0) =Ug (6 1) + 2, (X1, 2, (¢ 15:0) =W (< 1) + > W, (x 1)

................... (46)

According to the fundamental theorem of HAM, we have the n"-order deformation equation

LU, (X, ) =X U, , (< )] = h,RY @ vaW ), L, v, (x ) =X W, (X )] = h, RY @ naW 1)
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R(Una,Wnra)=h n-l n-l _3u 1+ 6w -l —e'sinh(x
o UnaW ) =R 5 ¥2 ox° "o ox 2 <)

—3e* sinh(x ) cosh(x)

................. (48)
RY UnaW na) =h, [a"i‘a’tnfl — 6;’:’( ns —BUH% —e' cosh(x ) —e" sinh(x )
—3e? sinh?(x)
................... (49)
Now; the solution of the n "-order deformation equation (47) for n > 1, becomes
u, (x,t)y=xu, ,(x,t)+h L [RYWn1,W nai)]
................ (50)
w, (X, t)=xw__(x,t)+h, L [R" Uns,Wni)]
............... (51)

Where h, = h,= h=-1 and xn defined by (19). Now, write the differential equations need to calculate uy,u,,Us,...,u,
and wq,Wy,Ws,....,w, as follows:

{uo(x ,t) =sinh(x)

w ,(x,t) =cosh(x)
u,(x,t)=tsinh(x)
{Wl(x ,t) =t cosh(x)
u,(x,t)= tEzlsinh(x )

2

w, (X ,t):%cosh(x)

3

u,(x ,t)=t3—|sinh(x)

w, (X ,t):ts—'cosh(x)
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Table 4. approximate values and exact solutions of u for equation (52)

t X u approximate solution U exact solution Error
0 0 0 0
0.1 0.0014642 0.0015865 0.0001223
0.2 0.0030431 0.0031732 0.0001301
0.3 0.0045225 0.0047597 0.0002372
0.4 0.0061687 0.0063462 0.0001775
0.01 0.5 0.0077253 0.0079328 0.0002075
0.6 0.0093522 0.0095193 0.0001671
0.7 0.0102151 0.0111059 0.0008908
0.8 0.0113422 0.0126923 0.0013501
0.9 0.0123625 0.0142787 0.0019162
1 0.0158652 0.0158652 0

Table 5. approximate values and exact solutions of w for equation (52)

t X u approximate solution U exact solution Error
0 1 1 0
0.1 1.0100325 1.0100489 0.0000164
0.2 1.0100224 1.0100452 0.0000228
0.3 1.0100201 1.0100389 0.0000188
0.4 1.0100154 1.0100302 0.0000148
0.01 0.5 1.0100117 1.0100190 0.0000073
0.6 1.0100044 1.0100053 0.0000009
0.7 1.0085122 1.0099891 0.0014769
0.8 1.0073421 1.0099704 0.0026283
0.9 1.0062962 1.0099492 0.0036530
1 1.0099256 1.0099256 0

In above tables (4),(5) gives approximate values and exact solutions Of non-homogeneous system Hirota-
Satsuma of partial differential equation obtained by HAM gives much accurate numerical rustles shown

that in below figures:
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Exact solution u of example (4)

Approximate solution u of example (4)

Figure 7.Exact solution for u of example (4)

Figure 8.Approximate solution for u of example(4)

Exact solution of w for example (4)
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Approximate solution of w for example (4)
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Figure 9.Exact solution for w of example (4)

Consequently, give:

u(x, t)=e' sinh(x)

w(x, t)=e' cosh(x)

which give best approximation result.

4.Discussion

Figure10.Approximate solution for w of example(4)

In this paper, the HAM is employed to obtain the analytical and approximate solutions of PDE and it's
successfully applied to solve many nonlinear problems of PDE's and many other equation such as (kdv)equation,
non-homogeneous Boussinesq equation ,wave equation and non-homogeneous Hirota-Satsuma system. This
method is very powerful and efficient technique in finding analytical solutions for wider class of problems.
Moreover gives us a simple way to adjust and control the convergence of the series solution by choosing proper
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values of auxiliary and homotopy parameters. In conclusion, it provides accurate exact solution for various
problems.
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